
Testing
CS-C2105, Programming studio A
CS-C2120, Programming studio 2

10.2.2021

• Round 18 open
• Project topic selection due Thursday, 23:59
• Model project presentation on Friday 12th
• Project plans due:

– General plan, Wednesday, Feb 17th
– Technical plan, Friday, Feb 19th

• UML-task results should be published very
soon.

News

10.2.2021

2

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

10.2.2021

3

• Software can fail in many different ways
– There is a logical error in the code and program
crashes

• e.g. null-pointer exception or divide by zero
=> exception handling can help detecting the error but not
removing it.

– There is a logical error and the program
calculates incorrect results

• You have seen a lot of these cases…
=> test results can help you to identify the reason for the error

Software failures

10.2.2021

4

• The program handles well normal cases but
fails to process incorrect input data or other
special cases, like missing input files.
– There is no way to avoid these situations, so

you need to take care of them yourself
Þ exception handling can help here

• The program does not implement the
required features.
– E.g., some essential commands are missing or

do not work.
=> You just have to implement the missing parts

Software can fail…

10.2.2021

5

• The program works correctly, but is far too
slow when working with realistic data…

=> Might be solved by changing to use more efficient
data structures / algorithms.

• Other issues
– The program may use too much memory space
– The program may have serious security
problems

Software failures…

10.2.2021

6

• Other issues
– Platform dependencies may cause issues

• Software may not be portable
– Sometimes the program works correctly but

in a surprising way
• undocumented or unexpected feature, e.g.,

Excel in some cases interprets data as date
values.

=> You just have to implement the fixes

Software failures/features

10.2.2021

7

• Why should we test our programs?
– ”Program testing can be used to show the

presence of bugs, but never to show their
absence!”

• Edsger Dijkstra (1930-2002)
– What else could we do to show that our

software works?
• Formal proofs of correctness have a very limited

application area.

Goal of testing

10.2.2021

8

• Bug
• Defect
• Error
• Failure
• Feature

Some terms

10.2.2021

9

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

10.2.2021

10

• Equivalence partitioning
– Consider the space of possible input values
– Split the space into areas and take test cases

from each area.
– For example:

• coordinates from all quadrants
• The Chess problem: input files having different

ordering and selection of blocks
– Makes more sense in unit testing of a one

method instead of the whole program level

How to design tests?

10.2.2021

11

• Boundary value analysis
– Consider boundary cases of input or parameter values

or data structures. Take test cases around them.
– For example

• Suppose some min / max values are specified for a
parameter. What happens with values min, min-1, max,
max+1.

• Off-by-one bugs:
– Check that array index remains within bounds

• What happens with an empty collection (say List), or
collection with just one item?

• Consider searching/inserting/deleting items in a List. What
happens, if the item is the first or the last one, or does not
exist in the structure?

How to design tests?

10.2.2021

12

• Fuzz testing
– Consider what happens with wrong input

values:
• Illegal values
• Wrong type of data (e.g., reading ”A” for Int)
• Missing / empty data
• Wrong format in data
• Too large data sets
• Missing input files / cannot access file

How to design tests?

10.2.2021

13

• Use case testing
– Consider typical user actions
– How does she/he give commands?
– What information is available for her/him?
– What happens in each phase?
– Can the user perform all subtasks?

How to design tests?

10.2.2021

14

• Do NOT build your whole program before
you start testing.

• Plan initially which parts of your program
will you implement in each phase.

• How could you test each part (package /
class / method) separately?
– What do you need to be able to do it?
– Where to use unit testing?

Design your testing process

10.2.2021

15

• You can build a visually complete user
interface, including windows, panes,
buttons and menus even though all logic
behind them is still missing. For example:
– Buttons and menus call Dummy methods.
– Or they call Stub methods which return

constant values just to show that the method
is called appropriately.

User interface testing

10.2.2021

16

• Create a test class which can, e.g.,
– open file
– read file contents and display them
– manage with end-of-file case
– write contents of a given data set (generated

for the test purpose only) to a file
– close file
– manage with errorneous content or format

File management testing

10.2.2021

17

• Create a test class which calls methods of the tested data
structure class or collection,
– e.g., using unit testing

• Give generated data for the methods to build content in the
structure, e.g. insert generated strings, ints, pairs, … into the
structure to initialize it for testing.

• Build a method to traverse the structure through and print all
values.

• Build the methods your program needs to manipulate the
structure
– Execute the methods with the test data structure and call the

auxialiary method to print the content and thus allow you to monitor
that the content is correct.

– Test the special cases like empty structure, structure with one item,
possible full structure

Data structure testing

10.2.2021

18

• Software failures
• How to design tests
• Practical hints (CONTINUE 15.13)
• Other aspects of testing
• Software development process

Contents

10.2.2021

19

• You can build your own asserts methods also
without Scalatest library.

• Basically assert is a method, which receives as a
parameter a logical expression (exp==something)
to check that it holds.
– exp is a variable in the tested method.
– something is its expected value.
– If the expression is not true, assert prints out a message

for this (or throws an expection) and possibly quits the
program.

– The condition could also be some other comparison, like
• assert(number > 0)
• assert(x > 0 && x < 100)

Asserts

10.2.2021

20

class TestSupport {

def assert(expression: Boolean, methodName : String) = {
if (!expression) {
println("Assert failed in method: ", methodName)
System.exit(0) // or something else

}
}
}

10.2.2021

21

• Debugger is a highly useful aid in many
cases.

• However, debugging graphical user
interfaces can be painful.

• Why?
– Graphical user interface is based on processing
events (mouse click, button click, key click, …)
which are processed separately.

– When you follow program execution, the
program control jumps into event processing,
which may be confusing.

Debugging and user interfaces

10.2.2021

22

• Jumping between uninteresting GUI
methods and the actual logical code in
unexpected ways is disturbing, if you try
to follow progress step-by-step.
– Setting breakpoints only in logical code is a

partial solution.
– But keeping track on which active method

call you are investigating may be
cumbersome.

Debugging and user interfaces…

10.2.2021

23

• One option is to separate the GUI code as well
as possible from the logical code, and test it
separately
– Use stubs or mocks to help you to provide minimal

data for testing and the user interface can deliver
and show data appropriately.

• And, implement a logical part of the program
using command line interaction first (or stubs /
mocks) to provide necessary UI data.
– Test that the logic works properly before you

integrate the parts, followed by integration testing

Debugging and user interfaces…

10.2.2021

24

• While debugger is a great tool to help
you, printing variable values is a useful
method, too, to follow program execution
and checking that variable values are
correct.

• Assert methods fit well together with this.

Printing values

10.2.2021

25

• Define a variable to toggle whether you
are in debug mode or mode

val DEBUG_ON = true

Hint: Toggle debugging mode

10.2.2021

26

class TestSupport {

def assert(expression: Boolean, methodName : String) = {
if (!expression) {
println("Assert failed in method: ", methodName)
System.exit(0) // or something else

}
}
}
//-------------------

…
If (TestSupport.DEBUG_ON) println (…)
…
If (TestSupport.DEBUG_ON)

TestSupport.assert(x > 0, ”calculation”)

10.2.2021

27

• Software failures
• How to design tests
• Practical hints
• Various aspects of testing
• Software development process

Contents

10.2.2021

28

• Program functionality
– Software meets the given requirements

• Program correctness
– Software gives correct responses to all kinds

of inputs
• Performance testing

– Performs its functionality in acceptable time
• Usability testing

– User interaction with the software is acceptable

What can we test?

10.2.2021

29

• Software works on the desired platforms
– Different operating systems
– Different devices

• Acceptance testing
– Software meets the general requirements of

the customer

What can we test...

10.2.2021

30

• Alpha testing
– Testing the feasibility of the initial software (or

prototype) among potential customers
• Beta testing

– User acceptance testing for a limited audience
• Functional vs. Non-functional testing

– Functional: what the program should do?
– Non-functional: other aspects like performance,

usability, scalability, …
• Installation testing

– Whether the installation process works correctly

Some more terminology

10.2.2021

31

• Regression testing
– Running a series of tests to discover if anything is broken after

a major change in software
– Typically ready-made regression test sets

• Smoke testing
– Testing whether it is worthwhile to proceed with further testing

• Stress testing
– Testing the limit capacity of operation, to discover when the

performance breaks down.
• Internationalization and localization

– Testing that the software works in different languages and
geographical / cultural areas.

Some more terminology…

10.2.2021

32

• Static testing
– Code reviews, walkthroughs in collaboration

with a peer.
– Identifying dead code

• Dynamic testing
– Executing program with test cases

Different testing processes

10.2.2021

33

• White-box testing/glass box testing
– Seeks to show that internal structures / algorithms

within program / program unit work correctly.
– Usually carried out in unit testing level

• Black-box testing
– Seeks to show that the program / program unit

produces correct output without considering how it
does it (even with not access to it)

• Gray-box testing
– Have access to source code but perform tests as in

black-box testing.

Different testing approaches

10.2.2021

34

• How widely the test cases cover the code.
– Function coverage
– Statement coverage
– Branch coverage
– Condition coverage
– Path coverage

• Fault injection
• Mutation testing

Test quality

10.2.2021

35

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

10.2.2021

36

• Waterfall model

Software development processes

10.2.2021

37

• Agile software development
– Development is iterative, incremental,

evolutionary
– Works in short cycles covering planning,

analysis, design, coding, unit testing, and
acceptance testing.

– Works in close collaboration with customers
– Scrum is one agile framework having 2

week sprints (and there are many others)

Software development processes

10.2.2021

38

• TDD (test driven development)
– Turns requirements into tests

1. Add a new test
2. Run all tests and see if the new test fails
3. Write code that addressed the new test
4. Run tests and revise code until all tests pass
5. Refactor code
6. Goto 1

Software development processes

10.2.2021

39

• CS-C3150 Software Engineering
• CS-C3180 Software Design and Modelling
• CS-C2130 Software Project 1
• CS-C2140 Software Project 2

Some future courses

10.2.2021

40

• Choose project topic
• Submit project plan (in two phases)
• Follow MyCourses / A+ announcements

for project plan demos etc.

Next

10.2.2021

41

