


PPGIS analysis methods

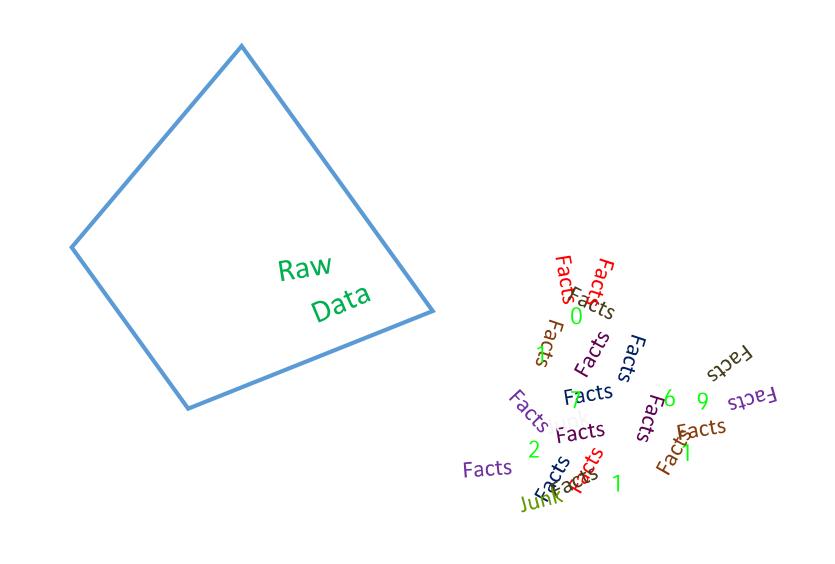

A typology for use in research, planning and management

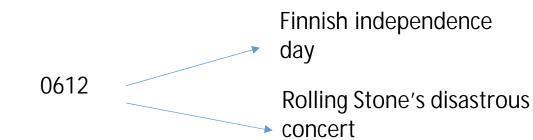
Kirche in Cassone (Church in Cassone), Gustav Klimt

BETTER LIVING ENVIRONMENTS

NO SCIENCE ACHIEVES MATURITY WITHOUT DATA

In this presentation


What is data?
&
What should we do with it?


Factual information (such as

measurements or statistics) used as a basis for reasoning, discussion, or

calculation (Merriam-Webster)

Data:

06121917 — Finnish independence day

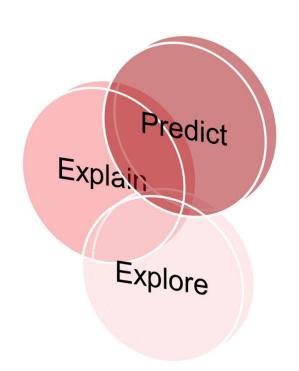
DIKW pyramid

Ability to increase effectiveness ("what to do, act or carry out")

Knowledge

know-how and understanding, insight

Information


Contextualized, categorized, calculated and condensed (Davenport & Prusak 2000)

Data

Facts and figures which relay something specific, but which are not organized in any way and which provide no further information regarding patterns, context, etc.

Each step up the pyramid answers some questions and adds value to the initial data

Goals:

(Fagerholm et al., 2021)

Explore

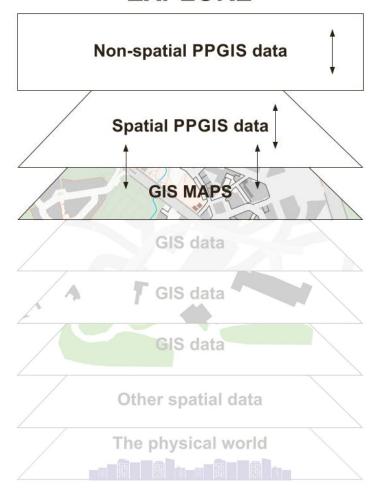
- Identify spatial patterns with one attribute at a time
- Compare distribution across attributes

Explain

- Looking further into data
- Looking more closely at observations from 'Explain'
- Find explanation for observations by further analysis

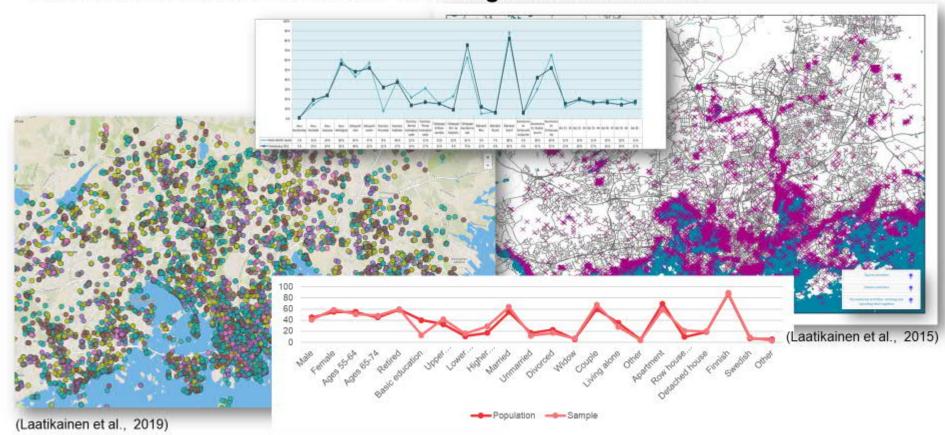
Predict

- See if any of the observations are generalizable to other places or contexts
- Project observations to predict future situation

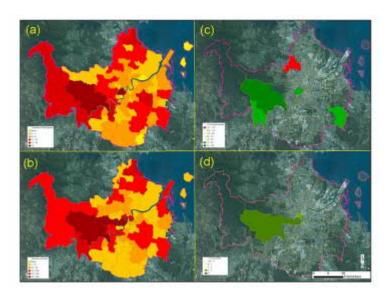

Explore

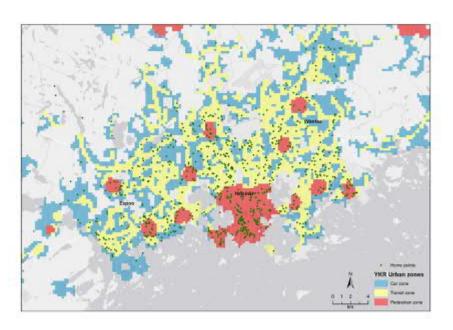
- The first analytical phase
- Explore typically involves descriptive and univariate analysis of PPGIS data and generation of visual outputs.
- The analysis are accomplished with basic GIS software or with the help of the interactive analysis tools provided by some online PPGIS services.
- An important part of Explore phase is also assessment of spatial data quality through validation.

Method categories:


- External and internal validation
- Descriptive and visual analysis

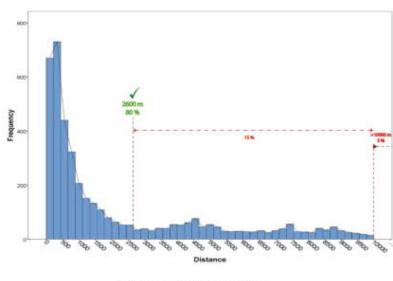
EXPLORE



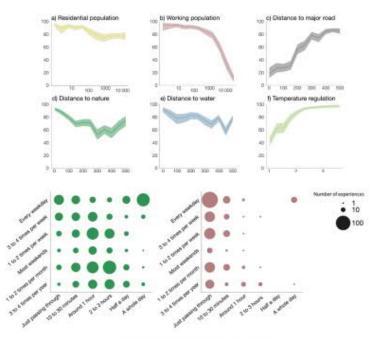

Explore: Examples

Internal and external validation: checking the inclusiveness

Thematic maps



(Brown et al., 2018)


(Hasanzadeh et al., 2019)

Explore: examples

Charts

(Hasanzadeh et al., 2017)

(Samuelsson et al., 2018)

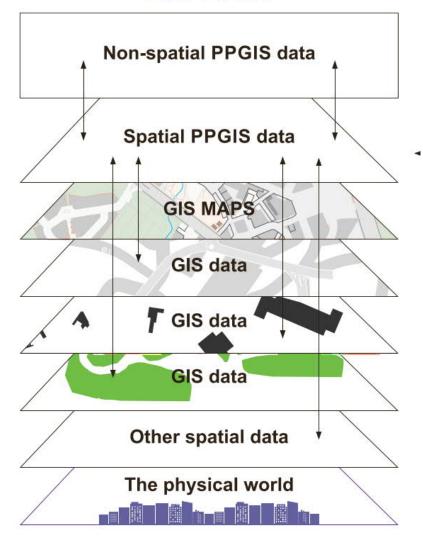
Explore: examples

Descriptive statistics

Table 1. Structural variables statistics for the three urban tribes.

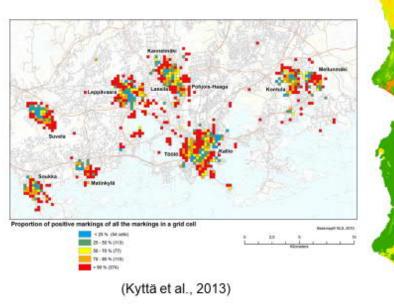
	Urban Tribes (Count)					
Urban Structural Variables	Measures	Tribe I Urbanist (359)	Tribe 2 Semi-urbanist (291)	Tribe 3 Nature lover (353)		
	Min	75	6	5		
	Max	14,748	9125	9152		
Population density	Mean	4773	3494	2956		
(Pop. Per km²)	Median	3886	2497	2021		
	SD	2989	2630	2520		
	Skewness	0.05	0.73	1.05		
Green area coverage (%)	Min	0	2.5	0		
	Max	76.5	79.2	88.8		
	Mean	19.3	24.6	26.9		
	Median	17.3	22.1	22.7		
	SD	11.8	12.8	16.9		
	Skewness	1.34	0.88	1.34		
	Min	0	0	0		
	Max	184	190	214		
Service density	Mean	35.2	19.3	14.1		
(service points per km ²) × 10 ⁵	Median	18	7	5		
	SD	43.4	31.6	27.6		
	Skewness	1.67	2.9	3.84		
Non-motor route density (km of road per km 2) \times 10^3	Min	1784	389	489		
	Max	34,888	34,475	33,589		
	Mean	19,204	15,558	13,329		
	Median	19,749	14,535	11,794		
	SD	8078	7624	7265		
	Skewness	-0.21	0.15	0,33		

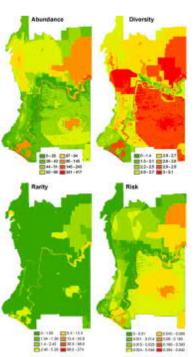
(Hasanzadeh, Kyttä, Brown, 2019)

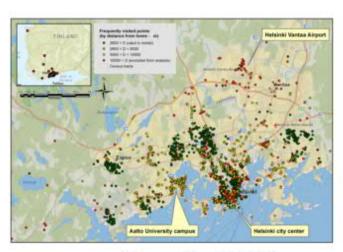

Explain

- the aim is to look more closely at observations from the Explore phase to explain them by further analysis
- The Explain phase combines spatial and non-spatial PPGIS data with other GIS spatial data.

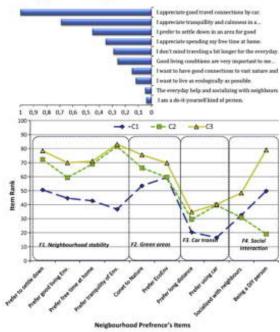
Method categories:


- Visual and overlay analysis
- Spatial pattern analysis
- Proximity and coexistence analysis
- Calculation of indices/measures
- Association analysis
- Cluster analysis

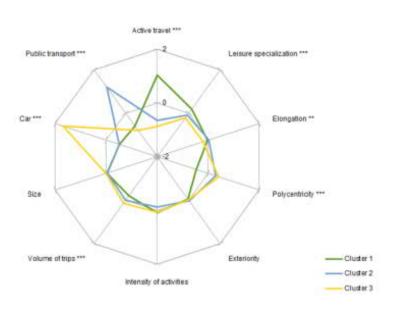

EXPLAIN


Explain: examples

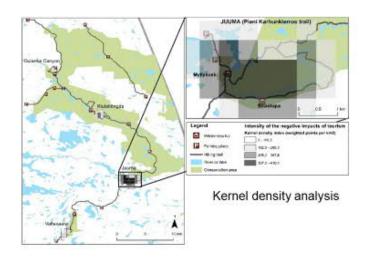
Thematic maps

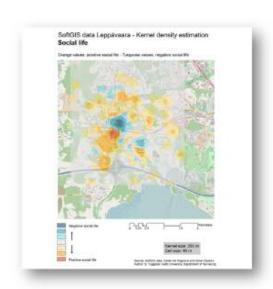

(Bryan et al., 2010)

(Hasanzadeh et al., 2017)


examples from PPGIS studies

Clustering analysis


(Haybatollahi et al., 2015)


Hasanzadeh, 2019)

Explain: examples

Spatial pattern analysis

(Pietilä & Fagerholm, 2016)

Explain: examples

Association analysis

Logistic regression

Results of ordered logistic regression analyses on associations between the dissonance groups and walking outcomes.

	All destinations		Reconstituted distinutions		Utilisation destinations		
	Walking trips	Walking disease OR: (16% CI)	Walking tripo OR (95% CI)	Walking distance OR (Min. CI)	Walking trips	Wolking Green	
	(864-CI)				OR:	(604.03)	
					(96% CD)		
Conder test, Security	8133	101012	100000		3377777	3877	
Water	(887)	682 682-410	0.75-1.50	0.97 (0.68-1.70)	E98 (0.06-5-00)	0.91	
Age (years)	1.00	1.05	1.02	1.80	0.96	0.07	
	(8.96-1.04)	(0.97-3.05)	(6:96-L6T)	(8.98-1.07)	(0.82-0.00)	(0:00-1.02)	
Household income (set. < 2,000 C)	200		Take 1	4.00	100	16.46	
1,000-4,500 €	1.14	8.08	1.06	6.87	6.27	0.60	
2.00	(0.66-1.90)	(0.56-1.68)	(0.61-1.84)	(858-150)	(0.45-1.4)	(0:36-1.25)	
> 4,500 E	1.18	1.17	0.03	0.87	1.22	1.07	
	(0.76-1.01)	10.76-0.801	(0.00-0.40)	(8.56-1.35)	(0.77-0.96)	(8:75-1.86)	
Employed (ref. no)	0.59	6.55	0.71	0.74	6,77	0.76	
	(8.38-8.93)	(9.32-0.82)	(6.46-1.11)	(0.47-1.36)	(0.48-1.20)	(0.47-1.33)	
University degree tool, not	1.29	1.55	1.29	1.54	1.05	1.30	
	(0.86-1.95)	0.02-2.90	0.85-1.90	(LH)-2.34)	(0.67-0.63)	(0.71-1.72)	
Children in hinoschold (ref. on)	142	1.19	1.71	176	5.06	140	
BETTERN BETTER BETTER BETTER	19.74-1.681	(0.79-0.98)	(1.13-3.50)	(3.56-2.67)	(0.09-0.64)	(0.66-1.56)	
Discounce (ref. high-walkability consonant)			ALIXA TRACTOR	ATTER ATTO	U.S. Company	AUG. 11	
Low well-delity consensal	0.35	6.12	0.54	0.35	6.00	0.10	
	(0.09-0.26)	(9.07-0.22)	(0.29-0.58)	(6.15-6.44)	(9.06-0.19)	(0.85-6.19)	
Low-well-shilling, no riving professor-	0.38	6.25	0.46	0.30	9:21	0.19	
53 72.02 733	(0.12-4-47)	(0.14-0.39)	(0.28-0.60)	(0.18-0.50)	(0.12-0.36)	(0.11-0.33)	
Low-wolfability dissonant	0.44	0.41	0.50	0.44	8.36	0.95	
	(8.24-8.60)	(9.23-9.77)	(0.36-0.8%)	(8:23-8:83)	(0.19-0.79)	(0.16-0.67)	
High-walkelidity document	0.49	6.40	0.40	0.38	8-67	0.40	
	(8.24-8.98)	(0.28-0.81)	(0.20-0.90)	(6.16-6.82)	(0.23-0.90)	(0.21-0.90)	
High-wallschildy, no strong preference	0.51	6.40	0.53	0.45	6.57	0.57	
THE STATE OF STREET	(8.30-6.87)	(0.25-0.73)	(0.31-0.81)	(8.26-8.77)	(0.12-0.02)	(6:33-1.81)	
EIC*	1188.54	1179-08	1195.54	1171.30	1056.72	1848.85	
- Log Risellhood	546.27	540.84	-544,95	- 539.80	- 483.38	-629,47	
	460	444	948	448	402	462	

All common measures have been classified into antiened concorne variables (1 — for quartile, 2 — 2nd quantile, 3 — 3nd quantile, 4 — 4th quartile). Bobbled values are significant (p. < .0%).

(Kajosaari et al., 2019)

Pearson's correlation

Table 3

Correlations between different measures of activity space dispersion. (AS: activity space).

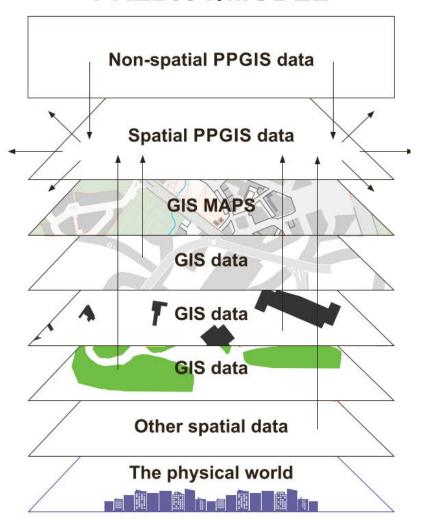
	Personne of Ali	Area of A8	Average distance to activity places	Elongation	Graveline	Cessorchy
Fortmeter of AS	1	0.627	0.405**	0.105	0.200	0.282
Area of A5	0.627	1	0.263**	-0.013	-0.012	0.136
Average distance to activity places	0.415	0.261	1	0,000	0,005	6.238
Elonganius	0.105	-0.013	0,000	1	0.900	-0.054
Gravellas	0.201	+0.002	0.025	0.900	1	-0.064
Continty	0.282	0.136	0.333	-0,064	-0.084	1

^{*} Correlation is significant at the 0.05 level (2-tailed).

(Hasanzadeh, 2019)

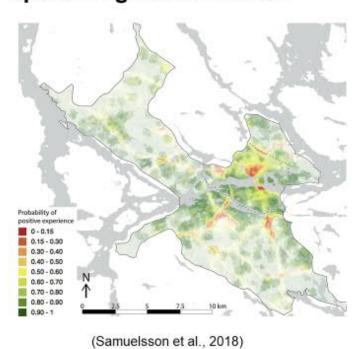
^{*} Including undergraduate, anduate and postgraduate degrees.

¹⁶ Bayesian Information Criterion (BEC). Lower values indicate a better model fit.

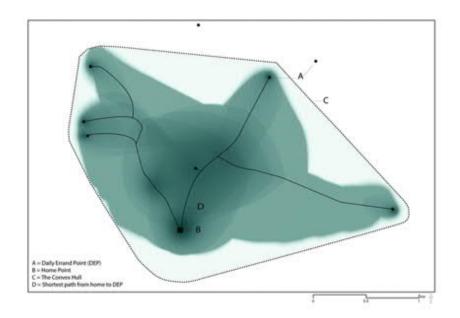

^{**} Correlation is significant at the 0.01 level (2-tailed).

Predict

- the aim is to generalize and predict mapped attributes to other places and contexts (prediction) or produce a representation of a system (model)
- this phase typically requires multiple data sources Performing analysis in Predict/Model phase requires in-depth expertise in applying GIS and statistical software. Skills in computer coding may also be necessary.



PREDICT/MODEL



Predict:

examples from PPGIS studies Spatial regression model

Exposure estimation (IREM)

(Hasanzadeh et al., 2018)

Remember...

- The journey up the pyramid is not always a straight one
 - We might need to move back and forth between analytical stages
- The stages can overlap
 - Similar methods may be used for different purposes
- Mixed approaches are very common

Thank you!

Read more:

Nora Fagerholm, Christopher M. Raymond, Anton Stahl Olafsson, Gregory Brown, Tiina Rinne, Kamyar Hasanzadeh, Anna Broberg & Marketta Kyttä (2021) A methodological framework for analysis of participatory mapping data in research, planning, and management, International Journal of Geographical Information Science, DOI: 10.1080/13658816.2020.1869747

References:

- Brown, G., Rhodes, J., & Dade, M. (2018). An evaluation of participatory mapping methods to assess urban park benefits. Landscape and Urban Planning, 178, 18-31.
- Hasanzadeh, K. (2019). Exploring centricity of activity spaces: From measurement to the identification of personal and environmental factors.
- Hasanzadeh, K., Kyttä, M., & Brown, G. (2019). Beyond Housing Preferences: Urban Structure and Actualisation of Residential Area Preferences. Urban Science, 3(1), 21.
- Laatikainen, T., Haybatollahi, M., & Kyttä, M. (2019). Environmental, individual and personal goal influences on older adults' walking in the Helsinki metropolitan area. International journal of environmental research and public health, 16(1), 58.
- Laatikainen, T., Tenkanen, H., Kyttä, M., & Toivonen, T. (2015). Comparing conventional and PPGIS approaches in measuring equality of access to urban aquatic environments. Landscape and Urban Planning, 144, 22-3.
- Samuelsson, Karl, et al. "Impact of environment on people's everyday experiences in Stockholm." Landscape and Urban Planning 171 (2018): 7-17.