Surfaces and Films

Session 5B: Physical Vapor Deposition PVD

Jari Koskinen

Aalto University

- Plasma
- Different PVD methods
- PVD Systems
- Commercial PVD coatings
- Scale up

Plasma

- Different PVD methods
- PVD Systems
- Commercial PVD coatings
- Scale up

Plasma

- Ion surface interactions
- Film growth mechanisms
- Different PVD methods
- Commercial PVD coatings
- Scale up

PVD Plasma

•Plasma

- Colliding electrons ionise atoms
- lons and electrons accelerate in electric field
- collisions excite atoms
- de-excitation creates photons visible light

http://astro-canada.ca

.

Jari Koskinen, Aalto University 2020

Jari Koskinen, Aalto University 2020

Jari Koskinen, Aalto University 2020

DC Plasma glow discharge and arc

DC Plasma glow discharge and arc

Aalto University School of Chemical Engineering

Glow discharge plasma

Plasma

Different PVD methods

- PVD Systems
- Commercial PVD coatings
- Scale up

Source materials

Coating material from solid target or gas

http://sunnygreater.com/products/sputtering_targets

Jari Koskinen, Aalto University 2020

Energetic ion surface interactions

Jari Koskinen, Aalto University 2020

PVD coating process

•(High) vacuum

- long mean free path of ions
 - high ion energy
- cleaning of surface
 - desorption of gas
 - sputtering of surface
 - removal of
 - oils
 - water
 - oxides

Average mean free path (distance between collission) in nitrogen residual gas

PVD methods

E-Beam Inductive Resistive Random **Cathodic Arc Deposition**

Figure 1. Segmentation of the current physical vapour deposition (PVD) techniques for advanced coatings.

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.339@coatings8f10402ering

Aalto Universitv

School of Chemical

Selected PVD methods Particle energy Growth rate

Published in: Carsten Bundesmann; Horst Neumann; Journal of Applied Physics 124, 231102 (2018) DOI: 10.1063/1.5054046 Copyright © 2018 Author(s)

Jari Koskinen, Aalto University 2020

lon beam sputtering

Magnetron sputtering - evaporation

Figure 2. Schematic drawing of two conventional PVD processes: (a) sputtering and (b) evaporating using ionized Argon (Ar+) gas.

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.339(coalings8/E10402)ering

Aalto University School of Chemical

Magnetron-sputtering

Jari Koskianene Aahtgskhoive Soiten 2020 Inc.

Aalto University School of Chemical Engineering

Figure 4. Energy consumption in the different steps of the PVD process: Heating, Etching, Coating, and Cooling. Energy consumption in the steps of the CVD process: Heating, Coating, and Cooling.

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.3390.coaurigs8f10402eering

Aalto University School of Chemical

Unballaced magnetron sputtering

Closed field magnetron sputtering

Jari Koskinen, Aalto University 2020

RF Plasma glow discharge

RF Plasma glow discharge self bias

Jari Koskinen, Aalto University 2020

Self bias at electrodes

Fig. 7. Electron and ion distributions which create sheaths between the neutral plasma and the walls.

III. High power pulsing

- High Power Impulse Magnetron Sputtering HiPIMS
- High Power Pulsed Magnetron Sputtering HPPMS
- Modulated Pulsed Power MPP

What is HiPIMS?

High peak powers (500-2000 W/cm²) Reasonable average powers Low duty factors (0.5 – 5 %)

Plasma densities in the range of 10¹⁹ m⁻³ (Normal magnetron sputtering 10¹⁶ m⁻³)

D.V. Mozgrin, I.K. Fetisov, and G.V. Khodachenko, Plasma Phys. Rep. 21, 400 (1995)

S.P. Bugaev, N.N. Koval, N.S. Sochugov, and A.N. Zakharov, Proceedings of the XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, July 21-26, 1996, Berkeley, CA, USA, vol., p.1074

V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, Surf. Coat. Technol. **122**, 290 (1999)

Typical HiPIMS pulses

D. Lundin, N. Brenning, D. Jädernäs, P. Larsson, E. Wallin, M. Lattemann, M.A. Raadu and U. Helmersson, Plasma Sources Sci. Technol. 18, 045008 (2009).

The deposition rate in HiPIMS is in general lower compared to DC sputtering at the same average power

U. Helmersson, M. Lattemann, J. Bohlmark, A.P. Ehiasarian, and J.T. Gudmundsson, Thin Solid Films **513**, 1 (2006)

HIPIMS denser films

Fig. 2. SEM micrographs from Ti–Si–C films grown facing the target surface by HIPIMS (a) and dcMS (b), using 20 mTorr Ar, a sputtering gas and a substrate bias of -20 V.

Jari Koskinen, Aalto University 2020

Reactive Sputtering

- Sputtering of an elemental target in the presence of a gas (in addition to the inert gas) that will react with the element to form a compound
 - Examples:
 - Al + O₂ to form Al₂O₃
 - Ti + N₂ to form TiN
- Purposely add the reactive gas
- Outgassing can be a factor

Chapter 1 - 11

RSI

Aalto University School of Chemical Engineering

Metal vs. Poisoned Mode

- Metal mode
 - Sputtering metal
 - Reactive gas partial pressure low
- Poisoned mode
 - Target covered with compound
 - Reactive gas partial pressure high
- Target can be partially reacted
 - Takes partial pressure control

The Practice of Reactive Sputter Deposition

Chapter 1 - 32

Jari Koskinen, Aalto University 2020

RSI

Jari Koskinen, Aalto University 2020

.....

Aalto University School of Chemical Engineering

Reactive Deposition Examples							
Targe	t H ₂	N_2	O_2	H_2S	AsH ₃	Ga(CH	H ₃)
Al	—	AIN	Al ₂ O ₃				
Ti	TiH	TiN	TiO ₂				
Ta	TaH	Ta ₂ N, TaN	Ta_2O_5				
Cu		_	CuO	Cu ₂ S			
В		BN					
C		CN				-	
Si	Si:H	Si ₃ N ₄	SiO ₂				
In _{.9} Sn	.1		ITO				
Zn			ZnO				
Sb				×		GaSb	
LiNbO	D ₃		LiNbO ₃	3			
GaAs	~	-		-	GaAs		
ZnO	ZnO ₁	-x	ZnO				
RSI		The Practice of F	Reactive Sputter D	Deposition			Chapter 1 - 48

Jari Koskinen, Aalto University 2020

.....

Aalto University School of Chemical Engineering

DC Plasma glow discharge and arc

Arc discharge deposition

Jari Koskinen, Aalto University 2020

Arc disharge - cathode spot

www.shm-cz.cz/files/schema01.jpg

Jari Koskinen, Aalto University 2020

Arc discharge process

- arc current concentrated into filaments arcs
- intense electron emission
- intense ion emission due to electron current (atoms/electrons 1/100)
- ionization of atoms formation of plasma
- •flow of ions to cathode intense sputtering of atoms
- 10⁶ 10⁸ A/m²
- overlapping thermal spikes
- materials is melted and sublimated in cathode spots
- cathode spots move randomly or could be steered by using magnets
- electons ionize vapor and create more electrons increase of current
- ions accelerate
 - due to potential difference in plasma
 - due to multiple collisions with fast electrons
- macro particles (up to 10 µm diam.l are formed

Timko, Nordlund simulations http://prb.aps.org/supple mental/PRB/v81/i18/e1841 09

Filtered arc

Figure 1. Scheme of the DCF2 device. (1) cathode; (2) anode; (3) trigger; (4) quarter torus magnetic filter; (5) torus coil; (6) deposition chamber; (7) probe bias source; (8) diagnostic port; (9) filter bias source; (10) insulators; (11) collecting probe; (12) vacuum pumping systems; (13) arc source.

Jari Koskinen, Aalto University 2020

Pulsed laser deposition PLD

E_i as a function of laser pulse energy

- Plasma
- Different PVD methods

PVD Systems

- Commercial PVD coatings
- Scale up

Figure 3. The processing flow for a classic PVD sputtering process.

Sivu 56 Jari Koskinen, Aalto University 2020

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.339@coatings8f10402ering

Aalto University

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.3390/coatings8110402eering

Vacuum system setup - unballaced magnetron

Andresa Baptista et al., Coatings 2018, 8(11), 402; https://doi.org/10.339@coatings8f10402pering

Aalto University

- Plasma
- Different PVD methods
- PVD Systems
- Commercial PVD coatings
- Scale up

Barlzers coatings

http://www.oerlikon.com/balzers/com/en/coating-guideoverview/

Hauzer Techno Coating

http://www.hauzertechnocoating.com/en/

Platit <u>coatings</u> Coating <u>guide</u>

- Plasma
- Different PVD methods
- PVD Systems
- Commercial PVD coatings
- Scale up

Large volumes, up scaling Hear reflecting, self cleaning, photo voltaic

/www. www.vonardenne.biz/

