
From Design to Implementation
CS-C2120, Programming studio 2
CS-C2105, Programming studio A

27.1.2021

• Chapter 16 opens today.
• Recall to ask help, if needed, in Zoom

exercise sessions or in Zulip.
• UML task grading will take 1-2 weeks

after submission DL.
• Project topics will be published within a

week.

News

27.1.2021

• How to proceed?
• Package design
• Traits vs. classes?
• Data structures
• Dummies, Stubs and Mocks
• Implementing and testing

From UML to Coding

27.1.2021

• UML design can be turned into class
definitions in a straightforward way.
– Class names
– Inheritance
– Variables
– Methods
– Visibility

• You will probably add more variables and
methods later, as well as revise method
parameter definitions.

How to proceed?

27.1.2021

• When the number of classes grows, it is
worthwhile to consider identifying major
components in the program.
– The program could be split into separate packages.
– One way to implement this split is separating the

following:
• User interface operations (gui)
• Program logic
• File management
• Code for testing your classes

– Many exercise projects in O1 course separated Gui
and program logic. See examples there.

Package design

27.1.2021

• When would you use traits instead of ordinary
classes?

• Recall
– Traits cannot be instantiated.
– They do not have parameters (in Scala 2).

• Traits can be used to define abstract entities
– A class which extends the trait has to implement the

defined features.
• Classes can extend several traits at the same time.

– This allows adding new features (variables, methods) in
classes without using inheritance.

Traits vs. classes

27.1.2021

Example: Creatures

20.1.2021

27.1.2021

27.1.2021

• Scala has the concept abstract class that is
similar to Java’s abstract class.
– Use traits instead
– You rarely need to use an abstract class. In

fact, you only need to use an abstract class
when:

• You want to create a base class that requires
constructor arguments

• Your Scala code will be called from Java code
• See, https://docs.scala-lang.org/overviews/scala-

book/abstract-classes.html for more information

What about abstract classes?

27.1.2021

https://docs.scala-lang.org/overviews/scala-book/abstract-classes.html

• Consider relevant questions
– What kinds of data your program will manage?
– What data is mutable, what is immutable?
– How would you access data?

• with indexes, sequentially, mapping, searching?
• Scala has quite extensive set of collections

which help you in managing and storing data in
your program.
– They are highly useful.
– You can learn more possible data structures on the

course CS-A1140/1141.

About data structures

27.1.2021

• DungeonGame has many Levels (fixed)

Examples from DungeonGame

27.1.2021

val world = Vector[Level]();

• A level has a variable number of Items
and Monsters.
val monsters = Buffer[CreatureType]();

• A location may have 0..* items
var itemList = Buffer[Item]();

• Player can carry 0..* items
var carrying = Buffer[Item]();

Examples from DungeonGame

27.1.2021

• You do not need to complete all classes
at once.

• Using skeleton classes helps compiling
and testing still incomplete programs.

Dummies, Stubs and Mocks

27.1.2021

• Use ??? as method “implementation”
– Calls a method of type Nothing

• Allows compilation without doing
anything.

• Thus, you can write all method headings
ready and delay implementation.

Dummys

27.1.2021

class Cafe (val coffeemaker: Coffeemaker) {

def makeOrderTryCatch(amount: Int): Buffer[Coffee] = {
???

}

def makeOrderTry(amount: Int): Buffer[Coffee] = {
???

}

def addMilk(coffees: Buffer[Coffee]) = {
???

}

def addBeans(): Unit = {
???

}

def cleanMachine(): Unit = {
???

}
}

• Support step-by-step testing.
• Implements a method so that it returns a

“prespecified” value.
• The method can be called when testing

the calling method.

Stubs

27.1.2021

• You are implementing a class which
would manage data from a data base.

• You can write a stub class / method
which returns a value without actually
reading it from the data base yet, and
use this value when testing operations.

Stub example

27.1.2021

Stub example…

27.1.2021

• An extension to a stub.
• Instead of returning always the same value,

Mock can recognize given parameters and
return prespecified values, which
correspond to given parameter values.

• Thus, mocks support ”simulating” more
complex cases when full implementation is
still ahead.

Mocks

27.1.2021

• One good practice is to make a testing app with
which you can test your classes and methods one by
one
– Creates/manages input test data which is given to

methods as parameters or in collections
– Checks the correctness of returned values or collection

content.
– Possibly prints out their values for observation

• Alternatively, create a simple user interface which
allows giving values and observing returned results.

• Third option is building unit tests, which is discussed
in Chapter 17.

Stepwise development

27.1.2021

• We continue at 15.10

Break 10 mins

27.1.2021

