Optics E-5730 Spring 2021 Geometrical Optics II

Lectures: Toni Laurila
Email: toni.k.laurila@aalto.fi
Tel. 050-358 3097

Fundamentals of Optics, Spring 2021

ELEC E-5730 $\quad \begin{aligned} & \text { lectures online using Zoom at https://aalto.zoom.us/j/8453943170 } \\ & \text { exercises online using Zoom at https://aalto.zoom.us/j/5703080612 }\end{aligned}$

Last Lecture, Geometrical Optics I - The Basics

- Light as electromagnetic radiation
- Light can treated both as photons and waves

Huygens' principle
\uparrow
Fermat's principle ("principle of least time")
\downarrow

1) In homogenous medium light travels in a linear fashion
2) Law of reflection: $\theta_{1}=\theta_{2}$
3) Law of refraction or Snell's law: $n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$

- Total internal reflection

Today's Lecture, Geometrical Optics II Powerful Tools for Optical Design

- Lens maker's formula and thin lens equation
- Ray tracing in optical systems
- Lenses: magnification, numerical aperture, f-number
- Non-ideal lenses - aberrations
- Matrix formalism for ray tracing

Why Imaging Optics Is Needed?

Optics is required "to collect" light scattered from the object to form a sharp, focused image

Refractive Power of a Spherical Surface

$$
\frac{n_{1}}{s_{0}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

Result: all rays refract through point P at s_{i} which is independent on the angle φ.

Deriving Refractive Power of a Spherical Surface 1/5

optical path length $L=n_{1} l_{0}+n_{2} l_{i}$
according to the Fermat's principle the variation of the path equals zero

$$
\mathrm{dL} / \mathrm{d} \varphi=0
$$

Deriving Refractive Power of a Spherical Surface 2/5

law of cosines applied to triangles SAC and ACP
SAC: $l_{0}{ }^{2}=R^{2}+\left(s_{0}+R\right)^{2}-2 \mathrm{R}\left(s_{0}+R\right) \cos \varphi$

ACP: $l_{i}^{2}=R^{2}+\left(s_{i}-R\right)^{2}+2 \mathrm{R}\left(s_{i}-R\right) \cos \varphi$

$$
\cos \varphi=-\cos (\pi-\varphi)
$$

$$
\begin{aligned}
& l_{0}^{2}=R^{2}+\left(s_{0}+R\right)^{2}-2 \mathrm{R}\left(s_{0}+R\right) \cos \varphi \\
& l_{i}^{2}=R^{2}+\left(s_{i}-R\right)^{2}+2 \mathrm{R}\left(s_{i}-R\right) \cos \varphi
\end{aligned}
$$

$$
L=n_{1} l_{0}+n_{2} l_{i}
$$

$$
\begin{gathered}
\mathrm{L}=n_{1} \sqrt{R^{2}+\left(s_{0}+R\right)^{2}-2 \mathrm{R}\left(s_{0}+R\right) \cos \varphi}+ \\
n_{2} \sqrt{R^{2}+\left(s_{i}-R\right)^{2}+2 \mathrm{R}\left(s_{i}-R\right) \cos \varphi}
\end{gathered}
$$

$$
\mathrm{dL} / \mathrm{d} \varphi=0
$$

$$
\begin{aligned}
& n_{1} \frac{1}{2} \frac{2 \mathrm{R}\left(s_{0}+R\right) \sin \varphi}{\sqrt{R^{2}+\left(s_{0}+R\right)^{2}-2 \mathrm{R}\left(s_{0}+R\right) \cos \varphi}}- \\
& n_{2} \frac{1}{2} \frac{2 \mathrm{R}\left(s_{i}-R\right) \sin \varphi}{\sqrt{R^{2}+\left(s_{i}-R\right)^{2}+2 \mathrm{R}\left(s_{i}-R\right) \cos \varphi}}=0
\end{aligned}
$$

$$
\begin{aligned}
& n_{1} \frac{1}{2} \frac{2 \mathrm{R}\left(s_{0}+R\right) \sin \varphi}{\sqrt{R^{2}+\left(s_{0}+R\right)^{2}-2 \mathrm{R}\left(s_{0}+R\right) \cos \varphi}}- \\
& n_{2} \frac{1}{2} \frac{2 \mathrm{R}\left(s_{i}-R\right) \sin \varphi}{\sqrt{R^{2}+\left(s_{i}-R\right)^{2}+2 \mathrm{R}\left(s_{i}-R\right) \cos \varphi}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n_{1} R s_{0}}{l_{0}}+\frac{n_{1} R^{2}}{l_{0}}-\frac{n_{2} R s_{i}}{l_{i}}+\frac{n_{2} R^{2}}{l_{i}}=0 \\
& \left(\frac{n_{1}}{l_{0}}+\frac{n_{2}}{l_{i}}\right) R^{2}=\frac{n_{2} R s_{i}}{l_{i}}-\frac{n_{1} R s_{0}}{l_{0}} \| \cdot \frac{1}{R^{2}} \\
& \quad \frac{n_{1}}{l_{0}}+\frac{n_{2}}{l_{i}}=\frac{1}{R}\left(\frac{n_{2} s_{i}}{l_{i}}-\frac{n_{1} s_{0}}{l_{0}}\right)
\end{aligned}
$$

Here we do so called 'paraxial approximation':

$$
\begin{aligned}
& \cos \varphi=1-\frac{\varphi^{2}}{2!}+\frac{\varphi^{4}}{4!}-\frac{\varphi^{6}}{6!}+\cdots \approx 1 \text { when } \varphi \ll \\
& \sin \varphi=\varphi-\frac{\varphi^{3}}{3!}+\frac{\varphi^{5}}{5!}-\frac{\varphi^{7}}{7!}+\cdots \approx \varphi \text { when } \varphi \ll \\
& l_{0}^{2}=R^{2}+\left(s_{0}+R\right)^{2}-2 R\left(s_{0}+R\right) \cos \varphi \\
& l_{i}^{2}=R^{2}+\left(s_{i}-R\right)^{2}+2 R\left(s_{i}-R\right) \cos \varphi \\
& l_{0}=s_{0} \\
& \frac{n_{1}}{l_{0}}+\frac{n_{2}}{l_{i}}=\frac{1}{R}\left(\frac{n_{2} s_{i}}{l_{i}}-\frac{n_{1} s_{0}}{l_{0}}\right)
\end{aligned}
$$

Thin Lens = Two Thin Spherical Surfaces

Lens Maker's Formula (Eq. 1.7)

$$
\frac{1}{f}=\left(n_{L}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Thin Lens Equation (Eq. 1.10)

$$
\frac{1}{S_{O}}+\frac{1}{S_{i}}=\frac{1}{f}
$$

Deriving Lens Maker's Formula and Thin Lens Equation 1/5

$$
\mathrm{n}_{\text {Lens }}=\mathrm{n}_{\mathrm{L}}
$$

After surface 1 the rays emerging from S seem to emerge from virtual point P^{\prime} :
$\begin{array}{cc}\text { surface 1; } \mathrm{R}>0 & \frac{1}{S_{O 1}}+\frac{n_{L}}{S_{i 1}}=\frac{n_{L}-1}{R_{1}} \quad \text { also } \quad\left\lfloor S_{o 2}\right\rfloor=\left\lfloor S_{i 1}\right\rfloor+\mathrm{d} \\ -\mathrm{S}_{\mathrm{i} 1} \\ \mathrm{~S}_{\mathrm{o} 2}=-\mathrm{S}_{\mathrm{i} 1}+\mathrm{d}\end{array}$

Deriving Lens Maker's Formula and Thin Lens Equation 2/5

$$
\mathrm{n}_{\text {Lens }}=\mathrm{n}_{\mathrm{L}}
$$

surface $\left.2 \quad \frac{n_{L}}{-S_{i 1}}+\frac{1}{S_{i 2}}=\frac{1-n_{L}}{R_{2}}\right\}<0 \quad \begin{aligned} & \} \mathrm{R}_{2}<0\end{aligned}$

$$
s_{o 2}=-s_{i 1}+d
$$

Deriving Lens Maker's Formula and Thin Lens Equation 3/5

Let's combine equations for surfaces 1 and 2:

$$
\begin{aligned}
& \frac{1}{S_{o 1}}+\frac{1}{S_{i 2}}+\frac{n_{L}\left(d-s_{11}\right)+n_{L} s_{i 1}}{s_{i 1}\left(d-s_{i 1}\right)}=\left(n_{L}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \Rightarrow \frac{1}{S_{o 1}}+\frac{1}{S_{i 2}}=\left(n_{L}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)+\frac{n_{L} d}{s_{i 1}\left(s_{i 1}-d\right)}{\underset{c}{\text { when }}}_{\mathrm{d} \rightarrow 0} 0
\end{aligned}
$$

Deriving Lens Maker's Formula and Thin Lens Equation 4/5

Thin lens approximation ($\mathrm{d} \rightarrow 0$):

$$
\frac{1}{S_{o 1}}+\frac{1}{S_{i 2}}=\left(n_{L}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Deriving Lens Maker's Formula and Thin Lens Equation 5/5

$$
\begin{gathered}
\lim _{S_{o} \rightarrow \infty} S_{i}=f_{i} \quad \lim _{S_{i} \rightarrow \infty} S_{o}=f_{o} \quad f_{i}=f_{o}=f \\
\frac{1}{S_{o 1}}+\frac{1}{S_{i 2}}=\frac{1}{f} \quad \text { Thin Lens Equation (Eq. 1.10) where } \\
\frac{1}{f}=\left(n_{L}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \text { Lens Maker's Formula (Eq. 1.7) }
\end{gathered}
$$

Lens Maker's Formula

Thin Lens Equation

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \quad \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

$\left(\mathrm{s}=\mathrm{s}_{\mathrm{o}}\right.$ and $\left.\mathrm{s}^{\prime}=\mathrm{s}_{\mathrm{i}}\right)$

Assumptions made during the derivation:

1. paraxial approximation ($\sin \theta \approx \theta$ and $\cos \theta \approx 1$; 1st terms in the series expansions)
2. lens is thin

Lens Types
 Positive Lens

Refraction of a ray is proportional to the distance from the optical axis.

Lens Types
 Negative Lens

Refraction of a ray is proportional to the distance from the optical axis.

Sign Rules for Lenses

R_{i} is >0 if the centre point of curvature is to the right of the surface

Also the terms "positive lens" and "negative lens" are used.

CONVEX	CONCAVE
$\begin{aligned} & R_{1}>0 \\ & R_{2}<0 \end{aligned}$ Bi-convex	$\begin{aligned} & R_{1}<0 \\ & R_{2}>0 \end{aligned}$ Bi-concave
$\begin{aligned} & R_{1}=\infty \\ & R_{2}<0 \end{aligned}$ Planar convex	$\left(\begin{array}{l} R_{1}=\infty \\ R_{2}>0 \end{array}\right.$ Planar concave
$\begin{aligned} & R_{1}>0 \\ & R_{2}>0 \end{aligned}$ Meniscus convex	$\begin{aligned} & {\left[\begin{array}{l} R_{1}>0 \\ R_{2}>0 \end{array}\right.} \\ & \begin{array}{c} \text { Meniscus } \\ \text { concave } \end{array} \end{aligned}$

Principal Rays of a Lens (3 rays)

1. Ray propagates through the centre of the lens without changing its direction.

2. Collimated ray travels through the focal point behind the lens (virtual focal point in front of a negative lens)
3. Ray going through the front focal point will be collimated after the lens (back virtual focal for a negative lens).

Magnification M of a Lens

$$
\mathrm{M} \equiv \mathrm{y}_{\mathrm{i}} / \mathrm{y}_{\mathrm{o}}
$$

From equivalent triangles $\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{O}$ ja $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{O}$ it follows:

$$
\mathrm{M}=\mathrm{y}_{\mathrm{i}} / \mathrm{y}_{\mathrm{o}}=\mathrm{s}_{\mathrm{i}} / \mathrm{s}_{\mathrm{o}}
$$

Magnification M

$$
\begin{aligned}
& \mathrm{M}=\mathrm{y}_{\mathrm{i}} / \mathrm{y}_{\mathrm{o}}=\mathrm{s}_{\mathrm{i}} / \mathrm{s}_{0} \\
& \frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f}
\end{aligned}
$$

(b)

When the magnification is equal to 1 ? Or where the object should be placed to get an image having the original size?

f-number and Numerical Aperture N.A.

f-number (also known as f/\#) = f/D
"f-number $=2 "$ is thus the same as " $f / 2 "$

numerical aperture characterises the light gathering power of a lens
N.A. $=n \sin \theta \approx n D /(2 f)=n /(2 x f / \#)$

Matrix Formalism for Ray Tracing

Matrix Formalism for Ray Tracing

Typical Transformation Matrices

Table of ray transfer matrices

for simple optical components

Element	Matrix	
Propagation in free space or in a medium of constant refractive index	$\left(\begin{array}{cc}1 & d \\ 0 & 1\end{array}\right)$	$d=$ distance
Refraction at a flat interface	$\left(\begin{array}{cc}1 & 0 \\ 0 & \frac{n_{1}}{n_{2}}\end{array}\right)$	$n_{1}=$ initial refractive index $n_{2}=$ final refractive index.
Refraction at a curved interface	$\left(\begin{array}{cc}1 & 0 \\ \frac{n_{1}-n_{2}}{R \cdot n} & \frac{n_{1}}{n_{2}}\end{array}\right)$	$R=$ radius of curvature, $R>0$ for convex (centre of cuvature after interface) $n_{1}=$ initial refractive index $n_{2}=$ final refractive index.
Reflection from a flat mirror	$\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)$	
Reflection from a curved mirror	$\left(\begin{array}{cc}1 & 0 \\ -\frac{2}{R} & 1\end{array}\right)$	$R=$ radius of curvature, $R>0$ for concave
Thin lens	$\left(\begin{array}{cc}1 & 0 \\ -\frac{1}{f} & 1\end{array}\right)$	$f=$ focal length of lens where $f>0$ for convex/positive (converging) lens.

Matrix Formalism of Ray Tracing
 "ABCD matrix method"

For many optical unit transformations we can define 2×2 ray matrices or ABCD matrices. An element's effect on a ray is found by multiplying the ray with the element's $A B C D$ matrix.

Principal Planes of an Optical System

EFL: Effective Focal Length (or simply "focal length")
FFL: Front Focal Length
BFL: Back Focal Length
FP: Focal Point/Plane
PS: Principal Surface/Plane

Principal Planes of an Optical System

Example: Find the Back Focal Length (b.f.I.) of the Following System

Step $1 / 3$. Find the system's transformation matrix

$$
\begin{aligned}
& M_{\text {total }}=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right] \\
& M_{\text {total }}=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{ll}
1-\frac{d}{f} & d \\
-1 / f & 1
\end{array}\right] \\
& M_{\text {total }}=\left[\begin{array}{cc}
1-\frac{d}{f} & d \\
-\frac{2}{f}+\frac{d}{f^{2}} & 1-\frac{d}{f}
\end{array}\right]
\end{aligned}
$$

Example: Find the Back Focal Length (b.f.l.)

Step 2/3. Require input rays parallel to the optical axis to pass through the optical axis after the lens system and travel an additional distance equal to b.f.l.

$$
\left[\begin{array}{c}
0 \\
\alpha_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
1 & \text { b.f.l. } \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1-\frac{d}{f} & d \\
-\frac{2}{f}+\frac{d}{f^{2}} & 1-\frac{d}{f}
\end{array}\right]\left[\begin{array}{c}
x_{i n} \\
0
\end{array}\right]
$$

Step 3/3. Solve for b.f.I.

$$
0=\left(1-\frac{d}{f}+\text { b.f.l. }\left(-\frac{2}{f}+\frac{d}{f^{2}}\right)\right) x_{i n}
$$

$$
\text { b. } f . l .=\frac{\frac{d}{f}-1}{-\frac{2}{f}+\frac{d}{f^{2}}}=\frac{d f-f^{2}}{d-2 f}
$$

Example: Find the Back Focal Length (b.f.I.)

Alternative approach: using matrix tables

Ideal Lens

Validity of the Paraxial Approximation

Further away from the optical axis the paraxial approximation is not good enough anymore.

Aberrations $=$ Imperfections of Lenses

Ignoring the third and higher order terms in the series expansion of sine and cosine functions causes aberrations. Typical aberrations for a monochromatic system are:

- spherical aberration
- astigmatism
- coma
- field curvature
- distortion.

For light containing several colours there are additional aberrations:

- chromatic aberration
- lateral colour

Spherical Aberration

Ideal lens shape is not a spherical surface. However, a spherical surface is the easiest and most affordable to manufacture. In a bi-convex lens, for example, the rays of light propagating far away from the optical distance will refract closer to the lens than paraxial rays.

With modern manufacturing systems aspherical lenses can already be manufactured at a reasonable cost by pressing lenses out of melt glass or plastic using a mold. An aspheric surface can compensate for the spherical aberration.

Astigmatism

A non-paraxial ray has different focal points in the horizontal and vertical directions.

Field Distortion

Lens can distort the image in many ways even though the image is sharp or the focusing properties are good.

Field Curvature

Non-paraksial rays do not focus on a place surface.

Chromatic Aberration

Is caused by the fact that the refractive index n is actually not a constant but depends on the wavelength/frequency of light = material dispersion.

$$
\mathrm{n}=\mathrm{n}(v)=\mathrm{n}(\lambda)
$$

Chromatic Aberration in a Bi-convex Lens

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

Compensation of Chromatic Aberration

achromatic doublet lens

Lateral Colour

Summary

We have discussed the fundamental concepts of geometrical optics:

- lens maker's formula for a thin lens
- thin lens equation
- ray tracing:
- principal rays of lenses
- sign convention
- concepts: magnification, numerical aperture, f-number
- lens aberrations
- matrix formalism for optical systems
- reduction of an optical system into a thin lens: principal planes
- introduction to optical spectroscopy

