

Adito University

Multilayers and interfaces

sami.franssila@aalto.fi

Why multilayers ?

More functionality and performance

Single layer ARC vs. $\lambda/4$ filter Grain size and orientation are affected by underlayer

More reliability

If aluminum broken because of electromigration, but TiN conducts still Adhesion layers & barriers SiO_x/SiN_x passivation: films complement each other

More process robustness

Etch stop layer, no timed etching needed TiN on AI reduces reflectivity and eases lithography

Why not multilayers ?

More complex deposition equipment needed e.g. Multiple targets, multiple chambers

Deposition thruput compromised esp. if thickness or nature of films very different

Each new interface is a potential problem

This lecture deals with phenomena during processing

Magnetic multilayers

Multiple junction solar cell

Si:Ge ratio modifies bandgap

Poortmans: Thin Film Solar Cells, p. 214

Substrate surface

Adsorbed water

Carbon & other impurities

Particles

Roughness

Crystal structure

Crystalline defects

Dangling bonds

Surface reactions

Native oxide formation e.g. Si, Ti, Cu, Cr

But CrO is conductive, others insulators.

Nitridation: difficult, needs either -ammonia exposure -high temperature TiN formation is an exception

Ambient gases into film

substrate

thin film

Oxygen: stoichiometry finetuning: Ta₂O₅

Water: -into pores -into PSG (hygroscopic film)

Nitrogen: Grain boundary stuffing, TiW:N, W:N

Hydrogen (N₂:H₂ in practice) Dangling bond passivation

PSG

CVD oxides have unfortunately many names:

USG = undoped silica glass (=CVD SiOx, $x \approx 2$)

PSG = phosphorous doped silica glass (=CVD oxide, which had P2O5 flow during deposition \rightarrow phosphorous incorporated into film)

PSG typical: 5 wt% phosphorous excellent gettering agent for Na+ ions hygroscopic if too much P

Note: in metals and oxides: 1-5% dopant/alloying element in semiconducotrs parts per million (10⁻⁶) dopant

Interfaces

Stability of interface in subsequent processing and during use ?

Barrier layers: extra films to stabilize interfaces

Al-Si phase diagram

A little silicon is soluble in aluminum at 400°C, ca. 0.3 at%

➔ Al to Si interface is unstable at 400°C

Junction pitting

Silicon dissolves into aluminum

Aluminum diffuses into silicon via the vacancies left by removed silicon

If aluminum diffusion deep, it will extend to pn-junction

➔ No pn-junction anymore

Ohring

Interface stability: ΔG

Change in Gibbs free energy is given by:

$$\Delta G = G_{products} - G_{reactants}$$

ΔG positive = stable pair; ΔG negative = films react

For reaction titanium reaction with silicon dioxide:

 $Ti + SiO_2 \rightarrow TiO_2 + Si$

 $\Delta G = G_{TiO2} - G_{SiO2} = (160 - 165)$ Kcal = -5 Kcal, indicative that the reaction can take place.

For Co + SiO₂ \rightarrow CoSi₂ + Si Δ G> 0, no reaction.

Reaction Co+Si Co + Si \rightarrow CoSi CoSi + Si \rightarrow CoSi₂ at higher temperature

At high enough temperature the native oxide breaks down, and Co+Si reaction can take place.

Murarka

Nickel silicide formation

It is not always the case that the silicide that will form is the technologically interesting one !

NiSi is the desired low resistivity material;

NiSi₂ is the stable phase that tends to form.

From substrate into film

Steel substrates are a source of metals

Glass substrates are sources of sodium

Polymer substrates are permeable to water vapor and oxygen

➔ Need barrier(s)

thin film	
Damer	
substrate	

Barriers

Barrier can simultaneously act as smoothing layer. This is important if e.g. stainless steel is used. Spin-on glasses ! Atom barrier: blocks atom movements.

Ion barrier: blocks ions.

Total barrier: no atoms, no electrons pass thru.

Examples of **barriers**

Diffusion barrier: <Si>/TiW/AI in IC metallization

Improved diffusion barrier, stuffing: <Si>/TiW:N/AI

Dielectric barrier: SiO₂/SiN_x/Cu

Ion barrier: glass/Al₂O₃/ZnS in electroluminescent displays

Pb-Sn will react with aluminum, therefore a barrier (Cr/Cu/Au) is needed. The alternative strategy of lower temperature does not work because solder has to flow.

Ohring

Stability of metallization

Ti barrier

Ti/TiN barrier

J. You et al. | Solar Energy Materials & Solar Cells 79 (2003) 339-345

Alloying effect

Zirconium at grain boundaries acts as an extra barrier, preventing formation of high resistivity Cu_3Si

Copper for IC metallization

Inert annealing changes in film

Crystallization

Grain growth

Bond formation: e.g. Si-N bonds formed in PECVD nitride

Annealing: bond formation

Journal of The Electrochemical Society, 146 (3) 1181-1185 (1999)

Film poisoning during 2nd deposition

If film 1 is porous or incompletely reacted, it can release atoms and poison film 2.

e.g. film 1 is spin-on-glass, and oxygen or water vapor from it penetrate into aluminum, leading to increased resistivity (and in extreme case, Al_2O_3 formation).

Film-to-film modification

During annealing atoms from one film move to the other.

e.g. Film-2 is phosporous-doped oxide, and film-1 is polysilicon, then polysilicon will be doped n-type by phosphorous.

e.g. Film-2 is PECVD nitride, film-1 is a-Si or poly, then during annealing hydrogen from nitride will passivate dangling bonds in silicon.

Substrate oxidation

Annealing: chemical reactions

Surface reaction:

Titanium nitride formation

Solution: anneal in argon

Interface reaction:

Titanium silicide formation

Si + 2 Ti **→** TiSi₂

Annealing: chemical reactions

Cu + Si → CuSi_x

CuSi_x is a high resistivity material

Annealing atmosphere: Even tiny oxygen contamination will lead to copper surface oxidation.

Precipitates

10 nm Ti/500 nm Al, Annealed 550°C, 1 h in N₂ Pure Al yield strength 95 MPa Al-1%Ti yield strength 175 MPa

Al₃Ti precipitates formed during 550°C anneal.

 AI_3 Ti has an elastic modulus of 210 GPa, is much stiffer than pure AI (60 GPa).

Stiff precipitates block dislocation movement through a soft matrix and thereby increase the yield strength.

One can improve the strength of an Al membrane while only slightly diminishing its conductivity.

Arrows indicate Al₃Ti precipitates

Volume changes

 $xM + ySi \rightarrow M_xSi_y$,

the volume change riangle V(%) is given by

$$\Delta \mathbf{V} = \frac{(\mathbf{x}\mathbf{V}_M + \mathbf{y}\mathbf{V}_{Si}) - \mathbf{V}(\mathbf{M}_x\mathbf{S}\mathbf{i}_y)}{(\mathbf{x}\mathbf{V}_M + \mathbf{y}\mathbf{V}_{Si})} \times 100,$$

In silicide formation, negative volume change \rightarrow tensile stress In thermal oxidation, positive volume change \rightarrow compressive stress

Annealing multilayers

Top surface reaction -e.g. oxidation

Film-film reaction -e.g. Ti + 3Al \rightarrow TiAl₃

Film-substrate reaction -e.g. Ti + 2Si → TiSi₂

Texture inheritance

thin film 2	
thin film 1	
substrate	

Film 2 will register the crystal structure of film 1.

Choosing film 1 to be either amorphous (like SiO_2) or polycrystalline (like TiW), will result in different film2 texture and properties.

Molybdenum as film2:

Mo thickness Film 1 Film 2 resistivity

Texture inheritance (2)

Protective coating, DLC, 5 nm

CoCrPt:SiO₂ recording layer 15 nm nmnm

Ta/Ru intermediate layer, 8/60 nm

NiFe soft magnetic underlayer, 80 nm

Ti (or Ta) adhesion layer, 10 nm

Disk substrate (glass or Al-Mg)

Ta/Ru film will induce suitable crystallinity in the magnetic data storage layer CoCrPt:SiO₂

Terminology: $CoCrPt:SiO_2$ means that CoCrPt films contains small SiO₂ crystals.

Symmetric 3-layer

Acoustic $\lambda/4$ multilayers

Stress evolution

Much more extensive relaxation takes place in the AI thin films than in bulk.

Thin film grain size, typically ~1 μ m vs. ~ 100 μ m for bulk, would enable much more extensive grain boundary sliding and hence greater stress relaxation.

Hoo-Jeong Lee,a) Guido Cornella, and John C. Bravman: Appl. Phys. Lett., Vol. 76, p. 3415

King Tu, p. 131

King Tu, p. 133

Hillock generation

Compressive stress is relieved by hillock growth.

If surface is free (as in high vacuum), the surface acts as a sink for vacancies and extra atoms are uniformly distributed over the surface.

Oxide covered surface breaks randomly and hillocks are formed.

Hillocks are same size as microlithographic structures and film thicknesses.

➔ Hillocks can short two neighboring lines or two films.

Grain growth

Grain boundaries important because they: -act as nucleation sites for growth of new phases -act as sites of enhanced reaction rates -act as fast diffusion paths -act as precipitation sites King Tu, p. 193

Grain boundary vs. bulk diffusion

Grain boundaries and dislocations are paths of rapid diffusion (below $0.65 T_m$).

Impurities and dopants are easily trapped and precipitated at defects and grain boundaries \rightarrow fast diffusion paths blocked \rightarrow improved resistance against processes that rely on them.

Stress voiding

In order to relieve stress, vacancies diffuse.

Grain boundary diffusion vs. bulk diffusion

Murarka p. 84

Bamboo structure

3-grain boundaries, active processes during anneal

No 3-grain boundaries → fewer processes at GBs

Murarka p. 99

Electromigration

Electron collisions move atoms. Voids formed. Happens when current density is high.

Mean time to failure (MTF) due to electromigration

 $MTF = AJ^{-n}e^{\frac{E_a}{kT}}$

where A is a constant dependent on wire geometry and metal microstructure, J is the current density and E_a the activation energy. The factor n is not known very accurately, but n=1.7 is used for aluminum. For aluminum thin films E_a is of the order of 0.5-0.8 eV, whereas for bulk aluminum it is 1.4-1.5 eV. As a general trend the higher the activation energy, the better the electromigration resistance

Alloying to prevent EM

Mean time to failure of 2.5 μ m wide lines

- pure Al,
- AI (0.5 wt % Cu)
- AI (2 wt% Cu) at different temperatures with 1 MA/cm² current density

Hu, C.-K. et al: Electromigration of Al(Cu) two-level structures: effect of Cu kinetics of damage formation, J.Appl.Phys. 74 (1993), p. 969

Incubation time

Incubation time before resistance increase sets in (measured at 255°C)

Hu, C.-K. et al: Electromigration and stress-induced voiding in fine Al- and Al-alloy thin- film lines, IBM J.Res.Dev. 39 (1995), p. 465

Dielectric mirrors, enhanced metal mirrors

 $SH(LH)^n =$ substrate, high refractive index film, low+high film stack of n-layer pairs Film H $n_H t_H = \lambda/4$ condition for thicknesses Film H $R_{o} = \left\{ \frac{1 - \left(\frac{n_{H}}{n_{L}}\right)^{2n} \left(\frac{n_{H}^{2}}{n_{s}}\right)}{1 + \left(\frac{n_{H}}{n_{L}}\right)^{2n} \left(\frac{n_{H}^{2}}{n_{H}}\right)} \right\}^{2}$ Substrate Martin p. 303

Enhanced aluminum mirror

SM(LH)² design

Glass/Aluminum/SiO₂/Ta₂O₅/SiO₂/Ta₂O₅

510 nm centre wavelength

Martin p. 301