Optics E-5730 Spring 2021 Wave Optics I

Lectures: Toni Laurila
Email: toni.k.laurila@aalto.fi
Tel. 050-358 3097

Fundamentals of Optics, Spring 2021

ELEC E-5			lectures exercise	online using Zoom at https://aalto.zoom.us/j/8453943170 online using Zoom at https://aalto.zoom.us/j/5703080612
week	day	date	time	topic
2	Mon	11.1.2021	8-10	Lecture 1: Geometrical optics 1
	Fri	15.1.2021	8-10	Lecture 2: Geometrical optics 2
3	Mon	18.1.2021	8-10	Lecture 3: Wave optics 1
	Mon	18.1.2021	10-12	Exercise 1
	Fri	22.1.2021	8-10	Lecture 4: Wave optics 2
4	Mon	25.1.2021	8-10	Lecture 5: Coherence 1
	Mon	25.1.2021	10-12	Exercise 2
	Fri	29.1.2021	8-10	Lecture 6: Coherence 2
5	Mon	1.2.2021	8-10	Lecture 7: Radiometry
	Mon	1.2.2021	10-12	Exercise 3
	Fri	5.2.2021	8-10	Lecture 8: Interferometry +30 mins mid-term exam
6	Mon	8.2.2021	8-10	Lecture 9: Fibre optics + Optical telecom
	Mon	8.2.2021	10-12	Exercise 4
	Fri	12.2.2021	8-10	Lecture 10: Diffraction 1
7	Mon	15.2.2021	8-10	Lecture 11: Diffraction 2
	Mon	15.2.2021	10-12	Exercise 5
	Fri	19.2.2021	8-10	NO LECTURE
8	Mon	22.2.2021	8-10	NO LECTURE
	Mon	22.2.2021	10-12	Exercise 6
	Fri	26.2.2021		Examination

Last Lecture - Geometrical Optics II

- Lens maker's formula and thin lens equation
- Basics of ray tracing in optical systems
- Different types of lenses, magnification, numerical aperture, f-number
- Non-ideal lenses - aberrations
- Matrix formalism for ray tracing
- Reduction of an optical system 'into a thin lens': principal planes

Wave Optics I

Recap

- Wave motion
- Electric and magnetic fields: Maxwell's equations
- Wave equation and speed of light
- Polarisation of light

Wave Optics II

- polarising optical components: 'polarisers'
- dichroism and birefringence
- waveplate components: quarter-wave plate and half-wave plate
- reflection and refraction coefficients for E field amplitude and intensity
- Brewster's angle
- anti-reflection (AR) coating
- interference

Geometrical Optics (Ray Optics) is the Starting Point

Wave Optics

Recap of Wave Motion (in Space/Spatial Coordinates)

period or wavelength $\lambda[\mathrm{m}]$
$y=y_{0} \sin (\theta)$
oscillating presentation with respect to spatial coordinate x :

$$
y=y_{0} \sin (k x)
$$

$\cos (k x)=\sin (k x+\pi / 2)$

- unit for the argument of sine and cosine is radian
- k [?] $\times[\mathrm{m}]=[\mathrm{rad}] \rightarrow$ unit for wavenumber k is [rad/m]
- period in the angle space is 2π and equivalently in space it is λ :

$$
\begin{array}{cl}
k x=\theta \\
k(x+\lambda)=\theta+2 \pi & \rightarrow \mathrm{k}=2 \pi / \lambda
\end{array}
$$

Recap of Wave Motion (in Time/Temporal Coordinates)

$$
\omega t=\theta
$$

$$
\omega\left(t+T_{0}\right)=\theta+2 \pi \quad \rightarrow \quad \omega=2 \pi / T_{0}=2 \pi \nu
$$

where v is frequency $\left[\mathrm{s}^{-1}\right]$

Propagating Wave Motion

oscillating presentation

 for a propagting wave: $y=y_{0} \sin (k x-\omega t)$Argument (kx- $\omega \mathrm{t}$), and thus, amplitude y remains constant if $k x$ increases proportionally to ωt. Therefore the wave described by the function y propagates along the positive x axis.

On the other hand, a wave propagating to the negative direction of the x axis has a form $f=f(k x+\omega t)$.

Propagating Wave Motion in 3D

 the direction of the wave front

$$
\mathbf{k}=\mathrm{k}_{\mathrm{x}} \mathbf{e}_{\mathbf{x}}+\mathrm{k}_{\mathrm{y}} \mathbf{e}_{\mathbf{y}}+\mathrm{k}_{\mathrm{z}} \mathbf{e}_{\mathbf{z}}
$$

wave fronts of a plane wave
(wave front = plane where the wave has constant phase)

$$
\begin{aligned}
\mathrm{k} & =\|\mathbf{k}\| \mid=\operatorname{sqrt}(\mathbf{k} \cdot \mathbf{k})=\operatorname{sqrt}\left(\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{y}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}\right) \\
& =2 \pi / \lambda
\end{aligned}
$$

Complex Numbers - Quick Recap

- propagating electric field can thus be expressed as $E=E_{0} e^{i(k \cdot r-c t)}$
- real part of the electric field can always be found with the help of the c.c.: $\operatorname{Re}(\mathrm{E})=0.5\left(\mathrm{E}+\mathrm{E}^{*}\right)=\mathrm{E}_{0} \cos \theta$
- by using complex valued fields

$$
\begin{aligned}
& E_{1}=E_{01} e^{i \theta_{1}} \quad E_{2}=E_{02} e^{i \theta_{2}} \\
& E_{1} E_{2}=E_{01} E_{02} e^{i\left(\theta_{1}+\theta_{2}\right)}
\end{aligned}
$$ the math becomes easier to follow:

$$
\frac{E_{1}}{E_{2}}=\frac{E_{01}}{E_{02}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

Maxwell's Equations (1/4)

Gauss's Law for the Electric Field

$\oiint \oiint_{A} \mathbf{E} \cdot \mathrm{~d} \mathbf{a}=\frac{1}{\varepsilon_{0}} \iiint_{V} \rho \mathrm{~d} V \stackrel{\text { divergens theorem }}{\rightleftarrows} \nabla \cdot \mathbf{E}=\frac{\rho}{\varepsilon_{0}}$

Maxwell's equations (2/4)

Gauss's Law for the Magnetic Field

divergens theorem

Maxwell's equations (3/4)

Ampére's Circuital Law

Maxwell's equations (4/4)

Faraday’s Law of Induction

$$
\oint_{C} \mathbf{E} \cdot \mathrm{~d} l=-\frac{\mathrm{d}}{\mathrm{~d} t} \int_{A} \mathbf{B} \cdot \mathrm{~d} \mathbf{a} \xrightarrow{\text { Stokes theorem }} \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}
$$

Constitutive Relations ("Material Equations")

free atom, total charge is zero (neutral atom)

$$
\mathbf{p}=q_{+} \mathbf{r}_{+}-q_{-} \mathbf{r}_{-}
$$

dipole moment

Atom in external E field:

- total charge remains zero
- charge distribution is unsymmetric

E: external electric field
P : polarisation of the medium
D: displacement field
ε_{0} : permittivity of free space (=vacuum)
χ_{e} : electric suscebtibility

$$
\stackrel{\rightharpoonup}{P}=\varepsilon_{0} \chi_{e} \stackrel{\rightharpoonup}{E}
$$

$$
\vec{D}=\varepsilon_{0}\left(1+\chi_{e}\right) \stackrel{\rightharpoonup}{E}=\varepsilon_{0} \varepsilon_{r} \stackrel{\rightharpoonup}{E}
$$

Constitutive Relations ("Material Equations")

similarly for magnetic fields

$$
\stackrel{\rightharpoonup}{B}=\mu_{0} \stackrel{\rightharpoonup}{H}+\vec{M}
$$

H : external magnetising field
M: magnetisation of the medium
B : (total) magnetic field
μ_{0} : permeability of free space (=vacuum)
χ_{m} : magnetic suscebtibility
for linear, isotropic medium: $\quad \vec{M}=\varepsilon_{0} \chi_{m} \vec{H}$

$$
\vec{B}=\mu_{0}\left(1+\chi_{m}\right) \vec{H}=\mu_{0} \mu_{r} \vec{H}
$$

Maxwell's equations in differential form for linear isotropic isolating medium (dielectric)

$$
\begin{aligned}
& \nabla \cdot \vec{E}=0 \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \times \vec{B}=\varepsilon \mu \frac{\partial \stackrel{\rightharpoonup}{E}}{\partial t}
\end{aligned}
$$

material equations

$$
\begin{gathered}
\vec{D}=\varepsilon_{0}\left(1+\chi_{e}\right) \vec{E}=\varepsilon \vec{E} \\
\vec{B}=\mu_{0}\left(1+\chi_{m}\right) \vec{H}=\mu \vec{H}
\end{gathered}
$$

Wave Equation and Speed of Propagation

$$
\begin{aligned}
& \text { 1. } \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \| \nabla \times \quad \text { 2. } \nabla \times \vec{B}=\varepsilon \mu \frac{\partial \vec{E}}{\partial t} \| \frac{\partial}{\partial t} \\
& \nabla \times(\nabla \times \vec{E})=\nabla \times\left(-\frac{\partial \vec{B}}{\partial t}\right) \quad \nabla \times \frac{\partial \vec{B}}{\partial t}=\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial^{2} t} \\
& \nabla \times(\nabla \times \vec{E})=-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial^{2} t}
\end{aligned}
$$

Wave Equation and Speed of Propagation

$$
\begin{array}{rc}
\nabla \times(\nabla \times \vec{E})=-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial^{2} t} & \begin{array}{c}
\text { vector calculus gives }
\end{array} \\
& =(\nabla \times \vec{E})=-\nabla^{2} \vec{E}+\nabla(\nabla / \vec{E}) \\
=0
\end{array}
$$

$$
\nabla^{2} \vec{E}-\varepsilon \mu \frac{\partial^{2} \vec{E}}{\partial^{2} t}=0
$$

wave equation

Solutions to Wave Equation

Solutions to Wave Equation

If $f(k z-\omega t)$ and $f(k z+\omega t)$ are solutions to wave equation the also their sum is a solution, because the wave equation is linear. Thus $f(k z-\omega t)+f(k z+\omega t)$ is also a solution.

Generally speaking, there can be multiple solutions but in most cases the solutions are limited by:

- initial values (e.g., laser light is coupled to an optical fibre so that we know the initial intensity and frequency of the laser light)
- boundary conditions (e.g., total internal reflection keeps light inside an optical fibre)

Wave Equation in Spherical Coordinates

Polarisation of Light

Linear Polarisation Along y Axis $\left(\mathrm{E}_{0 y}\right)$

- plane wave $f(k z-\omega t)$ at the time $t=0$

Linear Polarisation Along y Axis $\left(\mathrm{E}_{0 y}\right)$

- plane wave $f(k z-\omega t)$ at the position $z=0$

Circular Polarisation

Circular Polarisation

Circular Polarisation

- can be considered as a sum of two linearly polarised plane waves, the phase difference of which is $\pi / 2$

Circular Polarisation

- https://www.youtube.com/watch?v=Fu-aYnRkUgg

Introduction to the Concept of Optical Spectroscopy -

 Studying Interaction between Light and Matter

Absorption of Ultraviolet/Visible Light in Atoms

When the energy (frequency) of photons matches the energy level difference of the atom's electrons, photons can interact with the particular atom.

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{p}}=\mathrm{hc} / \lambda \\
& \mathrm{E}_{\mathrm{p}} \sim 1.24 \mathrm{eV} \mu \mathrm{~m} / \lambda(\mu \mathrm{m})
\end{aligned}
$$

$$
\mathrm{E}_{1-2}=10.2 \mathrm{eV} \text { corresponds to } \lambda=121 \mathrm{~nm}
$$

$$
\mathrm{E}_{2-3}=1.89 \mathrm{eV} \text { corresponds to } \lambda=656 \mathrm{~nm}
$$

Emission of Light from Atoms

hydrogen
mercury

Absorption of Infrared Light in Molecules - Vibration and Rotation Mickey Mouse model of water molecule

When the energy (frequency) of photons matches the quantised vibrational and/or rotational energy level differerences of the molecule, photon will interact with that molecule.

In absorption, the photon's energy (hv) get's converted into the molecules' electronic, vibrational or rotational energy.

Absorption of EM Radiation in the Atmosphere

For each molecule there are chracteristic energies/wavelengths that get absorbed - this is the foundation of optical spectroscopy.

Blackbody Radiation - Continuous Emission Spectrum

Max Planck's theory of blackbody radiation in the year 1900 started the development of quantum theory and allowed several fundamental predictions:

- definition of Avogadro's number
- size of atoms
- charge of electrons
- mass of electrons

Emission and Absorption of Light

Source of continuous spectrum (blackbody)

Continuous spectrum

Gas cloud

Absorption line spectrum

