

MEC-E5003

FLUID POWER BASICS

Study Year 2020

Lecture themes

How to control actuators'

- direction of movement
- velocity
- force/torque

How about the control forces or power?

Are valves just pure sources of joy?

Valves

Control of the hydraulic power (= $q_V \cdot p$)

Control of pressure:

- output forces and torques of actuators

Control of flow magnitude:

- velocities of actuators

Control of flow direction:

- direction of movement of actuators

Pressure valves Flow valves Directional control valves

Construction

Construction types - Signal

- normally open
- normally closed

drain channel because of internal leakage (spool valve)

to tank

PUSH TO OPEN

Nominal sizes

NS = Nominal Size / NG (Nenngröbe)

Indicates the approximate inner diameter of a flow channel with circular crosssection (i.e. pipe or hose) to be connected to the valve in units [mm]

Most common sizes 6, 10, 16, 25 ja 32

Directional control valves

Control the direction of flow

Shut-off valves

- either allow or restrain flow

Check valves

- allow flow to one direction and restrain to opposite direction
 Actual directional control valves
- versatile control of flows

Aalto University School of Engineering Mechanical Engineering / Engineering Design / Fluid Power

Pilot-operated check valves

- allow flow to one direction and restrain to opposite direction, but the flow can also be allowed to the normally restrained direction when the port X is pressurized

Pilot operated model (case: $p_{\rm B} > p_{\rm A}$), opening of B \Rightarrow A

- $p_{\text{poppet}} = p_{\text{B}}$ ("too high" for opening)
- pilot poppet opens by using moderate pressure p_X
- flow $B \Rightarrow A$ through throttle
- p_{poppet} decreases $\Rightarrow p_{\text{A}}$
- hydraulic force $(p_{\rm B})$,
- (ring area) finally

wins hydraulic force in poppet-spring volume \Rightarrow main

poppet opens letting flow from $B \Rightarrow A$

Pilot-operated check valves

Load torque can't turn motor freely (only through leakage in motor) Motor is operated only intentionally by using directional control valve

A

Which inlet connection has the highest pressure? A or B

Aalto University School of Engineering Mechanical Engineering / Engineering Design / Fluid Power

Shuttle valve

Flow direction (either $A \rightarrow C$ or $B \rightarrow C$) is determined by the highest inlet pressure

Coding the directional control valves

Code: Number of connections / Number of switching positions

Directional control valve

Proportional control valve

The model for proportional control valve can be constructed based on an assumption : the valve consists of four (4) orificices (control edges). **PA - PB - AT - BT**

Proportional control valves are continuously adjustable valves. Proportional magnets (solenoids) are used in them as electric actuators.

Examples of different connection variants

4/3 valve

Closed center position Open center position

- Effect of external forces
- Possible movement
- Energy consumption
- Effect of valve leakages

- Floating

Aalto University School of Engineering Mechanical Engineering / Engineering Design / Fluid Power

30.1.2017 17

Switching characteristics

Directly operated / Pilot operated

Directly operated = single stage Pilot operated = multi stage (generally <u>2</u> or <u>3</u>)

Control force demand increases with flow	Nominal size	Normal flow range [l/min]	Maximum flow [l/min]	Control type	Structure type
	NS 6 NS 10	0- 20 10- 30	25 36	directly operated directly operated	poppet poppet
Pilot operated =	NS 6 NS 10	0- 30 20- 60	60 100	directly operated directly operated	spool spool
amplification of control force	NS 10 NS 16 NS 25 NS 32	20- 80 50- 200 100- 500 250- 800	160 400 700 1100	pilot operated pilot operated pilot operated pilot operated	spool spool spool spool

Pilot operated, spring centered

Pilot operated, pressure centered

Left end and right end spool areas are different, also bushing area on the left, limited bushing movement!

Switching time of pilot operated directional control valve

Slowing (restraining) spool main movements by using throttles in control channels

Operating range of directional control valve

High flow forces may restrict the controllable power of the valve (1 - 2 - 3).

Pressure valves

Govern/control the pressure Govern the system on the grounds of pressure signal

Governing/controlling the pressure

- restraining the system main pressure
- restraining the pressure of a subsystem
- Governing the system on the grounds of pressure
- sequencing the operation of system
- unloading the pump
- governing external load

Construction

Too small inlet pressure will move the spool downwards which restricts the flow more and increases pressure Too high pressure ... vice versa

A"

Construction types - Signal

- normally closed
- normally open

Direct operated / Pilot operated

```
Direct operated = single stage
Pilot operated = multi stage (generally 2, possibly 3)
```


Controls and depressurization of control spring volume

Pressure relief valve

Restrains the system main max pressure level

Protects the mhydraulic pSystem's maximum pressure system and the structures Tattached to it (M)⊨⊧ from overloading 3 4 25

Aalto University School of Engineering Mechanical Engineering / Engineering Design / Fluid Power

- 1 2/2 valve OFF
- 2 lifting of mass (cylinder)
- 3 mass lifted (end position)
- 4 motor starts to rotate
- 5 throttle adjusted (more pressure loss)
- 6 pressure relief valve opens

 $\mathbf{6}$ t

Pilot operated pressure relief valve for better static properties.High flow capacity direct operated PRV requires a large spring.

Realizing several pressure levels with one main valve and several pilot valves

Pressure reducing valve

Restrains the max pressure level of subsystem, i.e., reduces the pressure of a subsystem to a lower level compared with the main system pressure

 ${\ensuremath{\mathbb R}}$ enables different pressure levels at different subsystems

2-way valve3-way valve

- contains pressure relief function

2-way valve

3-way valve

Direct controlled pressure reducing valve

В

 $p_{\rm A}$ - $p_{\rm B}$

 \neg Constant pressure difference between connections

Β

Sequence valve

Governs the operation of system on grounds of the pressure signal

Internally controlled valve Externally controlled valve

1 valve position change -> flow to 1.12 end position for cylinder 1

Internally controlled valve

3 sequence valve 2.2 opens3.1 piston in cylinder 2 moves

3.2 end position for piston

3.3 pressure relief valve pressure

Externally controlled valve

Rapid motion by using two (2) pumps

Pump 2.1 flow is connected to tank as cylinder starts to compress the workpiece (m) High (compression) pressure and power is needed only for pump 1.1

Governs the direction of pump flow on grounds of 3.1 pressure signal, i.e. "eases" the operating power of the system

Unloading valve

Control piston opens pilot valve Flow starts from A through main valve throttle Pressure drops in spring volume Main valve opens

Pilot valve

Pilot operated unloading valve Х

Control piston

Pilot operated pressure accumulator charging valve

Accumulator pressure reaches setpoint Accumulator pressure on Control piston (loose) Control piston opens Pilot valve -> pilot flow Pressure loss in main valve throttle Main valve moves and opens flow path PT Pump pressure may decrease

Counterbalance valve

Induces a hydraulic counter load to negative external load thus enabling the governing of the load

Internally controlled valve Externally controlled valve Internally and externally controlled valve

Internally controlled valve

Externally controlled valve

Load down only if + chamber is pressurized

Rod side chamber (- chamber) pressure does not need to be highly pressurized

If load starts to fall too fast + chamber pressure drops and shuts counterbalance valve -> falling stops

Internally and externally controlled valve

Control edge AB

Govern/control the flow rate

Governing/controlling the flow rate

- affecting the speeds of actuators
- affecting the internal functions of components

Operating principle

Operational precondition

Governing or controlling flow rate with a throttle requires existence of an alternative flow path

Throttle types

density (no viscosity)

Governing/Controlling speed of actuator

Alternative sites of a throttle

Eg., named after movement to positive direction a, d = input channel b, e = output channel c, f = parallel channel of cylinder

Governing/Controlling the speeds of actuator independently to each direction

Positive direction

Negative direction

Throttle valves

At first velocity is limited by maximum pump flow rate -> all flow to cylinder

After increasing force load pump pressure increases -> flow is limited by maximum pressure, certain amount of low directly to tank

Loading of the actuator affects the actuator speed

One-way restrictor valve

Flow control valves

2-way valve

3-way valve

- incorporates pressure relief function

Loading of the actuator does not affect the actuator speed

Boundary conditions of control function

Loading of the actuator does not affect the actuator speed

3-way valve

3-way valve

Too much flow AB, "too high pressure" at A, pressure compensator opens (more)

Also external command signal (X) and pressure relief valve (PRV)

3-way valve Pilot operated A Controlled flow Pressure compensator Pilot valve Р А ∕∙∙∙∙ В Р -Ô ≶ 64 Throttle Control throttle B Excess flow

Flow divider valves

Single-acting

- flow to only one direction

Single-acting

- controlled flow to one direction,
 - free flow to the opposite direction
- Double-acting
- controlled flow to both directions

Single-acting flow divider valve

Effect of flow rate to the control accuracy

Lecture themes - Recap

Actuators

- control of direction of movement?
- control of speed?
- control of force or torque?

Can valves be used for other control purposes?

How to produce the force needed to control valve slides?

Any disadvantages in flow valves?

Valve slide types?

