
Program design and UML
CS-C2120, Programming studio 2
CS-C2105, Programming studio A

20.1.2021

• Chapter 15 opens today at 14.
• A+ course page includes a link to Code vault
• Zoom exercise sessions begin on Friday 22nd
• Teaching assistants follow and respond to

questions in Zulip
• UML task submission DL Wed 27th at noon.
• UML task grading will take 1-2 weeks after

submission DL
• Demo session on Friday 22nd includes more

design examples and aspects

News

20.1.2021

• Object-oriented (OO) analysis and
design can be described as
– Identifying the objects of a system.
– Identifying their relationships.
– Making a design, which can be converted to

executables using OO languages.

OO Design

20.1.2021

• During OO analysis, the most important
purpose is to identify objects and
describe them in a proper way.

• The objects should be identified with
responsibilities, that is, the functions
performed by the object.
– Every object has some type of

responsibilities to be performed.

OO analysis: Identifying objects

20.1.2021

• Here emphasis is placed on the requirements
and their fulfilment.

• Objects should collaborate according to their
intended association.
– Objects collaborate with other objects to carry out

their responsibilities. We need to identify these
associations.

• After the association is complete, the design is
also complete.

OO Design – identifying relations

20.1.2021

• Responsibility-Driven Design focuses on
identifying class responsibilities
– Which functions a class should implement self

and which ones need collaboration with other
classes?

• CRC (Class-Responsibility-Collaborators)
– CRC cards provide a method to support and

document OO analysis and design.
– Worth trying out.

CRC cards / Responsibility-
Driven Design

20.1.2021

Class title

Responsibilities Collaborators

What the class should do? Which other classes are
involved?

CRC card

20.1.2021

• Let us continue to design our Dungeon
game.

Back to Dungeon game

20.1.2021

Scenario: maze

20.1.2021

Places Scenario 2
Classes

Dungeon consists of Levels
Dungeon Level Location

Levels consist of an 2D array of Locations Floor
Trapdoor

Caves and Corridors are not classes but parts of a level map Wall
Door / Hidden door

Locations can be Floors, Walls, Trapdoors, Stairs, Entrance, Doors Stairs / Entrance
Areas between caves can be Walls

Doors can be Hidden doors

Entrance can be Stairs

DungeonGame

Responsibilities Collaborators

Create the world Level
Create the player Player
Advance the game
Game end

CRC card

20.1.2021

• Zoom-poll

What are responsibilities of
Level?

20.1.2021

Level

Responsibilities Collaborators

Create caves, corridors and Location
stairs for level Grid
Knows the maze structure
Creates initial Monsters in maze Monster
Maintains monster status in the level
Creates initial Items in maze Item

CRC card

20.1.2021

Location

Responsibilities Collaborators

Knows the type of location Monster
Knows what the location containts Item
Knows its coordinates in Grid Coordinates
Knows properties (lighting, mapping status)

CRC card

20.1.2021

Creature classes

20.1.2021

Creatures
Classes

Creatures can be the Player or
Monsters

CreatureType

Monsters can be Floating eyes,
dragons, and many others Player Monster Properties

Floating eye life point

Creatures have Properties Umberhulk experience level

Dragon skill
...

Player

Responsibilities Collaborators

Knows current location

Knows carried Items
Can manage Items
Knows Items in use
Knows own properties (life points, symbol…)
Can move and attack
Can develop one’s properties
Can die

CRC card

20.1.2021

• Zoom-poll

With which classes Player
should collaborate?

20.1.2021

Player

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows carried Items Item
Can manage Items
Knows Items in use
Knows own properties (life points, symbol…)
Can move and attack Monster
Can develop one’s properties
Can die

CRC card

20.1.2021

Monster

Responsibilities Collaborators

Knows current location Level
Location
CompassDir

Knows own properties (life points, symbol, …) MonsterType
Knows own MonsterType
Can define whereTo move
Can move and attack Me
Can develop
Can die

CRC card

20.1.2021

Weapon

Responsibilities Collaborators

Knows WeaponType WeaponType
Knows own properties (spell, curse, symbol, …)

CRC card

20.1.2021

Ring

Responsibilities Collaborators

Knows RingType RingType
Knows own properties (spell, curse, symbol, …)

CRC card

20.1.2021

• CRC cards could be tested with the help
of User stories, which are very brief
informal descriptions of relevant actions
in the application.

Testing design

20.1.2021

• I want to proceed through this level
• I want to proceed stairs down to the next

level
• I want to pick up this item
• I want to attack this monster
• I want to use this thing
• Monster wants to find you
• Monster wants to attack you

User stories, examples

20.1.2021

• I want to proceed through this level

User stories, test

20.1.2021

Level

Responsibilities Collaborators

Create caves, corridors and Location
stairs for level Grid
Knows the maze structure
Creates initial Monsters in maze Monster
Maintains monster status in the level
Creates initial Items in maze Item

CRC card and Zoom poll

20.1.2021

• I want to proceed through this level (Done)
• I want to proceed stairs down to the next

level
• I want to pick up this item
• I want to attack this monster
• I want to use this thing
• Monster wants to find you
• Monster wants to attack you

User stories, examples

20.1.2021

• Design is implemented using OO languages
such as Java, Scala, C++, etc.

• But this is not straightforward
– Many details need to be added
– Choice of data structures and algorithms
– Top-down vs. Bottom up vs. Both
– Iteration and refinement of design is often

needed => Code restructuring
• Model project resource includes several examples of

this.

Implementation

20.1.2021

• We continue soon, 15.15.

Break, 15 minutes

20.1.2021

• Graphical description method for
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling.

UML, Unified modeling language

20.1.2021

• Graphical description method for
software design

• Allows to abstract details away and focus
on key concepts, components, their
relations and processes.

• Supports structural, behavioral and
architectural modeling

UML, Unified modeling language

20.1.2021

We focus on this only

• Presents a class
– Class name
– Instance variables

• Visibility
– Methods
– Possible attribute of

class type (trait,
abstract class)

UML Class diagram

20.1.2021

• Association
– Each Weapon is

associated with one
WeaponType

– WeaponType can
be associated with
many Weapons

Relations: Association

20.1.2021

• DungeonGame has many Levels, which
can exist independently

Relations: Aggregation

20.1.2021

Hollow diamond

• Levels consist of Floor locations which
cease to exist if Level is destroyed

Relations: Composition

20.1.2021

Filled diamond

• Player’s functions depend on what kind
of Items there are in the game.

Relations: Dependency

20.1.2021

Dash line

Class attribute

• Stairs extend Floor

Relations: Inheritance

20.1.2021

Hollow arrowhead

• Floor implements
abstract class
Location

Relations: Implements

20.1.2021

Dash line & hollow arrowhead

Example: Dungeon

20.1.2021

Example: Creatures

20.1.2021

Example: Items

20.1.2021

• Are all relations of classes visible?
• Are variables and methods in appropriate

classes, especially in the case of
superclass/subclass hierarchies?

• Has visibility of variables and methods
been considered?

• Can user stories be implemented in this
structure?

Critical questions

20.1.2021

• Cohesion
– Does a class implement many different

things or does it focus on presenting and
manipulating one concept/thing?

– Might there be something, which could be
better implemented in another class or a
new dedicated class?

Quality aspects

20.1.2021

• Coupling
– How complex is the interface between two

classes which use methods / variables?
– Does a class need information of the internals

of another class?
– Does its own implementation depend on such

information?
• For example, is it relevant to know the data

structures used in another class?
• => If yes, there is a risk of cumulative needs for

changes

Quality aspects cont.

20.1.2021

• More discussion on the example design
• Other examples of design

Friday demo & next week

20.1.2021

