Surfaces and Films CHEM-E5150 Tribology Jari Koskinen

Tribology

- Tribology is
 - science and technology of interacting surfaces in relative motion
 - origin in the Greek word *tribos* meaning rubbing
 - friction, lubrication, and wear of engineering surfaces
 - understanding surface interactions in detail and then prescribing improvements in given applications.

Practical objectives of tribology

G.W. Stachowiak, A.W. Bachelor, Engineering tribology 3rd edition, 2005

Operation conditions and type of wear **Flowchart**

Aalto University

School of Chemical Engineering

Materials selection quide for wear control

Critical				Wear me	chanism			
materials property	Abrasive	Erosive	Cavitation	Corrosive	Fretting	Adhesive	Melting	Fatigue
Hardness	1	1	0	0	0	1	0	0
Toughness	0	1	1	0	0	•	0	1
Fatigue resistance	1	1	1	0	1	•	О	1
Inertness	0	0	0	1	√ ①	•	0	0
High melting point	0	0	0	0	0	1	1	0
Heterogeneous microstructure	1	0	0	ש	0	1	0	0
Non-metallic character	0	0	0	1	0	1	0	0

- ✓ Important
- Marginal

✗ Unfavourable

② Homogeneous microstructure inhibits electrochemical corrosion and, with it, most forms of corrosive wear

FIGURE 1.3 General materials selection guide for wear control.

Œ

Fretting in air for metals

School of Chemical Engineering

28/10/13

G.W. Stachowiak, A.W. Bachelor, Engineering tribology 3rd edition, 2005

Dynamic viscosity

$\mathbf{F} \alpha \mathbf{A} \times \mathbf{u}/\mathbf{h}$

FIGURE 2.1 Schematic representation of the fluid separating two surfaces.

(2.1)

Dynamic viscosity

 $\mathbf{F} = \boldsymbol{\eta} \times \mathbf{A} \times \mathbf{u}/\mathbf{h}$

Rearranging gives:

 η = (F/A) / (u/h)

or

 $\eta = \tau / (\mathbf{u}/\mathbf{h})$

η is the dynamic viscosity [Pas];τ is the shear stress acting on the fluid [Pa];u/h is the shear rate, i.e., velocity gradient normal to the shear stress [s⁻¹]."Poise" 1 [P] = 100 [cP] ≈ 0.1 [Pas]

Kinematic viscosity

 $\upsilon=\eta/\rho$

where:

- v is the kinematic viscosity $[m^2/s]$;
- η is the dynamic viscosity [Pas];
- ρ is the fluid density [kg/m³].
- "Stoke" 1 [S] = 100 [cS] = 0.0001 [m²/s]

Viscosity-temperature

Walther	$(\upsilon + \mathbf{a}) = \mathbf{bd}^{1/\mathbf{T}^c}$	Forms the basis of the ASTM viscosity-temperature chart

a,**b**,**c**,**d** are constants;

- υ is the kinematic viscosity $[m^2/s]$;
- **T** is the absolute temperature [K].

Viscosity – temperature of selected oils

FIGURE 2.2 Viscosity-temperature characteristics of selected oils (adapted from [29 and 22]).

Pressure -Viscosity

https://www.eneos.co.jp/english/company/rd/intro/lubricants/kudokei.html

Viscosity – shear rate Newtonian fluid

FIGURE 2.5 Shear stress - shear rate characteristic of a Newtonian fluid.

Elasto hydrodynamic lubrication

EHL Film Thickness Behavior, Fig. 1 Typical film thickness profile for an EHL line contact. Flow velocity profiles (Couette + Poiseuille flow) at three different positions are shown in the bottom of the figure

Pressure -Viscosity

https://www.eneos.co.jp/english/company/rd/intro/lubricants/kudokei.html

Title

Tribology

Lubricant Films

Solid Suspension Films

- Borate
- Molybdenum Disulfide
- Graphite
- PTFE

Chemical Oil Films

- Oiliness Agents Fatty Acids
- Zinc Dialkyldithiophosphate (AW)
- Tricresyl Phosphate (AW)
- Sulfur Phosphorus (EP)

Boundary

Friction from viscous drag and mechanical contact

If surfaces protected by chemical oil film and/or solid lubricants - minor wear

Fluid Films

- Hydrodynamic Lubrication
 Sliding
- Elastohydrodynamic Lubrication Rolling - Deformation to carry the load

Thick Film

Friction from viscous drag only

Surfaces protected by viscosity - no wear

Mike Ramsey Noria Corporation 2019

Viscosity non-Newtonian fluids

Typically colloids, e.g. cornstarch

FIGURE 2.6 Viscosity - shear rate characteristics for some non-Newtonian fluids.

Contact mechism

• Herzain contact

Contact mechanism Wiki

Assumptions in Hertzian theory

- The following assumptions are made in determining the solutions of **Hertzian** contact problems:
- The strains are small and within the elastic limit.
- The surfaces are continuous and non-conforming (implying that the area of contact is much smaller than the characteristic dimensions of the contacting bodies).
- Each body can be considered an elastic half-space.
- The surfaces are frictionless.

Herzian pressure (sphere on flat)

Johnson-Kendall-Roberts (JKR) model of elastic contact

incorporate the effect of adhesion in Hertzian contact

Levels of tribological testing

Tribology International Volume 31 Numbers 1–3 1998

Fig. 1 The tribological process in a contact between two surfaces includes mechanical and tribochemical changes as well as material transfer

Tribology International Volume 31 Numbers 1–3 1998

Aalto University School of Chemical Engineering

Fig. 3 Macromechanical contact conditions for different mechanisms that influence friction when a hard spherical slider moves on a coated flat surface Tribology International Volume 31 Numbers 1–3 1998

Fig. 5 (a) Thin hard coatings on a soft substrate generate lower stresses in the coating and at the coating/substrate interface compared with (b) thick hard coatings with the same deflection

Fig. 6 A multilayer coating with alternate hard and soft layers can allow deflection to occur under load without yielding of the hard layers. They effectively slide over each other, with shear occurring in the soft layer. The pattern of shear is illustrated by the line through the film, which was initially straight in the unloaded condition

Tribology International Volume 31 Numbers 1-3 1998

Fig. 7 (a) A functionally graded multilayer coating design to utilise specific layers for distinct properties. (b) A particular multilayer coating tested by Vasyadin et al.²⁵ Tribology International

Tribology International Volume 31 Numbers 1-3 1998

Scrac

Fig. 3.71. Scales of tribology from nanotribology to teratribology (Holmberg, 2001).

Tribology International Volume 31 Numbers 1-3 1998

	Dry abrasion (Taber)	Wet slurry abrasion
Tect	the second se	
configuration		
Test purpose	Determination of the abrasive wear	Determination of the abrasive wear
a di je nje je	rate and the Taber wear index of material surfaces.	rate and the abrasion resistance of materials and treatments.
Specimens	Flat face of the disk abraded by two rubber bonded abrasive wheels (CS- 10).	Two specimen pads loaded against a rotating circular plate.
Test conditions	Load 9.81 N.	Load 112 N.
i	Wheels cleaned with abrasive paper every 1000 revolutions.	Runs in bath of abrasive slurry.
Measurements	Weight loss. Taber wear index = weight loss/1000 revs (mg).	Volume loss.
Wear types/ comments	Low stress abrasion.	High stress grinding abrasion. Low stress abrasion.

							-	
Table 5.4.	Wear and	friction tes	t methods f	or tribological	evaluation	of coated	surfaces.	Typical
parameters	are given b	out many var	iations of th	ese are in use.				

	Pin-on-flat (ASTM)	Pin-on-disk (VAMAS)	Block-on-ring (ASTM)
Test configuration			
Test purpose	Determination of wear rate and coefficient of friction at low loads and speeds and with small specimens.	Determination of sliding wear rate and coefficient of friction.	Determination of adhesive wear rate of materials.
Specimens	A pin or a ball rubbing against a plate.	A pin or a ball rubbing on a rotating plate.	A steel ring is rotated again a stationary block.
Test conditions (typical)	Reciprocating sliding frequency 5 Hz. Stroke length 10 mm. Load 25 N. Temperature 18–23°C. Humidity 40–60% RH. Specimen can be dry or fully immersed in lubricant.	Sliding speed 0.1 m/s. Load 10 N. Sliding distance 1 km. Temperature 23°C. Humidity 50% RH.	Ring speed (max) 7000 rev min. Load (max) 6000 N. Duration 5400–24,000 cycles. Specimen can be dry or immersed in oil or other fluid.
Measurements	Weight loss of disk. Height loss of pin. Wear track profilometry. Ball wear area measurement. Friction force.	Height loss of pin. Wear track profilometry. Ball wear area measurement. Friction force.	Test block weight loss. Sci width. Ring weight loss. Friction force. Lubricant film load-carryin capacity.
Wear types/comments	Mild adhesive wear suitable for tribological coating evaluation.	Mild and severe adhesive wear. Suitable for tribological coating evaluation.	Mild and severe adhesive wear. Lubricated wear.

Tribology Testing - Overview

- Simple system and highly reproducible measurement
- Simulate real frictional conditions
 - Contact pressure
 - Movement mode
 - Sliding speed
 - Static partner (size, geometry, mechanical properties, etc)
 - Lubrication
 - Environmental condition (temperature, vacuum, humidity, etc)

Tribology Testing - Overview

Manual driving Position control Tribological environment Sample temperature Atimosphere Humidity S0.00 © [Ys] Partners Sample Sample Upper Upper <t< th=""><th>dit standard parameters</th><th></th></t<>	dit standard parameters	
Static friction partner Coating Cleaning 2.00 mmin 2.00 mmin Substrate Subplier Geometry Ball 1500.0 mmin 0 mmin	Manual driving Position control Tribological environment Sample temperature Atmosphere Humidity 25.00 (*C] Air 60.00 (*) Partners Sample Costing Substrate Sapphire Cleaning Supplier	Sequences Acquisition parameters Acquisition rate Size 68.66 [MBytes] 100.00 (Hz] Test duration 1:15:00 [HH:mm:ss] Sampling 1 cycle per 1 (C) cycle Sequence count Load 5 (C) 450.00 (mN) Single way Reciprocating V Homing Reverse direction Radius [r] Linear speed S2.3599 (mm/s) Motor speed
	Substrate Supplier Geometry Ball -	Stop conditions per sequence Distance Friction coefficient threshold 47123.89 (mm) 0.80 (mm) Cycles 0 (s) 1500.0 (s)

Tribology Testing - Contact Mechanics Modeling

Modeling software included inside every Anton Paar Tribometer package

Anton Paar

Tribology Testing - Contact Mechanics Modeling

F: normal load, R: ball radius, E*: reduced modulus

For coated materials, max Von Mises stress is important

Anton Paar

Tribology Testing - Coefficient of Friction

100Cr6 Steel ball against TiN coated steel

Anton Paar

31.08.16 | Sheet 36

Tribology Testing - Wear

0.001 0 -0.001 -0.002 0.004 -0.005 -0.004 -0.005 -0.006 0.007 -0.007 -0.007 -0.007 -0.007 -0.000 0.001 -0.000 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.004 -0.005 -0.004 -0.006

Tribology Testing - Wear

Ball wear volume = Volume of the worn cap

wear track circumference

Sample wear volume = Cross section area *

Wear Rate $K = \frac{V}{Fl}$

V: wear volume, F: normal load, I: sliding distance

High Temperature Tribometer (THT)

High Temperature Tribometer (THT)

Anton Paar

- Double LVDT sensors to cancel thermal drift error
- Cylinderical Oven for homogenous sample heating
- Water cooling system for efficient temperature control and safe utilization

Nano tribology

Diamond tip (Berkovich) wear of ALD TiO2 on a silicon substrate

Effect of ALD processing temperature to abrasive nano wear

