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Vacuum system

VACUUM
GAUGE , PUMP
2222 (22777777 777777777
d W e ° 2
% ° [/
g o 9‘
) RESUDUAL 22~ ;
g GAS o ¢ p—
1 ° 7
é o ° o %
/ 7
7777277777777 27 T2 2L
VACUUM FLANCE -

;. CHAMBER

15.1.2021
4



ldea gas collision

y-axis _~molecules of ideal gas
0,000
/02,00 O
- ' @yle elastic collisions
0% o o lo o 7 with walls
%O j '\5:" /*’
Q r:“o o ._01 7C O"af‘,:._ &
vQ Tl @7 o~ ,
o N, ) X-axis
0 0 o0
. L
z-axis ) )
all molecules are in random motion
Video
Aalt i it
A Szhgolf';'fvgfén!ical https://simplexitysolutions.blogspot.com/2015/ 15.1.2021
B Engineering 09/interpretation-of-pressure-on-kinetic.html o

5


https://en.wikipedia.org/wiki/Kinetic_theory_of_gases
https://simplexitysolutions.blogspot.com/2015/

Vacuum — low pressure

Assume 1deal gas: PV =nRT =NkT

P(atm), V(liter), n(moles), R(L-atm/mole-K), T(K)
P(Pa), V(m?), N(molecules), k(J/molecule-K), T(K)
1 atm = 1,013 mbar = 1.013 x 10° Pa = 760 torr

The ‘Mean Free Path’ (1) 1s given by:
MP) = kT/[Prnd?] where all quantities are in mks units
Ac(p) = 100kT/[0.133 prd?] : p in millitorr and Ac in cm
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Pump-down Pressure vs Time
Typical Unbaked Stainless Steel Chamber
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Viscose flow

Viscous flow: A << D

Water in a pipe. The intermolecular

interactions are much more important than the
interactions with the container.

P> 50 milliTorr =7 Pa = 5x10-2 Torr
Viscous Flow
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Knudsen flow

Viscous flow: A= D

Intermediate state. About as many
intermolecular collisions as collisons with the

wall
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Ballistic flow

Viscous flow: A > D

Bullets bouncing off walls. Negligible
intermolecular interactions. Primary
interactions are with the container

P < 0.5 milliTorr = 0.07 Pa = 5x104 Torr

. ballistic atom
motion
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Impingement Rate

* The number of molecules per second striking a

unit area 1s given by:

S__ NP
27MRT

where J_ is molecules/cm?-s
Since there are roughly 10> atoms/cm? on a typical metal
surface, J /101° is the frequency with which the entire
surface experiences collisions from the gas phase. 10'°/],
1s the time required for one complete surface encounter.

_ NP0
27MRT

J

C

P (torr) 10"/Jc(P) 10%/Jc(P)
seconds hours
107 (1 millitorr) 2x107
10”° 0.3
10”7 26. 0.007
107 2,600 0.73
10 26,000 7.3
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Adsorption of atoms on surface
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J. Vac. Sci. Technol. A 21,5..., SepOOct 2003

FiG. 1. Schematic diagram illustrating fundamental growth processes con-
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Nucleation

Re-Eviporation from Cluster
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Surface diffusion

extremely important for thin film formation

« allows adsorbed species to form clusters (homogeneous nucleation)

« allows adsorbed species to find heterogeneous nucleation sites (steps etc.)
» adsorbed atoms move in potential energy "landscape”

generated by substrate or thin film surface atoms: diffusion, hopping

. E = 40meV Smith 5.4
— fe——— E. = 20meV transition
E, = 100meV i »

o Eq
/‘1 \ (100kJ/mol = 100meV)

physisorption chemisorption

Wake Forest University NAN 242 Thin Film Fabrication 2010
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Surface diffusion

Es < E4, E.: only partial breaking of bonds

Molecular hopping rate: & =v,, ~exp[— %) (influence of substrate temperature, Ty)

(vos=10"3...10"8 Hz: attempt frequency)

Diffusion: random walk, not directed.

Equal hopping probabilities for forward and backward motion

Diffusion length, A:A=r-\/N, ~a- /N, =a- [k, -t

(r: rms change in distance per hopping event, N,: number of hops, a: lattice constant,

t: diffusion time)
vy, =108
E_=20meV
E_=200meV
T =1000K
t=1s

a=0.3nm

A =300um (physisorbed)
A =5nm (chemisorbed)

Strong influence of bonding conditions!
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Nucleation — minimizing surface energy

b
M

AW=2 yAA=2 y{x D
soap film Ix F_ AW _ 2y Force acts tangentially

b DAxd

Tends to decrease surface area

Fundamental to thin film growth:

Surface energy can be minimized by surface diffusion
Chemical composition

crystallographic orientation » Y:4—mn
atomic reconstruction
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Nucleation of a growing film

A
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Thermodynamic Aspects of Nucleation 379

DEPOSITION DESORPTION

Figure 7-11 Schematic of basic atomistic nucleation processes on substrate surface during
vapor deposition.

— 3 2., 2., 2.,
AG = ayr°AGy + ary, + a,r<y,, — a,r

i Sv*

M. Ohring, Materials Science of thin films, 2002
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Density of nuclei

10'4
10'4
10'%

10

10

NUCLEUS DENSITY N(t) (cm 9

TIME

Figure 7-16 Schematic dependence of N(t) with time and substrate temperature. T, >
T, > Ty, > T,. (From Ref. 19.)
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Coalescence - ripening
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Figure 7-17 Coalescence of islands due to (a) Ostwald ripening, (b) sintering, (c) cluster
migration.
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Thin films characterization

 Why vacuum for cahracterization of thins film
and surfaces?

* Only in high vacuum surfaces are clean

« Many characterization methods are scatter
physics:

— Particle in or particle out ( high mean free path A needed)
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ay Photo-electron Spectroscopy* e~

Electron Spectrum

. . 10000
Aluminu X-rays | Cu XPS
X-rays | g 2p3 Survey Spectrum
(Photons) | < of Pure Copper
\ergy=1486 i § (Cu)
3] g Cu
Chemic o8 2P
m k3 Cu Cu Auger
Co po ol 2s electrons Cu cu
3s 3P
\
1400 1150 sdo J sdo y 2do

0.6 mm Binding Energy of Electrons (eV)
v-v
e
- - w
- >~
. 0
e £
Usual Analysis . 4 %
Area and Depth 9
-- Q_
< '9

g 1.5.1.2021
Al Engineeringj wikipedia o5



Auger electron spectroscopy

« Surface composition
Electron -
Beam « Chemical bond
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LEED Low Energy Electron Diffraction

(a) Fluorescent Screen

« Crystalline structure
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Seconday ion mass specroscopy
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conday ion mass specroscopy

Vacuum roughly 10 mbar
lons: Ar*, O,*, Cs* (M 133) 1 — 30
keV
sensitivity 1012 — 106 atoms/cm3
beam focus down to 1 ym
mapping of elements
Depth profiling by sputter etching
seconday ion yield depends on
chemical composition of sample
» reference samples with
known composition
necessary for quantitative
analysis
Sputtering - > mixing of
composition
» depth resolution decreases

when sputtering deeper
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Electron microscopy

HfO, islands

(B)

« Topography
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« Atomic structure
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SEM - EDS Energy Dispersive

Spectroscopy

Schematic of a Energy
Dispersive Spectrometer
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TEM EELS Electron Loss Spectroscopy

Chemical bonding

TEM « Combined with atomic resolutior
Sample Zero
e Beam [F9%S
Low Core
Entrance Loss Loss
Aperture
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lon beam scatter (Rutherford Back

Scattering RBS)
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Grazing angle x-ray spectroscopy
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X-Ray Reflectivity XRR

* Thin Film
» thickness
* density
* roughness
* rougness of interface

Diffused reflections specularly reflected

0 %

4

Refracted wave
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Thickness of film — contact profilometry

Position Sensitive
Photodetector Laser

Sensor
Signal
Magnetic
Force Solenoid

\ Mirrorontop of
Rotation Pivot

Translation Stage

Figure 1 Basic elements of a stylus profilometer.
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Optical non-contact profilometry

Interferogram
camera view

Field stop
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https://www.laserfocusworld.com/test-measurement

"

(

" Beamsplitter
\ Objective

A

Aalto University
School of Chemical
B Engineering

Scan direction

? 7 —Reference
Beamsplitter

15.1.2021

37

Test material



Residual stress of thin films
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