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Last Lecture, Geometrical Optics I  – The Basics

• Light as electromagnetic radiation
• Light can treated both as photons and waves

Huygens’ principle

Fermat’s principle (”principle of least time”)

1) In homogenous medium light travels in a linear fashion
2) Law of reflection: θ1 = θ2
3) Law of refraction or Snell’s law: n1 sin(θ1) = n2 sin(θ2)

• Total internal reflection



Today’s Lecture, Geometrical Optics II
Powerful Tools for Optical Design

• Lens maker’s formula and thin lens equation
• Ray tracing in optical systems
• Lenses: magnification, numerical aperture, f-number
• Non-ideal lenses - aberrations
• Matrix formalism for ray tracing



Why Imaging Optics Is Needed?

Optics is required ”to collect” light scattered from the object to 
form a sharp, focused image

optical
elements



Refractive Power of a Spherical Surface

Result: all rays refract through point P at si which is independent on the angle ϕ.



Deriving Refractive Power of a Spherical Surface 1/5

optical path length

according to the Fermat’s principle the variation of the path equals zero

dL/dϕ = 0



law of cosines applied to triangles SAC and ACP

SAC:

ACP:

Deriving Refractive Power of a Spherical Surface 2/5



dL/dϕ = 0

3/5



4/5



Here we do so called ’paraxial approximation’: 5/5



Thin Lens = Two Thin Spherical Surfaces

Lens Maker’s Formula (Eq. 1.7)
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Deriving Lens Maker’s Formula 
and Thin Lens Equation 1/5

S P
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After surface 1 the rays emerging from S seem to emerge from virtual point P’:
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Deriving Lens Maker’s Formula 
and Thin Lens Equation 2/5
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Deriving Lens Maker’s Formula 
and Thin Lens Equation 3/5
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Deriving Lens Maker’s Formula 
and Thin Lens Equation 4/5

Thin lens approximation (d  0):
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Deriving Lens Maker’s Formula 
and Thin Lens Equation 5/5
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Thin Lens Equation (Eq. 1.10) where
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Lens Maker’s Formula (Eq. 1.7)



Lens Maker’s Formula
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Assumptions made during the derivation:
1. paraxial approximation (sinθ ≈ θ and cos θ ≈ 1; 1st terms in the series expansions)
2. lens is thin

(s=so and s’=si)

Thin Lens Equation



Lens Types
Positive Lens

Refraction of a ray is proportional to the
distance from the optical axis.



Refraction of a ray is proportional to the
distance from the optical axis.

Lens Types
Negative Lens



Sign Rules for Lenses

Ri is > 0 if the centre point of curvature is
to the right of the surface 

Also the terms ”positive lens”  and ”negative 
lens” are used.



Principal Rays of a Lens (3 rays)

1. Ray propagates through the centre of the lens 
without changing its direction.

2. Collimated ray travels through the focal point
behind the lens (virtual focal point in 
front of a negative lens)

3. Ray going through the front focal point will be
collimated after the lens (back virtual focal for a 
negative lens). 



Magnification M of a Lens

M ≡ yi/yo

M = yi/yo = si/so

From equivalent triangles S1S2O ja P1P2O it follows:



Magnification M

M = yi/yo = si/so

When the magnification is equal to 1? 
Or where the object should be placed
to get an image having the original size? 
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f-number and Numerical Aperture N.A.

f-number (also known as f/#) = f/D

”f-number = 2”  is thus the same as ”f/2”

numerical aperture characterises the
light gathering power of a lens

N.A. = n sin θ ≈ n D/(2f) = n / (2 x f/#)

f

D



Matrix Formalism for Ray Tracing
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Matrix Formalism for Ray Tracing



Typical Transformation Matrices



Matrix Formalism of Ray Tracing
”ABCD matrix method”

𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷

𝑥𝑥𝑖𝑖𝑖𝑖
𝛼𝛼𝑖𝑖𝑖𝑖

𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜

For many optical unit transformations we can define 2 x 2 ray matrices
or ABCD matrices. An element’s effect on a ray is found by multiplying 
the ray with the element’s ABCD matrix.



Principal Planes of an Optical System



Principal Planes of an Optical System



Principal Planes of an Optical System



Principal Planes of an Optical System



Principal Planes of an Optical System



Example: Find the Back Focal Length (b.f.l.) of 
the Following System

𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 = 1 0
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Step 1/3. Find the system’s transformation matrix
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Step 2/3. Require input rays parallel to the optical axis to pass through the optical 
axis after the lens system and travel an additional distance equal to b.f.l. 

0
𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜

= 1 𝑏𝑏. 𝑓𝑓. 𝑙𝑙.
0 1

1 −
𝑑𝑑
𝑓𝑓

𝑑𝑑

−
2
𝑓𝑓

+
𝑑𝑑
𝑓𝑓2

1 −
𝑑𝑑
𝑓𝑓

𝑥𝑥𝑖𝑖𝑖𝑖
0

Step 3/3. Solve for b.f.l.
0 = (1 −

𝑑𝑑
𝑓𝑓

+ 𝑏𝑏. 𝑓𝑓. 𝑙𝑙. −
2
𝑓𝑓

+
𝑑𝑑
𝑓𝑓2

)𝑥𝑥𝑖𝑖𝑖𝑖

b. 𝑓𝑓. 𝑙𝑙. =

𝑑𝑑
𝑓𝑓 − 1

− 2
𝑓𝑓 + 𝑑𝑑

𝑓𝑓2
=
𝑑𝑑𝑓𝑓 − 𝑓𝑓2

𝑑𝑑 − 2𝑓𝑓

b.f.l.

Example: Find the Back Focal Length (b.f.l.)



Example: Find the Back Focal Length (b.f.l.)

Alternative approach: using matrix tables
𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡 =

1 −
𝑑𝑑
𝑓𝑓

𝑑𝑑

−
2
𝑓𝑓

+
𝑑𝑑
𝑓𝑓2

1 −
𝑑𝑑
𝑓𝑓

−
𝐴𝐴
𝐶𝐶

=

𝑑𝑑
𝑓𝑓 − 1

− 2
𝑓𝑓 + 𝑑𝑑

𝑓𝑓2
=
𝑑𝑑𝑓𝑓 − 𝑓𝑓2

𝑑𝑑 − 2𝑓𝑓



Ideal Lens



Validity of the Paraxial Approximation

Further away from the optical axis the paraxial approximation 
is not good enough anymore.



Aberrations = Imperfections of Lenses

Ignoring the third and higher order terms in the series expansion of sine and
cosine functions causes aberrations. Typical aberrations for a monochromatic
system are:

• spherical aberration
• astigmatism
• coma
• field curvature
• distortion.

For light containing several colours there are additional aberrations:

• chromatic aberration
• lateral colour



Spherical Aberration

Ideal lens shape is not a spherical surface. However, a spherical surface is 
the easiest and most affordable to manufacture. In a bi-convex lens, for 
example, the rays of light propagating far away from the optical distance will
refract closer to the lens than paraxial rays.  

With modern manufacturing systems aspherical lenses can already be
manufactured at a reasonable cost by pressing lenses out of melt glass or
plastic using a mold. An aspheric surface can compensate for the spherical
aberration.



Astigmatism

A non-paraxial ray has different focal points in the horizontal and vertical
directions. 



Field Distortion

Lens can distort the image in many ways even though the image is sharp or 
the focusing properties are good.



Field Curvature

Non-paraksial rays do not focus on a place surface.



Chromatic Aberration

Is caused by the fact that the refractive index n is actually not a constant but
depends on the wavelength/frequency of light = material dispersion.

n = n(ν) = n(λ) 



Chromatic Aberration in a Bi-convex Lens



Compensation of Chromatic Aberration

achromatic doublet lens



Lateral Colour



Summary

We have discussed the fundamental concepts of geometrical optics:

• lens maker’s formula for a thin lens
• thin lens equation
• ray tracing: 

• principal rays of lenses
• sign convention

• concepts: magnification, numerical aperture, f-number
• lens aberrations
• matrix formalism for optical systems
• reduction of an optical system into a thin lens: principal planes
• introduction to optical spectroscopy
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