

Characterization
CHEM-E5125 Thin Films Technolog
2021 Jari Koskinen

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance

- SEM/EDX,WDS, kaikki osaa
- XPS, Sami varmistaa Jouko Lahtiselta, opiskelija mittaa?
- RAMAN Joonas Heikkinen
 - XRD/XRR (Jarkko Etula)
 - ellipsometry, Robin group, Micronova
 - reflectometry, Victor Ovchinnikov
 - contact angle (goniometer), Joksa
 - tribometer, Jari ryhmä
 - indentation, Trebala (mahdollisesti mikrokovuus)

Legend

Molecular

Bonding

±10%

AI-U

±10%

Bulk Info

0.5-2.0 µ

FT-IR

Contamination, QC

Fingerprint Identification

AT-FT-IR for Surface films

in air

PPM

UHY

PPB

Not for metals or allovs

Organics, Silicon

Film Thicknesses

0.1-0.5 µ

XRF

Bulk Analysis, Alloy ID

Film Thicknesses (1-5 µ)

No Chemical States

~1 µ

LA-ICP-MS

Contamination, Unknowns, FA

Measured Elemental Ions

~ 1 micron per laser pulse

No Chemical States

LI - U

±50%

+10%

Conductors, Semicon, Insulators

Depth Profiling Info

5-20 Å

D-SIMS

Semiconductor Films

Molecular fragments

2-10 Å

GD-OES

50 elements per profil

Monolaver resolution

Final etch depth ~200 µ

No molecular fragments

Element versus Depth infoe

Excellent Quantitative Results

Etch Depth Resolution 2-10 Å

Element versus Depth info

Isotope analysis, Dopant Profiles

Profile Speed: <0.01 micron/min

Usually 5-20 elements per profile

Multi-Layer Films, Silicon Re-cycle Bulk, PV, Trace element, Unknowns

Profile Speed: up to 10 micron/min

1 torr

Etch Depth Resolution 5-10 Å

1-5 nm

FE-Auger

Contamination, Unknowns

Chemical States (Si vs SiO2)

Angle Resolve AES: 1-5 nm

Ar+ Ion Cleaning inside

Final etch depth ~1 µ

and high tilt angle

XY Map, Depth/Line Profiling

Conductors, Semicon (Insulator)

Insulators need charge neutralizer

Particles, Defects, FA

LI - U

±30%

Surface Info

1-12 nm

XPS

QC, QA, FA, Unknowns

Conductors, Semi, Insulators

Chemical States (Si vs SiO2)

XY Map, Depth/Line Profiling

Angle Resolve XPS: 1-10 nm

Insulators need charge neutralizer

Ar+ Ion Cleaning inside

Final etch depth ~1 µ

FT-IR

LI - U

±5%

0.1 atom%

UHV

Surface Contamination, Thin Films

Powders, Greases, Glove Contam,

0.1 atom%

+50%

Feature-Problem-Analysis-Tools Visual Guide to Selecting Tools for Chemical Analysis^{*}

Molecular

Bonding

±109

0.2-2.0 µ

μFT-IR

Contamination (>0.2 µ)

No Metals or Inorganics

Fingerprint Identification

Not for metals or allovs

XY Map, Confocal Profiling

Molecular Bonding

Organics, Silicon

< 1 micron

 \leftrightarrow

1<4Å

0.5 wat9

2-6 Å

ToF-SIMS

Monolayer Contamination

Molecular Fragments

Ga+ Ion Cleaning inside

>50 microns

1 <5 nm

< 1 micron

Final etch depth ~100 nm

Conductors, Semi, Insulators

XY Map, full spectrum each pixel

Insulators need charge neutralizer

UHN

<10 nm

> 5 microns

~1000 microns

Sub-Surface Info

0.3-3.0 µ

EDX - SEM

Sub-Surface Elements, Particles

>300 nm Thick Contamination

Unknowns

>500 nm (0.5 µ)

No Chemical States

XY Sub-Surface Map

Insulators need Au coating

>500 nm

UHR-SEM Imaging

Pt

SiNO

SiO₂

W

UHV

* This guide helps the user to select the first chemical analysis tool to analyze or measure the feature-problem. Additional analysis tools are often used to confirm or further understand the feature-problem.

Instruction on Use

B-doped Si

Depth of

Sample

Measured

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Film topograpby and thickness

Film thickness

- direct measurement by definition
 - profilometer by using masked surface
 - cross section profile + microscopy
 - spectroscopy
- Contact profilometer
 - diamond tip with 1 50 mN load
 - tip radius 20 nm 25 μm (12μm)
 - depth sensitivity/range 0.5 nm/60 µm

Lift-off mask lithography and contact profilometry

- Simple and reliable step height
- Reflecting surfaces problematic

Optical profilometer

- Non contact 2D (3D surface map)
- Fast
- Reflecting surfaces problematic

Internal stress of thin filmsubstrate curvature by profilometer

Sivu⁴

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry

Composition – EDS, WDS, SIMS, RBS, ERDA, GDOES

- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Composition

- What elements present in the film
- Depth distribution
- Interface
- Often a direct feedback for deposition parameters
 - gas ratio, target composition etc.

SEM EDS and WDS

Microanalysis <u>EDS and WDS</u> (material of an other course)

Excerpts from lectures in X-ray microanalysis

Thin surface layer analysis by SEM + x-ray microanalysis (EDS or WDS)

https://www.youtube.com/watch?v=KfQ4V NpWN4M

> E. Heikinheimo Aalto - Dept. of MS & E - 2011

Thin-film analysis (I)

- * Thickness of surface film $d_f > r_x$, substrate does not influence
- * Film can be processed as bulk, with normal matrix correction program
- * $d_f = 0.2...2 \ \mu m$ (e.g. by adjusting beam energy)

Aalto University School of Chemical Technology

Thin film analysis (II)

- $d_f << r_x, d_f > 1 \text{ nm}$
- Substrate signal is decisive
- There can be several films on top of each other: "sandwich structure"
- Thin-film software is needed, which is based on calculating Φ(ρz)- function (amount of generated radiation) as function of depth; a hypothesis of studied film structure is needed
- In principle thickness and composition of film is obtained from both film and substrate signal (checking possibility).
- Non-destructive method, same sample can be analysed by other methods, e.g. RBS.

Scattering experiment – Ion in Ion out

Ion Beam Analysis Techniques

For a detail discussion on Ion Beam Analysis and the various techniques, please see IBA lecture by K. M. Yu.

Secondary Ion Mass Spectrometry - SIMS

- 1. Cesium ion source
- 2. Duoplasmatron
- 3. Electrostatic lens
- 4. Sample
- 5. Electrostatic sector ion energy analyser
- 6. Electromagnet mass analyser
- 7. Electron multiplier / Faraday cup
- 8. Channel-plate / Fluorescent screen ion image detector

SIMS - also molecular ions

Backscattering spectroscopy

Backscattering spectroscopy

Backscattering spectroscopy

Ion beam analysis ⁴ He⁺ ion

School of Chemical

Technoloav

Forward Recoil Spectrometry (FRES)

⁶³ Cu⁺ ion

Fig. 5 Iterative procedure for analysis of a HI-ERDA measurement without prior knowledge of the sample structure. See the text for a detailed description of the analysis

Scattering experiment – ION SPECTORSCOPY OU7 √∫ ^{photon} ١N electron molecule Sivu 28 **Aalto University** School of Chemical ion, atom, peutron Technology

Nuclear Reaction Analysis NRA
 Detection of hydrogen – depth distribution in surface

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, XRR, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Microstructure

- Crystallinity
- crystal size
- orientation texture
- Defects

Transmission electron microscopy TEM

Atomic level resolution 0.7 Å

NiSi thin film

Results from TEM analysis of NiSi thin films: (a) XTEM highlighting equiaxed grains in the NiSi film in which Moiré (interference) fringes due to orientation differences between grains can be observed; (b) notable features in the asobtained image (a) are indicated; (c) plan view, elastic hollow cone dark field image of the film, highlighting individual grains with diameters of 60–200 nm; and (d) plan view TEM image showing polygon al NiSi grains.

M. Bhaskaran et al. / Micron 40 (2009) 11-14

Electron diffraction

а

theoretical diffraction diagram of ReSi1.75 with zone axis [0 1

0] and four superposed patterns, each turned around 45°. Aalto University School of Chemical Technology

D. Hofman et al. / Ultramicroscopy 81 (2000) 271-277

Electron energy loss spectroscopy EELS

Electron energy loss spectroscopy EELS

- Elemental analysis
 - light elements C
 → 3d transition metals Sc, Zn
- chemical bonding e.g carbon sp²/sp³

Electron energy loss spectroscopy EELS

Fig. 29. Carbon K edge electron energy loss spectra of various carbon phases, after Waidmann et al. [196].

 Aaito University
 Sivu 37

 School of Chemical Technology
 S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge, J. Robertson, J. Appl. Phys. 89 (2001) 3783.

Glancing Angle X-ray Diffraction (GAXRD)

- In the x-ray diffraction pattern of thin films deposited on a substrate, contribution from substrate to the diffraction can sometimes overshadow the contributions from thin film.
- GAXRD is used to record the diffraction pattern of thin films, with minimum contribution from substrate.
- Non-destructive surface sensitive technique

www1.chm.colostate.edu/Files/GAXRD.pdf

Technique

• Parallel, monochromatic X-ray beam falls on a sample surface at a fixed angle of incidence (α_I) and diffraction profile is recorded by detector only scan.

www1.chm.colostate.edu/Files/GAXRD.pdf

www1.chm.colostate.edu/Files/GAXRD.pdf

GAXRD: Example

- (a) As deposited 20 nm Ir metal film deposited on Si wafer. XRD curve for <u>α=0.5° and 1.0°</u> shows the peaks for cubic iridium metal phase represented by (+)
- (b) Ir film annealed at 873K for 1hr. XRD curve for <u>α=0.5°</u> shows the presence of the dominating IrO ₂ phase (*). As <u>α</u> was increased to <u>1.0°</u>, the contribution from the underlying layer of Ir metal increased and the Ir peaks dominated the XRD curve. The results indicate the presence of an overlying oxidized layer of Ir metal

www1.chm.colostate.edu/Files/GAXRD.pdf

- Thin Film
 - thickness
 - density
 - roughness
 - rougness of interface

Fig. 1. Reflection and refraction of X-rays on material surface.

Miho Yasaka, The Rigaku Journal, 26(2), 2010

A) Incident angle < Total reflection critical angle
 All incident X-rays are reflected.

B) Incident angle = Total reflection critical angle Incident X-rays propagate along the sample surface.

- C) Incident angle > Total reflection critical angle Incident X-rays penetrate into the material by refraction
 - Fig. 3. Reflection and refraction of X-rays at material surface with the changes in the grazing angle.

Fig. 4. Reflectivity of Au film on Si substrate.

Miho Yasaka, The Rigaku Journal, 26(2), 2010

Reflectivity (I/b)

Fig. 8. Information provided by X-ray reflectivity profile.

Miho Yasaka, The Rigaku Journal, 26(2), 2010

Fig. 5. X-ray reflectivity curves of Au, Cu and SiO₂ film on Si substrates (film thickness is 20 nm).

Symmetric "coupled" scanning

Leading With Innovation

J. Etula, N. Wester, S. Sainio, T. Laurila and J. Koskinen, , DOI:10.1039/c8ra04719g.

No.	Layer name	Thickness(nm)	Density(g	Roughne	Depth dis
V 6	Pt	8.38352	22.0088	0.563942	No distrib
V 5	Pt + aC	0.274786	3.20843	1.19581	No distrib
V 4	taC	4.93845	3	0	No distrib
🗸 3	TiCx	8.84105e-006	4.93[]	0.599974	No distrib
V 2	Ti (sputtered)	16.1898	4.13378	3.90669e	No distrib
V 1	SiO2	0.0220998	0.352924	0.151561	No distrib
V 🗸	Si(single)	0.0[]	2.32919[]	1.11942e	No distrib

T. Laurila, S. Sainio, H. Jiang, N. Isoaho, J. E. Koehne, J. Etula, J. Koskinen and M. Meyyappan, ACS Omega, 2017, 2, 496–507.

Fig. 3. As-measured GIXRD patterns with constant offset of the PEALD AlN samples at 0.4° incidence angle and with AlN planes indexed.

P. Sippola, A. P. Perros, O. M. E. Ylivaara, H. Ronkainen, J. Julin, X. Liu, T. Sajavaara, J. Etula, H. Lipsanen and R. L. Puurunen, *Cit. J. Vac. Sci. Technol. A*, 2018, **36**, 51508.

In-situ XRD spectra of heated/LN2-cooled energy storage material: Rapid freezing from +150C to -120C inhibits crystallization. Subsequent warming from -120C to 0C induces crystallization and heat release.

Grazing angle (GIXRD) and normal theta/2theta X-ray Diffraction using Rigaku Smartlab

Figure 6. GIXRD spectra from the Si/Ti/ta-C/Pt (10 nm) and Si/Ti/ta-C/Pt (2 nm) samples. The inset shows the magnified view from the region between 30 and 60° (2 θ). Note that the peak around 50° could be indexed both to Ti and Si and has therefore been left unindexed. Peaks' locations are based on the data from refs 26-28.

T. Laurila, S. Sainio, H. Jiang, N. Isoaho, J. E. Koehne, J. Etula, J. Koskinen and M. Meyyappan, *ACS Omega*, 2017, **2**, 496–507.

Grazing angle X-ray Diffraction (GIXRD) using Rigaku Smartlab - Ultra-sensitive detection of 8.4 nm Pt film crystallinity

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA=XPS, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Bonding

- Chemical reactions particularly on surface
- Cemical bonding in amorphous thin films (oxides, carbon, some metals)
- Contaminations
- Methods used also to determine composition

Scattering experiment ELECTRON SPECTROSCOPY OU7 I photon ١N electron molecule **Aalto University** Sivu 53 School of Chemical ion, atom, neutron Technology

Photoelectron spectroscopy techniques

XPS

XPS

School of Chemical

Technology

sensitive to chemical bonding, e.g. type of bonding of carbon

When electromagnetic radiation passes through matter, it interacts with the matter and can be:

- absorbed (1)
- reflected (2)
- scattered (3)
- transmitted (4)
- depending upon:
 - its frequency
 - the structure of molecules of the matter it encounters.

Vibrational Spectroscopy

Vibrational spectroscopy is a method of chemical analysis where the sample is illuminated with incident radiation in order to excite molecular vibrations. Vibrational excitation is caused by the molecule absorbing, reflecting or scattering a particular discrete amount of energy. There are two major types of vibrational spectroscopy: Infrared (IR) and Raman.

IR Light Absorption Measurement.

- Light energy absorbed by increasing vibrations between atoms in a molecule.
- Energy (wavelength) absorbed related to strength of bond.
- Strength of bond related to molecular structure and environment.
- Amount of light absorbed related to concentration and *absorptivity* constant.

Infrared

- Absorption
- Requires a dipole moment change (O-H, N-H, C=O)
- Sample preparation or accessory usually necessary
- Short optical pathlength required
- Non-aqueous samples

<u>Raman</u>

- Emission of scattered laser light
- Requires polarizability change (C=C, aromatics)
- Little or no sample preparation necessary
- Measure through transparent packaging
- Aqueous samples

Wavenumber (cm⁻¹)

Fig. 33. Comparison of typical Raman spectra of carbons.

J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

RAMAN example carbon

- amorphous materials
- finger print of different bonds (materials)
- mapping

J. Robertson/Materials Science and Engineering R 37 (2002) 129-281

Sivu 66

Mapping

Figure 4. Color-coded confocal Raman image of a 7.1 nm PMMA layer (red) and a 4.2 nm contamination layer (green) on glass (blue). 200 x 200 spectra, 7 ms integration time/spectrum. Total acquisition time 5.4 minutes.

Raman Signal

Sivu 67

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Scanning Probe Microscopy

Basic idea of scanned probe techniques:

nanoScience Inc.

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical transmittance- FTIR (???)

Indentation

- H = constant*load/(indentation area)
- Thin film/substrate: composite hardness
- Coating hardness: h< film thickness
- Very thin coatings: hardness by modelling (FEM, MD)

Fig. 5.9. Schematic representation of a section through an indentation using a conical indenter. $h_c = \text{contact depth}, h_s = \text{sink-in depth and } h_f = \text{final depth.}$

Elastic modulus E from loading unloading curve

Fig. 5.10. A typical load-displacement indentation curve.

- h < 1/10 film thickness
- Very thin coatings: E by modelling (FEM, MD)

Hardness and E as a function of indentation depth

Depth profiles of Er and H data from 200 µN partial-unload nanoindentation tests on 50 nm TiN thin film samples. www.hysitron.com

Indentation test

Contents

- Thin film properties
- Wealth of methods MATRIX
- Scattering
- Thickness profilometry
- Composition EDS, WDS, SIMS, RBS, ERDA, GDOES
- Microstructure –XRD, TEM
- Bonding ESCA, RAMAN
- Topography ADM
- Electrical conductivity four point probe
- Mechanical properties indentation
- Optical properties

Optical coatings

- Control of reflectance and emission
 - Lenses
 - Photo voltaic
 - Solar thermal
- Protective optical coatings
- Self-cleaning or easy to clean films on optical surfaces
- Measuring thin dielectric film properties

Ellpsometry

Ellpsometry

Ellipsometry

- real part (refractive index), $n(\lambda)$
- imaginary part (extinction coefficient), $k(\lambda)$
- complex refractive index, of a material, $N(\lambda) = (n(\lambda)+ik(\lambda))$, where λ
- •If $N(\lambda)$ known film thickness
- measure of phase shift → very thin films can be measured <
 1nm several µm
- multilayer films may be measured when using numerical models

Reflectometry

- Film thickness
 - 3 nm -> 200 µm
- n and k values
- multilayers

														(m) and	
File Filmsteck Actions	Measure	Data Tools	Configure 1	telo									Completed		
	xtl M	0 B	1 H	 ∎ ⊒+ ⊙	0	98	?			MSE- 0.8	342			×	
Filmstack								Selected Parameters							
Relouiete		(Filmstack)	Parameters \	Links \ RT Conditio	ns Record	d١			Dicolasi	Parameter	Laver	Value	Confint		
-		Filmstack	Details						Calculated	Thickness	1	25849.6[Å]	+-21.6369		
3 ^a Simulate		1	Layer	Material	Thickn	Min	Max	Solve	Offsets	Composition	1	44.42	+-0.4634		
C Estimate			2	CIGS_rough.em2	934.1	-3.2E7	3.2E7			Thickness	2	934.1[Å]	+-9.4235		
	_		1	CIGS_mix.comp	25849.6	-3.2E7	3.2E7			fv[1]	2	29.94	+-0.7921	-	
Simulato Fit			Substrate	Mo_L2.mat											
	_								Wafer ID	Calculation Con	ditions \ Cai	culation Options			
 Hinstacks 		Material Parameters Constraints								Measurement ID					
Name CIGS_only		Laver	Material	Paramete	r Value	Min	Max	Solve	Lot #		Date	Apr 8, 2007 8	15:53 PM		
-Filmstacks Library-		1	CIGS_mix.co	mp Composition	44.42	32.00	60.00		Wafer ID		Operator	Unknown			
2000/3_389_801		2	CIGS_rough.e	sm2 fv[1]	29.94	-3.16E7	3.16E7								
AL/199F2 ARC SPO		1 CIG5_mk.comp Rough 859.43 0.0 3.1667 V													
asioNo									commenti	ocation: [0.0 , 0	1.0]			- 11	
AuCdTe		Solve Exc	Construints											- 11	
Cambrins LK nr			Constraints												
CdSe_au		Measured	Data: DataFo	Modelling.zip\$	CIGSonMo	M50626	2.dat								
CIG5_comp		Data Table	Reflectance												
CNDovide 2um water							Refl	ectand	e Plot						
Cr_mask		28-											•		
CuN_PHM		24											Λ		
CUNO_PHM Doolu_ADC		_ 20											11		
Ethanol water		<u>₽</u> 10										N	1 1		
FSG ARC		0 16- E 14										11	1 1		
FSG ARC 2		8 12								•		/ 1			
0012660		e 10								N 1		8 1 8			
GlassTIR	-	0Ľ 8								1 1 1					
		4				_			-~ 1	V V	- V	' V	1		
Materials		61	ska et	0 00 70	760		20 0	0 050	1000 1000	1600 1650	1200	1250 1200	1250 1400	-	
O Projects		500	500 60	JU 650 70	, /50	800	800 90	Wavelen	ath(nm)	100 1150	1200	1200 1300	1350 1400	· .	
O Measurement							2/200.0	mes -	R@0.0 ca	IC					
Calculation Recipes							0.00			-					

Reflectometry

And there is whole lot more...But one can get an idea with simple methods:

- interference colors: thickness, absoption
- reflection: metals identification
- Scotts Tape Test: adhesion
- electrical conductivity
- scraching by a tip: hardness, adhesion, friction
- shine light tanget to surface: impurities, particles on film
- breathe moisture (no slime!): surface energy, hydrophilicity, adhesion (try only on your own samples)

