Epitaxy, superlattices, nanolaminates

Epitaxy: single crystalline film on single crystalline substrate

Aluminum on spinel

CdTe on GaAs.

Stacking faults are arranged at regular intervals at the interface and epilayer is perfect

Homoepitaxy: crystalline film A on top a crystalline wafer A

Single crystal wafer

Epitaxial layer of the same material deposited on top

Why indeed ?

Epilayer doping concentration different from starting wafer.

Epilayer dopant type different from substrate (n/p -type)

No radial doping profile (as in CZ-crystal pulling)

No vertical doping variation (as along CZ-crystal)

No oxygen (10-15 ppma in CZ-silicon)

No carbon (which comes from SiC and C in CZ)

Epi requirements

Clean surface

Matching lattices

Small enough CTE difference

Polycrystalline vs. epitaxial

Crystallites easily seen

Perfectly crystalline film with no grains visible

Yamazaki et al: J. Electrochem. Soc., Vol. 139, No. 4, April 1992

Epitaxy failure

Lattices do not match

Lattice constant difference

Interfacial contamination

May work if lattice constants integer multiples !

Lattice mismatch

In homoepitaxy film and substrate lattices are almost identical (because dopants change lattice constants slightly)

In heteroepitaxy lattice mismatch has to be small enough:

 $\eta = (a_f - a_s)/a_s$ where a is lattice constant

Higher the mismatch $\,\eta$, the larger the film-substrate potential W must be

Strained & relaxed

Strained epi-layer

MATCHED

Strained & relaxed (2)

Relaxed, with defects confined to interface (but it does not always work that way)

Strained, but with limited epi layer thickness

CVD epitaxy of silicon

 $\begin{aligned} \text{SiH}_4 (g) &==> \text{Si} (s) + 2 \text{ H}_2 (g) & \text{T} = 1100^{\circ}\text{C} \\ \text{SiH}_2\text{Cl}_2 (g) &==> \text{Si} (s) + 2 \text{ HCl} (g) & \text{T} = 1150^{\circ}\text{C} \\ \text{SiCl}_4 (g) + 2 \text{ H}_2 (g) &<==> \text{Si} (s) + 4 \text{ HCl} (g) & \text{T} = 1200^{\circ}\text{C} \end{aligned}$

Rate

Miscut & off-orientation

Miscut relative to wafer surface

Off-orientation relative to wafer flat.

FIG. 7. Schematic representation of a surface with a miscut. For miscut angle θ and step height d, step width is $a = d/\theta$.

Penanen et al: Phys Rev B DOI: 10.1103/PhysRevB.62.9621

Orthogonal Misorientation

https://www.virginiasemi.com/?cont_uid=49

CVD epitaxy

Major factors affecting film structure

- Deposition rate
 Vacuum level
 Substrate temperature
- 4. Surface structure and chemistry

Ex-situ wet cleaning before depo

1st step: NH₄OH boiling and HNO₃ boiling Boil in a solution of NH₄OH:H₂O₂:H₂O (1:1.4:4) at 90°C for

10 min to etch Si surface and remove particle contamination.

Rinse in overflowing deionized water for 10 min.

Boil in HNO₃ at 130°C for 10 min to remove heavy metal contamination.

Rinse in overflowing deionized water for 10 min.

2nd step: HF dipping

Dip in 3% HF solution for 30 s to remove the native oxide Rinse in overflowing deionized water for 10 min.

3rd step: HCl boiling

Boil in a solution of HCl:H₂O₂:H₂O (1:1:4) at 90°C for 10 min to make a thin native oxide.

Rinse in overflowing deionized water for 10 min. Dry with hot nitrogen.

Substrate: 100 mm diam, p-type, (100), 10-20 Ω-cm.

In-situ H₂ cleaning in CVD reactor

In-situ cleaning: SiO₂ (s) + H₂ (g) <==> SiO (g) + H₂O (g)

Deposition: SiH₂Cl₂ (g) \rightarrow Si (s) + 2 HCl (g)

Time

Yamazaki et al: J. Electrochem. Soc., Vol. 139, No. 4, April 1992

In-situ HCI cleaning

HF wet cleaning removes native oxide, by diffusing thru discontinuous organic film.

HCI etches organic material away.

Only then can epitaxial film deposition begin.

Interfacial contamination

Yamazaki et al: J. Electrochem. Soc., Vol. 139, No. 4, April 1992

Growth vs. etching SiH₂Cl₂ (g) $\langle ==>$ Si (s) + 2 HCl (g), SiCl₄ (g) + Si (s) $\langle ==>$ 2 SiCl₂ (g)

High growth rate results in polycrystalline material: the arriving atoms do not have enough time to find energetically favourable positions before the next layer of atoms arrive.

Doping in epitaxy

SiH₄ (g) → Si (s) + 2 H₂ (g) 2PH₃ (g) → 2P (s) + 3H₂ (g) B₂H₆ (g) → 2 B (s) + 3 H₂ (g) Arsenic is a big atom
→ lattice under
compressive stress

Boron is a small atoms → lattice under tensile stress

Too high doping leads to relaxation.

Hig boron concentration → stress & dislocations

1 mΩ-cm resistivity corresponds to 1*10²⁰ cm⁻³

FIGURE 5.11 Misfit dislocation matrix with $10 \,\mu\text{m}$ of $1 \,\text{m}\Omega \,\text{cm}$ B doped Si Epi over a p - substrate [13].

Germanium-compensation

Lattice distortion

Small boron Big arsenic and germanium

Germanium compensates for volume changes and stresses due to small boron atoms.

Why Ge and not As?

Germanium atom distance ?

6*10²⁰ cm⁻³ Ge 5*10²² cm⁻³ Si

Ca. 1% Ge

 $N = \sqrt[3]{100} \sim 4.5$

 ${\sim}5^*5^*5$ silicon atoms for each Ge atom.

Transition width

concentration

Because epitaxy is a high temperature process, diffusion is bound to happen.

If substrate doping higher → dopants will diffuse into epi-layer

But if epilayer is more highly doped, dopants will diffuse into substrate.

Layer thickness and interface abruptness

Thick homoepitaxial silicon layers for IGBT power transistor; Thin heteroepitaxial $Si_{1-x}Ge_x$ layers for high speed bipolar transistors. The hatched layers are graded epi layers with constantly changing germanium content.

Characterization

- •<u>Visual</u> inspection on all wafers.
- •<u>**Resistivity**</u> measurement from a test wafer using either a 4-point probe (n/P and p/N -structures) or CV (p/P and n/N). Destructive methods!
- \cdot <u>Thickness</u> measurement optically with an FTIR from a p/P⁺ or n/N⁺ -structure. Nondestructive!
- •<u>**Transition width**</u> using SRP.
- •Automated inspection for **particles**, **surface defects** of all
- SSP wafers.
- •Other measurements as required.

Selective epitaxy

SEG: Selective Epitaxial Growth

ELO: Epitaxial Lateral Overgrowth

What happens at the seam ?

Epi applications: electronics

P- substrate

b) a) n-epi n-epi 30 Ωcm 0.5-5 Ωcm 50 µm 10-20 µm p++-epi n-epi 0.1 Ωcm 0.0005-0.001 Qcm 1-5 µm 5 µm p+-substrate p-substrate

CMOS:

p-type epi on a Psubstrate.
Produces COP-free surface.
Thickness and resistivity uniformity specifications not critical.

Power devices:

Highly doped substrate reduces resistive losses, but devices need to be made in lightly doped material.

Epi applications: MEMS

Membrane thickness control in MEMS: electrochemical etch stop

P++ etch stop: when boron concentration exceeds 5*10¹⁹ cm⁻³, KOH etching slows down

Heteroepitaxy: crystalline film A on top a crystalline wafer B

074501-2

Hu et al.

FIG. 1. Schematic structure of GaN-based MOS-HEMT with $\mathrm{Al}_2\mathrm{O}_3$ gate dielectric.

Multiple layers of single crystal AlAs and GaAs grown on top of single crystal GaAs wafer

Multilayer hetero-epitaxy

If we can grow A on B, we can grow B on A.

Zhang & Jiao: Energy Bandgap Engineering of Transmission-Mode AIGaAs/GaAs Photocathode 2018 Borschel, C. et al: Structure and defects of epitaxial Si (111) layers on Y_2O_3 (111)/Si(111) support systems, J. Vac. Sci. Technol. B 27 (2009) pp. 305-309

Lattice match requirement

Lattice match difference: = (a _{subs} – a _{film})/a _{subs}

GaAs/AIAs 0.2% → small and easy

Si/Ge, 4.17 % → difficult (but not impossible)

Hetero-epitaxy GaAs/AlAs

 $Al_xGa_{1-x}As$ can be grown in any ratio, since lattice matching.

https://www.nature.co m/articles/s41598-018-20155-0 A.K. Gutakovskii *et al.*, Phys. Stat. Sol. (a) **150** (1995) 127.

Thermal expansion

- Si 2.6 ppm/°C
- Ge 5.9 ppm/°C

- GaAs 6.8 ppm/°C
- AIAs 5.2 ppm/°C
- InP 4.6 ppm/°C

MBE: Molecular Beam Epitaxy

MBE = advanced evaporator

Lynn F. Schneemeyer, in Encyclopedia of Physical Science and Technology (Third Edition), 2003

Effusion cell = Knudsen cell = thermal equilibrium source → stable flux of vapor

GaAs quantum dot (QD) laser

300 nm GaAs:Be (2×10¹⁹ cm⁻³) 50 nm 40 \rightarrow 0% Al_xGa_(1-x)As:Be (1×10¹⁹ cm⁻³) 1.4 μ m Al_{0.4}Ga_{0.6}As:Be cladding (7×10¹⁷ cm⁻³) 20 nm 20 \rightarrow 40% Al_xGa_(1-x)As:Be (4×10¹⁷ cm⁻³) $30 \text{ nm Al}_{0.2}\text{Ga}_{0.8}\text{As:Be SCH} (4 \times 10^{17} \text{ cm}^{-3})$ 50 nm GaAs QW or QD active region 50 nm GaAs 30 nm Al_{0.2}Ga_{0.8}As:Si SCH (2×10¹⁷ cm⁻³) 20 nm 40 \rightarrow 20% Al_xGa_(1-x)As:Si (2×10¹⁷ cm⁻³) 1.4 μ m Al_{0.4}Ga_{0.6}As:Si cladding (2×10¹⁷ cm⁻³) 50 nm 0 \rightarrow 40% Al_xGa_(1-x)As:Si (1×10¹⁸ cm⁻³) 2000 nm GaAs:Si (2×10¹⁸ cm⁻³) 1000 nm GaAs:UID 500 nm Ge:UID Si (100) $6^{\circ} \rightarrow$ [111]

Be doping

Grading of Al & Ga concentrations

Miscut substrate

Liu et al: Quantum dot lasers for silicon photonics, 2015

Superlattice and quantum well (SQW/MQW, single/multiple)

Epitaxy considerations

Thermal mismatch:

CTE differences cause strains

Diffusion:

high T produces surface diffusion which helps epitaxy, but too high T produces diffusion of film atoms into substrate \rightarrow Usable temperature range e.g. 0.35T – 0.4T

Defects in substrate:

Misfit dislocations can propagate into film

Impurities (from the gas phase):

Can act as faux nucleation sites, prevent surface diffusion, generate defects, cause oxidation (oxygen, water vapor)

Surface impurites (not removed by cleaning):

Native oxides completely prevent epi, and must be in situ removed

New materials: nanolaminates

Adriana Szeghalmi,Stephan Senz, Mario Bretschneider, Ulrich Gösele, and Mato Knez, APL 2009

Inorganic-organic NL

Salmi, Ritala, DOI: 10.1002/cvde.200906770

Nanolaminate vs. superlattice

Similar layer thicknesses

Similar deposition equipment

But: amorphous or polycrystalline films

Sputtered NL

B4C, 0.25 nm	This
Mo, 2.25 nm	structure
B4C, 0.4 nm	repeated
Si, 4.37 nm	50 times Bajt, S.: Improved reflectance an stability of Mo-Si multilayers, Option 1000 to 10000 to 10000 to 10000 to 1000 to 1000 to 10000 to 10000 to 10000

NL by ALD

X-ray mirror

S.M.George et al: Thin Solid Films 515 (2007) 7177-7180

AI_2O_3/Ta_2O_5

Szeghalmi & Knez: APPLIED PHYSICS LETTERS 94, 133111 2009

Ionic conductivity

The 4:1 cycle ratio (10.4 mol% Y dopant) resulted in the highest conductivity of all films, which was 2 orders of magnitude greater than bulk YSZ (8 mol% Y dopant).

NLs as vapor barriers

Multilayer structures are unlikely to have defect in the same position in every layer → improved leak tightness.

Barrier properties of NL

Water vapor transmission rate reduced by 4 orders of magnitude for same thickness.

> Peter F. Carcia, Robert S. McLean, Zhigang G. Li, Michael H. Reilly, and Will J. Marshall Citation: Journal of Vacuum Science & Technology A **30**, 041515 (2012); doi: 10.1116/1.4729447