

# Surfaces and Films CHEM E5150 Lecture 2A

J Koskinen

#### Items:

#### Ideal surfaces

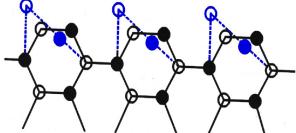
- Surface energy
- Surface structure
- Restructuring

#### Real surfaces

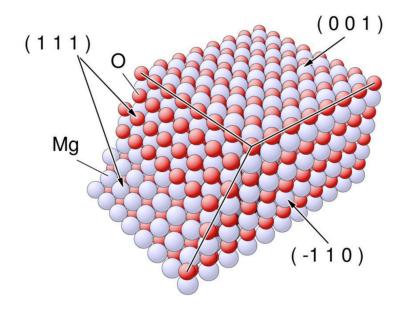
- Contaminants
- Functional groups
- Deformation

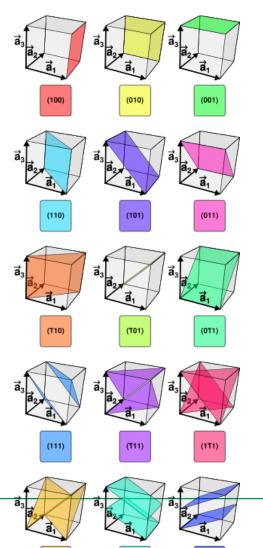
#### Mechanical properties

- Roughness topography
- Defects
- Electronic properties
  - DoS
- Optical




## What is surface? In ideal cases:


Surfaces are defined by 'relaxed' atoms (i.e. not constrained in 3D as their internal counterparts are). Dangling bonds from these surface atoms are free to react.


Relaxation of surface atoms leads to reconstruction (rearrangement of atoms near the surface).

Relaxation and reconstruction are strongly influenced by the bonding type in the bulk material (i.e. metallic, covalent, ionic, and vander waals)



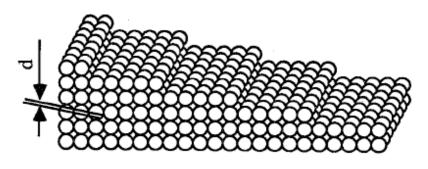
#### Miller Index








(T02)


(102)

(111)

#### **Surface energy**



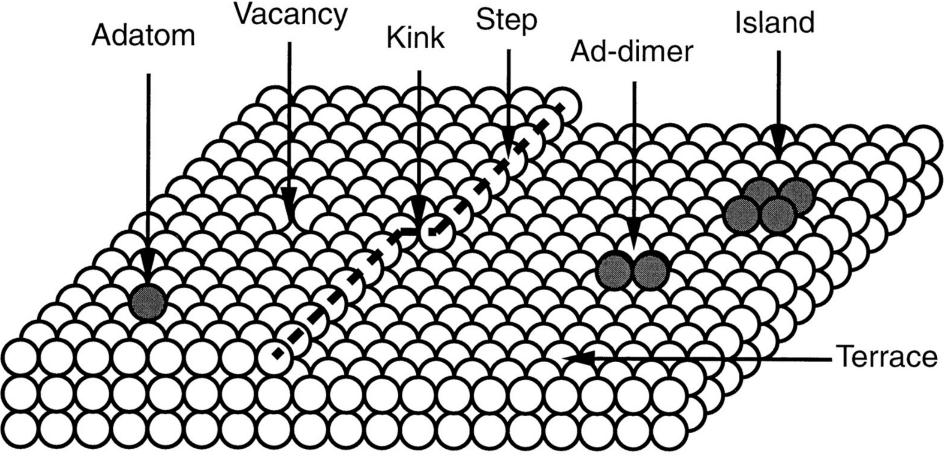
Low-index surface



High-index surface consisting of low-index facets

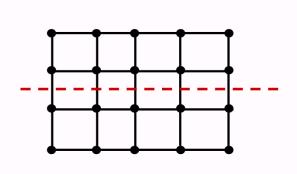
$$\gamma(\mathbf{n}) = \frac{dW}{dA}$$

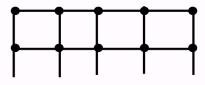
γ surface tension = *dW* work needed to form surface *dA* 

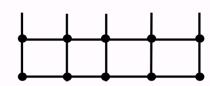

#### In thermodynamic equilibrium:



$$\int dA \, \gamma(\mathbf{n}) = \min.$$


#### Science 18 Apr 1997: Vol. 276, Issue 5311, pp. 377-383 DOI: 10.1126/science.276.5311.377


#### Surface atoms and defects




#### Solid and liquid Surfaces

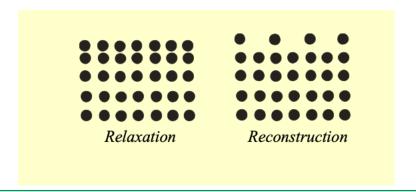
In a nn pair potential model of a solid, the surface free energy can be thought of as the energy/unit -area associated with bond breaking. :





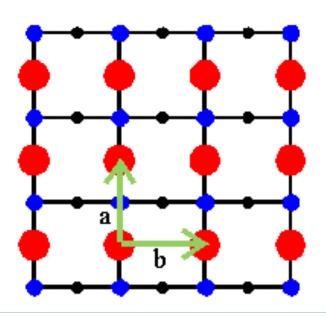


work/ unit area to create new surface = 
$$\frac{n}{A}\varepsilon \equiv 2\gamma$$

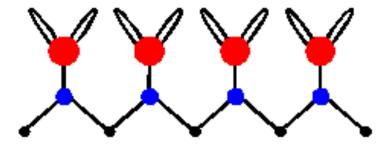

where n/A is the # of broken bonds / unit-area and the  $\varepsilon$  is the energy per bond i.e., the well depth in the pair-potential.

Then letting  $A = a^2$  where a lattice spacing

$$\gamma \equiv \frac{\varepsilon}{2a^2}$$


#### **Relaxation and Reconstruction**

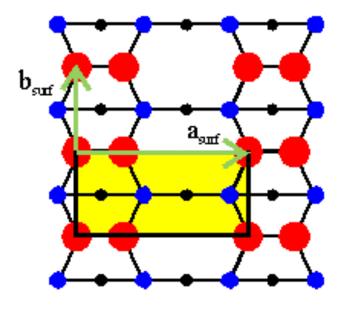
- Surfaces are not formed at zero temperature: Heat leads to atomic re-arrangement.
- Atoms at a surface have a lower co-ordination than those in the bulk
  - the origin of surface tension (strictly surface stress in a solid)



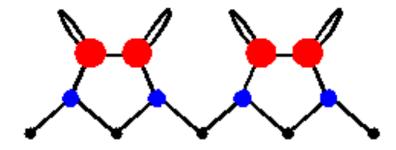

#### Example Si (100)

#### (a) UNRECONSTRUCTED SI(100) (TOP VIEW)



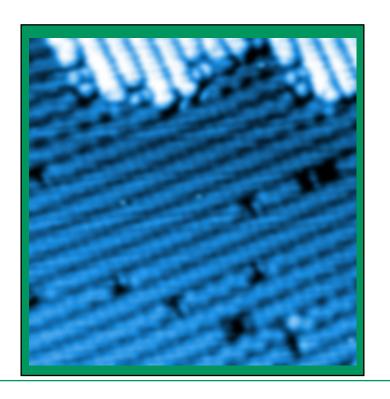

#### (b) UNRECONSTRUCTED SI(100) (SIDE VIEW)

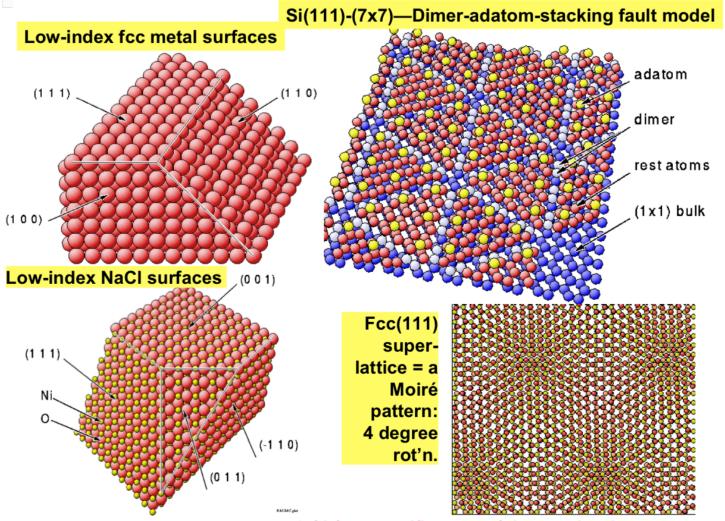



- Uppermost (surface) layer
- 2nd layer
- 3rd layer

#### Example Si (100)

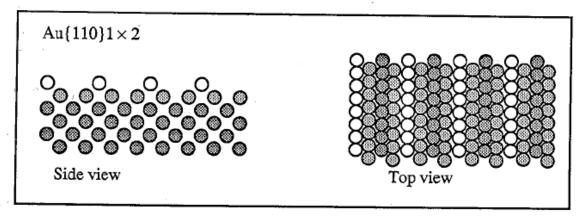
(a) RECONSTRUCTED SI(100) (TOP VIEW)

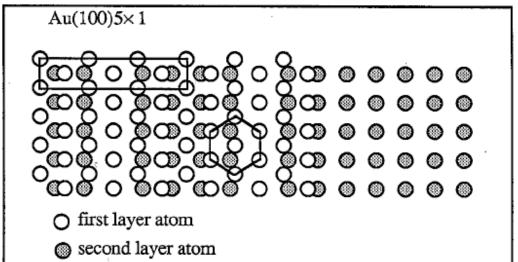




(b) RECONSTRUCTED SI(100) (SIDE VIEW)



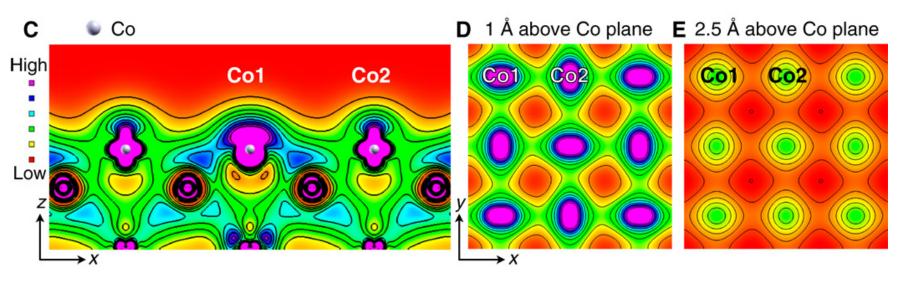
- Uppermost (surface) layer
- 2nd layer
- 3rd layer


## An STM image of the Si(100)-2x1 reconstruction







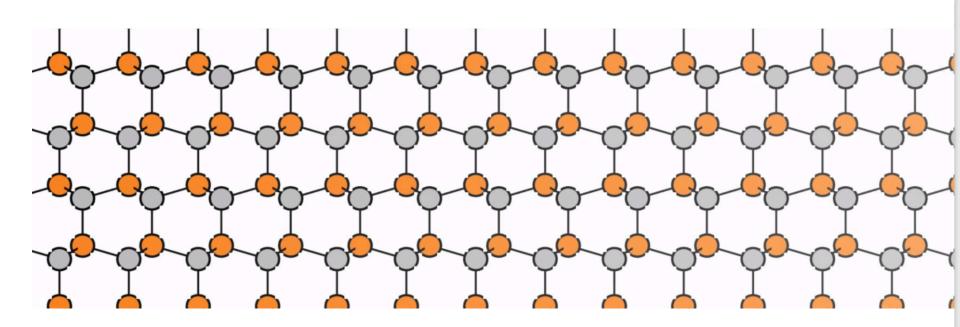


#### Au surface reconstruction





#### Modelling of surface electron density

#### Surface electron density on CeCoIn<sub>5</sub>.



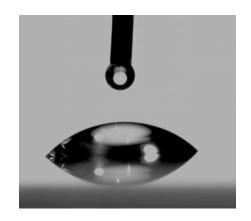

Science Advances 22 Sep 2017: Vol. 3, no. 9, eaao0362 DOI: 10.1126/sciadv.aao0362



#### **Surface energy**

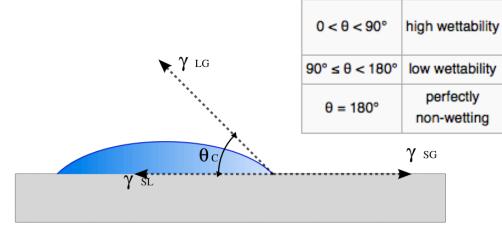
Energy is proportional to the number of bonds broken.




#### Surface energy - milled index

$$\gamma_{\{100\}} = \frac{4\varepsilon}{a^2} = 4.0 \frac{\varepsilon}{a^2}$$

$$\gamma_{\{110\}} = \frac{5}{2^{0.5}} \frac{\varepsilon}{a^2} = 3.54 \frac{\varepsilon}{a^2}$$


$$\gamma_{\{111\}} = 2(3)^{0.5} \frac{\varepsilon}{a^2} = 3.46 \frac{\varepsilon}{a^2}$$

#### **Contact angle**



$$\gamma_{SG} = \gamma_{SL} + \gamma_{LG} \cos \theta$$

Young equation
S solid
L liquid
G gas

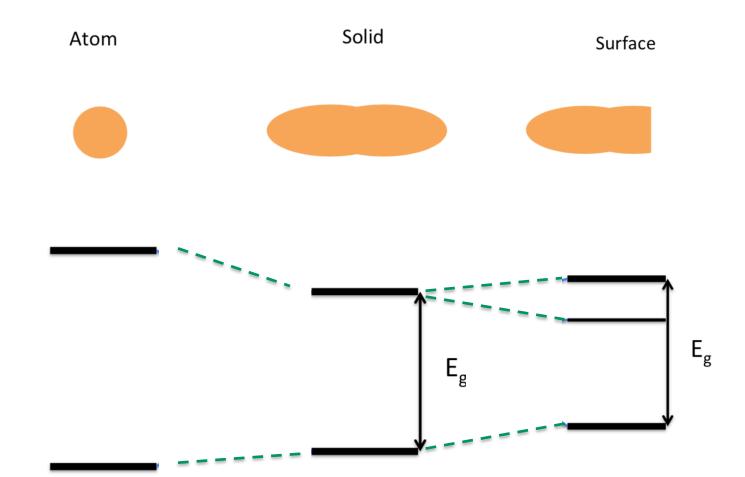


$$S = \gamma_{LG}(\cos\theta - 1)$$

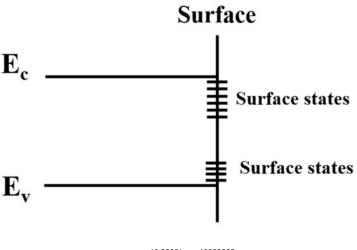
Spreading parameter SComplete wetting when  $S \approx 0$ non-wetting when  $S \approx -2 Y_{LG}$ 



Degree of


wetting

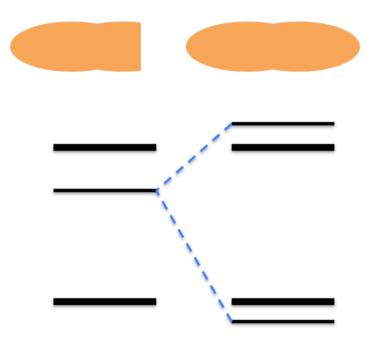
Perfect wetting

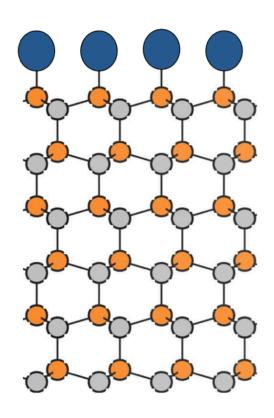

Contact angle

 $\theta = 0$ 

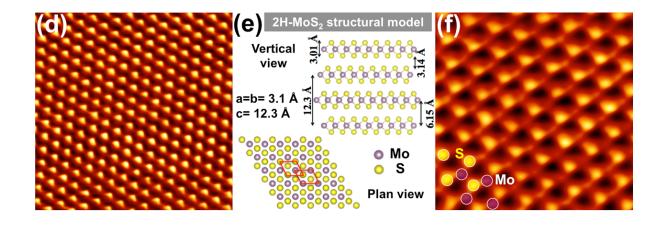
#### **Surface Electronic States**






10.3390/nano10020362

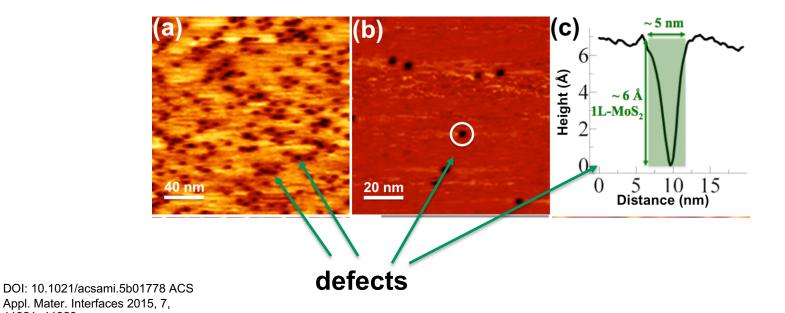

#### **Surface passivation**

Chemical passivation





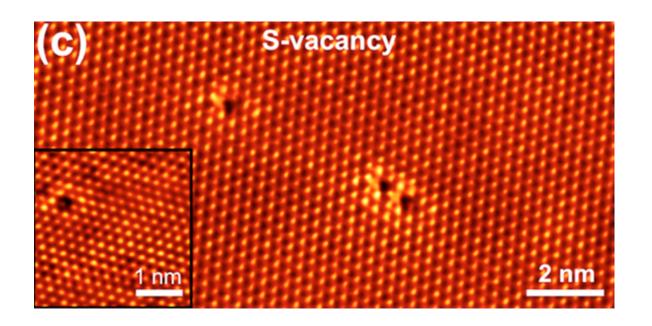
#### Clean surface (0001) of MoS<sub>2</sub>




DOI: 10.1021/acsami.5b01778 ACS Appl. Mater. Interfaces 2015, 7, 11921–11929



Figure 1. Topography of the "as-exfoliated" MoS<sub>2</sub> crystal from both sources. (a) Large STM image ( $V_{\rm bias}$  = +1.5 V,  $I_{\rm t}$  = 0.3 nA) exhibits dark defects with high defect density. (b) STM image ( $V_{\rm bias}$  = -300 mV,  $I_{\rm t}$  = 0.5 nA) recorded on low defect density area. (c) Line profile taken across the dark defect outlined in panel b; the green box shows an example of the defect dimensions (5 nm × 0.6 nm). (d) High resolution STM image (5 nm × 5 nm,  $V_{\rm bias}$  = +150 mV,  $I_{\rm t}$  = 0.2 nA,  $R_{\rm gap}$  = 750 MΩ) shows a hexagonal pattern in defect-free area. (e) Schematic representation of the 2H-MoS<sub>2</sub> bulk structure. The 2H-MX<sub>2</sub> polytype possess trigonal prismatic coordination that has two X-M-X layers per unit cell. (f) Well-resolved STM image (2.5 nm × 2.5 nm,  $V_{\rm bias}$ =+100 mV,  $I_{\rm t}$  = 2.3 nA,  $R_{\rm gap}$ = 43.5 MΩ) showing both S- and Mo-layer structure presented by the bright and moderate contrast, respectively.


#### Clean surface (0001) of MoS<sub>2</sub>with defects





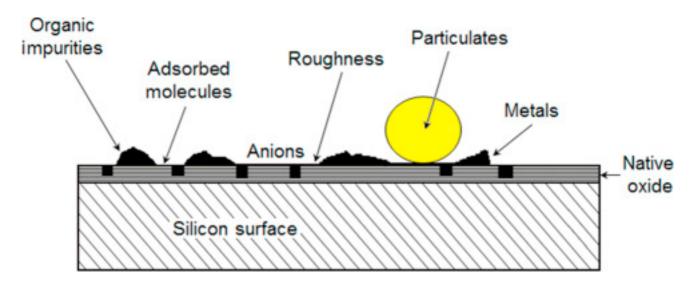
11921-11929

#### Clean surface (0001) of MoS<sub>2</sub> with defects





## Clean surface (0001) of MoS<sub>2</sub> with its impurities


Table 1. Comparison of ICPMS Data Collected on Both MoS<sub>2</sub> Sources<sup>a</sup>

|                                                                | abundance (ppb) |      |      |      |      |      |      |      |      |      |      |
|----------------------------------------------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|
|                                                                | Al              | Ca   | Cu   | Fe   | Mg   | Mn   | P    | Na   | Ti   | W    | Zn   |
| a-MoS <sub>2</sub>                                             | 52.6            | 5.7  | 21.3 | 44.3 | 2.32 | 2.31 | 10.5 | 18.7 | 1.4  | 6.68 | 7.8  |
| $c-MoS_2$                                                      | 9.6             | <1.0 | <1.0 | 37.4 | <1.0 | <1.0 | 5.0  | 2.82 | 2.17 | 1.84 | <1.0 |
| <sup>a</sup> The abundance unit is parts-by-billion by weight. |                 |      |      |      |      |      |      |      |      |      |      |

#### **Inductively Coupled Plasma Mass Spectrometer**



#### **Surface contamination**



#### 5 major contaminant classes (in CMOS processes)

- Particles
- Metallic ions
- Chemicals



- Bacteria
- Airborne molecular contaminats

#### Optical properties of real thin films

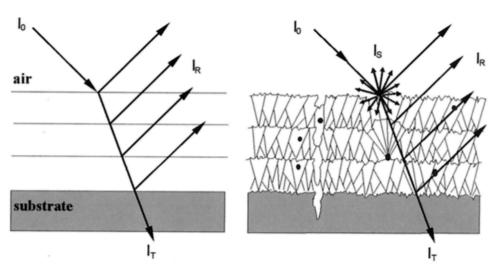
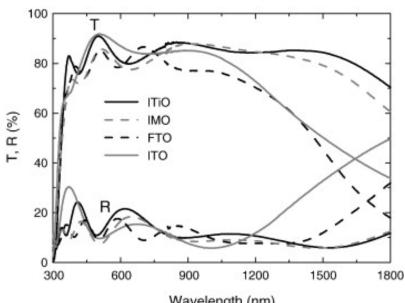



Fig. 1. Left, ideal single-crystalline substrate coated with ideal single-crystalline films. Incoming light with intensity  $I_0$  is split into reflected and transmitted parts  $I_R$  and  $I_T$ , respectively. Conservation of energy is given by  $I_0 = I_R + I_T$ . Right, real substrate with real coatings. Part of incoming intensity  $I_0$  is absorbed  $(I_A)$  or scattered  $(I_S)$ . Conservation of energy is given by  $I_0 = I_R + I_T + I_A + I_S$ .


1 June 2002 / Vol. 41, No. 16 / APPLIED OPTICS

#### Transparent – semi transparent

- Photovoltage
- Controlled emission
- Decoration



#### TCO (transparent conductive oxides ) films



Resistivity ~10<sup>-4</sup>  $\Omega$ cm or less

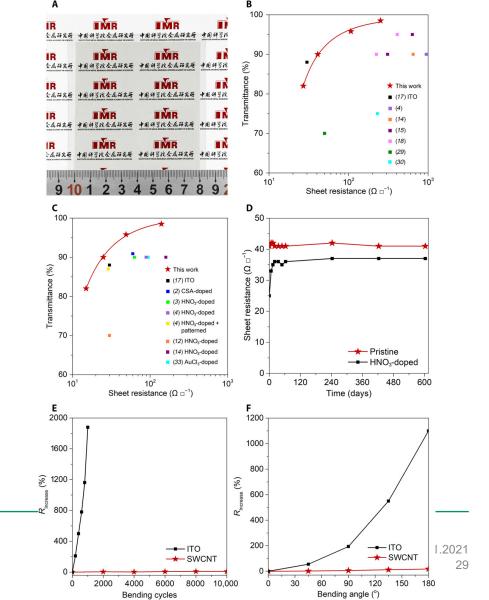
## ITO Indium Sn oxide IMO Indium Mo oxide ITiO Indium Ti oxide FTO Tin oxide + fluorine

**Table 1.** TCO Compounds and dopants.

| TCO                | Dopant                                  |
|--------------------|-----------------------------------------|
| SnO <sub>2</sub>   | Sb, F, As, Nb, Ta                       |
| ZnO <sup>2</sup>   | Al, Ga, B, In, Y, Sc, F, V, Si, Ge, Ti, |
|                    | Zr, Hf, Mg, As, H                       |
| $ln_2O_3$          | Sn, Mo, Ta, W, Zr, F, Ge, Nb, Hf, Mg    |
| CdO                | In, Sn                                  |
| GalnO <sub>3</sub> | Sn, Ge                                  |
| $CdSb_2O_3$        | Υ                                       |

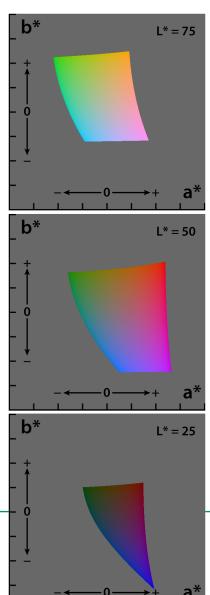
Charge carries due to oxygen vacancies and dopand impurities <a href="https://doi.org/10">https://doi.org/10</a>

https://doi.org/10.1016/j.tsf.2009.09.044


https://doi.org/10.1515/rams-2018-0006



## Transparent conductive layer








#### Color map L\* a\* b\*

The CIELAB color space (International Commission on Illumination - CIE in 1976)





## Arc deposited Ti-Mg-N Effect of composition

**Table 6**  $L^*a^*b^*$  color coordinates, and conductivity of (Ti,Mg)N coating as a function of Mg/Ti composition<sup>a</sup>

| I <sub>Mg</sub><br>(A) | Mg/Ti        | A      |      | Color coordinate values | S    | ρ<br>(μΩcm) |
|------------------------|--------------|--------|------|-------------------------|------|-------------|
|                        | Atomic ratio | (nm)   | L*   | a*                      | b*   |             |
| 0                      | 0            | 0.4306 | 78.6 | 1.0                     | 35.2 | 98          |
| 0.1                    | 0.03         | 0.4294 | 78.4 | 0.0                     | 23.3 | 106         |
| 0.3                    | 0.09         | 0.4301 | 75.0 | 2.6                     | 26.3 | 110         |
| 0.2                    | 0.22         | 0.4314 | 65.5 | 11.8                    | 25.9 | 175         |
| 0.6                    | 0.24         | 0.4320 | 64.7 | 12.3                    | 25.5 | 183         |
| 0.5                    | 0.41         | 0.4327 | 55.7 | 11.3                    | 3.9  | 338         |
| 0.7                    | 0.48         | 0.4331 | 55.4 | 7.5                     | 0.4  | 406         |
| 0.7                    | 0.53         | 0.4337 | 56.7 | 1.8                     | -1.5 | 457         |

<sup>&</sup>lt;sup>a</sup> Martin, P.; Bendavid, A. Review of the Filtered Vacuum Arc Process and Materials Deposition. Thin Solid Films 2001, 394 (1), 1–14.

Mg/Ti ratio  $0 \rightarrow 0.53$ 

- colors golden → copper → violet → metallic gray
- conductivity 98  $\rightarrow$  457  $\mu\Omega cm$



#### **Bulk Plasmons**

Free electron gas with an applied oscillatory electric field

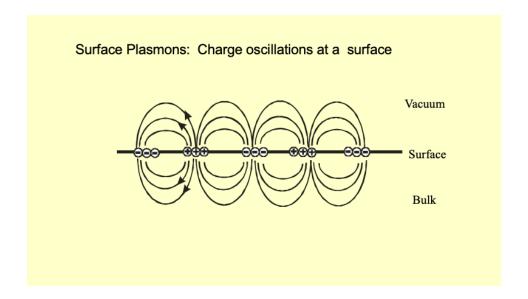
$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_0 e^{i\omega t}$$

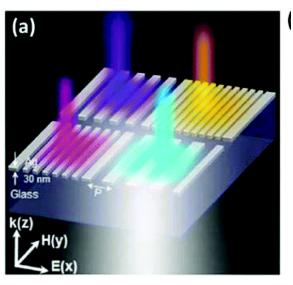
Equation of motion

$$m\ddot{x} = -e\mathbf{E}_0 e^{i\omega x}$$

Solution:

$$x = x_0 e^{i\omega t}$$


$$x_0 = \frac{eE_0}{m\omega^2}$$


$$\omega_p^2 = \frac{ne^2}{\varepsilon_0 m}$$
  $\omega_p \sim 10^{15} \text{Hz}$ 

For a longitudinal electromagnetic wave to exist  $\varepsilon_r(0,\omega) = 0 \longrightarrow \omega = \omega_p$ 

Introduction to Surface Physic, N. Tabet

#### Surface plasmos





https://doi.org/10.1039/C5NR00578G

$$\omega_{sp} = \frac{\omega_p}{\sqrt{2}}$$

Introduction to Surface Physic, N. Tabet