
Statistical language model (SLM)

 Content today:
 SLM methods
 SLM applications

 Presented by Mikko Kurimo
 Pics from Sami Virpioja, Kalle Palomäki, Bryan Pellom, Steve 

Renals, Dan Jurafsky and Tomas Mikolov – thanks!



Mikko Kurimo Statistical natural language processing 2/57

Goals of today

1.Learn how to model language by statistical methods

2.Learn basic idea of neural language modeling

3.Know some typical SLM methods and applications 
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Statistical Language Model

 Model of a natural language that predicts the 
probability distribution of words and sentences in a 
text

 Often used to determine which is the most probable 
word or sentence in given conditions or context

 Estimated by counting word frequencies and 
dependencies in large text corpora

 Has to deal with: big data, noisy data, sparse data, 
computational efficiency
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Some historical landmarks of SLMs

 Markov chains (Markov, 1913)

 N-grams (Shannon, 1948)

 Predicting unseen events (Good, 1953)

 Landmarks at Aalto University (Helsinki Univ. of Technology)

 Dynamically expanding context (Kohonen, 1986)

 Self-organizing semantic maps (Ritter and Kohonen, 1989)

 WEBSOM for organizing text collections (Kohonen, 1996)

 Morfessor for unsupervised analysis of words (Lagus. 2002)

 Varigram LM for sequencies of words (Siivola, 2005)

 Unlimited vocabulary LMs for speech recognition (Hirsimäki, 2006)

 Class n-gram models for very large vocabulary speech recognition of 
Finnish and Estonian (Varjokallio, 2016)

 An Extensible Toolkit for Neural Network LMs (Enarvi, 2016)
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A simple statistical language model

 Limited domain models, constructed by hand
 Transition probabilities can be estimated statistically
 Only a very limited set of sentences are recognized

Picture by S.Renals
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N-gram language model

Stochastic model of the relations between words 
Which words often occur close to each other? 

The model predicts the probability distribution of the 
next word given the previous ones
A conditional probability of word given its context
Estimated from a large text corpus (count the contexts!)
Smoothing and pruning required to learn compact long-span 
models from sparse training data
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N-gram models

 E.g. trigram = 3-gram:
 Word occurrence 

depends only on its 
immediate short context

 A conditional probability 
of word given its context

 Estimated from a large 
text corpus (count the 
contexts!)

Picture by B.Pellom
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 

 Start from a maximum likelihood estimate

 probability of P(“stew” | “eggplant”) is computed 
from counts of “eggplant stew” and “eggplant” 

c(“eggplant stew”)

c(“eggplant”)



9

 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 X 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts
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 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32
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 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092
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 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092 6 / 1215 = .0049
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 

 Start from a maximum likelihood estimate

 probability of P(“stew” | “eggplant”) is computed 
from counts of “eggplant stew” and “eggplant” 

 works well for frequent bigrams
 why not for rare bigrams?

c(“eggplant stew”)

c(“eggplant”)

P(“Chinese”|”to”) = 3 / 3256 = 0.00092

P(“want”|”I”) = 1087 / 3437 = 0.32
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Exercise 2A: Where to use language models?

 Go in breakout rooms and discuss this topic
 Submit notes from your discussion in MyCourses > Lectures > 

Lecture 2A exercise return box:

 List as many potential applications for statistical language 
models as you can!

 Typically these are tasks where you need the probability or 
to find the most probable word or sentence given some 
background information
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Some applications of SLMs

1.Spelling correction, text input

2.Optical character recognition, e.g. scanning old books

3.Automatic speech recognition

4.Statistical machine translation

5.Text-to-speech

6.Automatic question answering

7.Chatbots  
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Data sparsity

 Words and many other linguistic units follow a power-law 
distribution:

 Zipf’s law: kth frequent word occurs  1/k∝
 “Long tail”: few frequent words, lots of very rare words

 E.g. within the first 1.5 million words 23% subsequent trigrams 
were previously unseen (IBM laser patent text corpus)

 Maximum likelihood estimate overestimates frequencies of n-
gram that occurred rarely, and underestimates those that did 
not occur at all. (why?)

 One needs a systematic approach to assign some non-zero 
probability to unseen words and sequences. This is called 
smoothing.
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Zero probability problem

 If an N-gram is not seen in the corpus, it will get probability = 0

 The higher N, the sparser data, and the more zero counts there 
will be

 20K words   =>  400M 2-grams  =>  8000G 3-grams, so even 
the largest corpora have MANY zero counts!

Solutions:

 Equivalence classes: Cluster several similar n-grams together 
to reach higher counts

 Smoothing: Redistribute some probability mass from seen N-
grams to unseen ones
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Equivalence classes

 Divide features (e.g. words) into equivalence classes a.k.a. 
bins

 Assume equal statistical properties within a bin
 Estimate a SLM for the bin as a whole
 The more bins, the more data is needed for model estimation
 The fewer bins, the lower prediction accuracy, because the 

model becomes too general
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Ways to form classes

 Transforming inflected word forms into the baseform: 
’saunan’, ’saunalle’, ’saunojemme’, etc. → ’sauna’

 Grouping by part-of-speech tags (the same syntactic role: 
noun, verb, etc)

 Grouping by semantics (a similar meaning)

Important is that the words in a bin should really behave 
similarly!  E.g. february, may, august
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Ways to use classes

 using equivalence classes only for previous words 
(history):

p(wi | wi−2 , wi−1 ) = p(wi | t(wi−2 , wi−1 ))
 using class-based n-gram models:

p(wi | wi−2 , wi−1 ) = p(t(wi ) | t(wi−2 , wi−1 ))

                                  × p(wi | t(wi ), . . .)
 determine bin-specific interpolation weights for model 

combination (Broman and Kurimo, 2005)
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Combining estimators

 So far, the probability was estimated for all n-grams of a 
particular length

 How about improving the estimate using shorter sequences that 
are more frequent?

 The motivation is further smoothing of the estimates by 
combining different information sources.

 The additional models could also be other n-grams trained on 
different data, e.g. background models vs topical models
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Backing-off

 In principle: Look for the most specific model that 
gives sufficient information from the current context

 In practice: Back off from using (too) long contexts to 
shorter ones that have more samples in the corpus.
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Smoothing methods

1. Add-one: Add 1 to each count and normalize => gives too 
much probability to unseen N-grams

2. (Absolute) discounting: Subtract a constant from all counts 
and redistribute this to unseen ones using N-1 gram probs and 
back-off (normalization) weights

3. Witten-Bell smoothing: Use the count of things seen once to 
help to estimate the count of unseen things

4. Good Turing smoothing: Estimate the rare n-grams based on 
counts of more frequent counts

5. Best: Kneser-Ney smoothing: Instead of the number of 
occurrences, weigh the back-offs by the number of contexts 
the word appears in

6. Instead of only back-off cases, interpolate all N-gram counts 
with N-1 counts  
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Ci*,Ci: new count, old c 

N : Num of tokens

T : Num of types (seen)

Z : Num of types (unseen)

V : Total vocab size

Probability p = c / N :

Add-1 smoothing
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N : Num of tokens

T : Num of types (seen)

Z : Num of types (unseen)

V : Total vocab size

Probability p = c / N :
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Good-Turing smoothing

 How to compute the probability of an unseen event, e.g. an 
out-of-vocabulary word?

 Idea invented by Alan Turing during World War 2 when he was 
working to break German cipher

 Published later by his student (Good, 1953)
 Set:

 N = Num of words
 N_c = Num of words that occur c-times (freq. of freq.)

 Estimate prob of unseen things = N_1/N
 Estimate count of things seen once = (c+1)*N_2/N_1
 Smoothed count c* for all c:
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Exercise 2B: Good-Turing smoothing

 Watch a video where Prof. Jurafsky (Stanford) explains Good-
Turing smoothing (between 02:00 – 08:45)

 Click: http://www.youtube.com/watch?v=GwP8gKa-ij8 
 Or search:”Good Turing video Jurafsky”

 Go in breakout rooms and submit answers for 3 questions in 
MyCourses > Lectures > Lecture 2B exercise return box:

1. Estimate the prob. of catching next any new fish species, if you already got: 
5 perch, 2 pike, 1 trout, 1 zander and 1 salmon?

2. Estimate the prob. of catching next a salmon?

3. What may cause practical problems when applying Good-Turing smoothing 
for rare words in large text corpora?

http://www.youtube.com/watch?v=GwP8gKa-ij8
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Hints for solving the exercise

1.Estimate the prob of unseen things using the prob of 
things seen only once N_1/N

2.The counts must be smoothed. The new count for 
things seen once is (c+1)*N_2/N_1 

3.What if N_c = 0 for some c?  
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 

 Start from a maximum likelihood estimate

 probability of P(“stew” | “eggplant”) is computed 
from counts of “eggplant stew” and “eggplant” 

 works well for frequent bigrams

c(“eggplant stew”)

c(“eggplant”)
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Backing off

 Divide the room of rare bigrams, e.g. “eggplant 
francisco”, in proportion to the unigram P(“francisco”)

 The sum of all these rare bigrams “eggplant [word j]” is 
b(“eggplant”) which is called the back-off weight

Picture by B.Pellom
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Absolute discounting and backing off

 If bigram is common: Subtract constant D from the count
 If not: Back off to the unigram probability normalized by 

the back-off weight
 Similarly back off all rare N-grams to N-1 grams 

Picture by B.Pellom
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Kneser-Ney smoothing

 Instead of the number of occurrences, weigh the back-offs by 
the number of contexts V(word) the word appears in:

 In this case the context is the previous word, thus, how 
many different previous words the corpus has for that word

 E.g. P(Stew | EggPlant) is high, because stew occurs in 
many contexts

 But P(Francisco | EggPlant) is low, because Francisco is 
common, but only in “San Francisco”

V

Picture by B.Pellom
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Smoothing by interpolation 

 Like backing off, but always compute the probability as 
a linear combination (weighted average) with lower 
order (N-1)gram probabilities

 Improves the probabilities of rare N-grams
 Discounts (D) (and interpolation weights) can be 

separately optimized for each N using a held-out data

+
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N-gram example

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs backoff normalize

X = stew 10 0.1 0 0 0.1 0.06
sue 20 0.2 0 0 0.2 0.11
san 40 0.4 0 0 0.4 0.22

francisco 30 0.3 0 0 0.3 0.17

SUM 100 1 0 0 0.5 1 0.56
10/100
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Absolute discounting

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs backoff normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

(c=0, D=0.5 selected)
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D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs backoff normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off
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D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs backoff normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off

0.1/1.0*0.5



2015 Mikko Kurimo Speech recognition 38/57

Absolute discounting and back-off

(eggplant X) 1G freq 2G freq Abs backoff normalize
X = stew 10 0 0.1 0

sue 20 0 0.2 0
san 40 0 0.4 0

francisco 30 0 0.3 0

SUM 100 0 1 0

(c=0, D=0.5 selected)
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Kneser-Ney smoothing

V

(eggplant X) 1G freq 2G freq Abs backoff normalize #contexts
X = stew 10 0 0.1 0 10

sue 20 0 0.2 0 5
san 40 0 0.4 0 3

francisco 30 0 0.3 0 1

SUM 100 0 1 0 19

(c=0, D=0.5 selected)
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Kneser-Ney smoothing

V 10/19*0.5

(eggplant X) 1G freq 2G freq Abs backoff normalize #contexts KN backoff
X = stew 10 0 0.1 0.05 10 0.26

sue 20 0 0.2 0.1 5 0.13
san 40 0 0.4 0.2 3 0.08

francisco 30 0 0.3 0.15 1 0.03

SUM 100 0 1 0.5 19 0.5

(c=0, D=0.5 selected)
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Weaknesses of N-grams 

 Skips long-span dependencies:

 “The girl that I met in the train was ...”
 Too dependent on word order:

 “dog chased cat”: “koira jahtasi kissaa” ~ “kissaa koira 
jahtasi”

 Dependencies directly between words, instead of latent 
variables, e.g. word categories
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Some model variants

 Variable-length n-gram, aka. Varigram:

 Span depends on particular context, optimized for the data, 
e.g. [Siivola, 2007]

 Especially useful for short units (letters, morphemes)
 Class-based n-gram, e.g. [Brown, 1992]:

 Cluster words into classes, find class sequences
 Reduces sparsity, model size, and accuracy

 Bayesian n-gram:

 Computationally demanding
 Kneser-Ney smoothing approximates hierarchical Pitman-

Yor process model [Goldwater, 2006; Teh, 2006]



Mikko Kurimo Statistical natural language processing 43/57

Sources and further reading

 Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural 
Language Processing. The MIT Press. (Chapter 6)

 Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. 
Prentice Hall. 2nd edition. (Chapter 4)

 Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing 
techniques for language modeling. Computer Speech and Language, 
13(4):359–393.

 Goodman, J. T. (2001). A bit of progress in language modeling - extended 
version. Technical Report MSR-TR-2001-72, Microsoft Research.

 Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical 
Models and Evaluations. Aalto University, Doctoral dissertations 158/2012.
(Sections 4.1–4.3)

 Varjokallio, M. (2020). Improving very large vocabulary language modeling 
and decoding for speech recognition in morphologically rich languages. 
Aalto University, Doctoral dissertations 208/2020.(Section 4.1) 
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Other language modeling (LM) approaches

 Maximum-entropy LM [1]

 Combines different knowledge sources into a single model
 Good for adaptation [5]

 Continuous-space LM (a.k.a. Neural Network LMs)

 Map words to continuous-valued vectors and models them 
using e.g. neural networks [2,3]

 State-space models can use indefinitely long contexts, such 
as in Recurrent Neural Networks [4]

 Cache models and Topic models
(1)R.Rosenfeld. A maximum entropy approach to adaptive statistical language modelling. Computer Speech 
and Language, 2007.

(2)Y.Bengio & al. A neural probabilistic language model. Journal of Machine Learning Research, 2003.

(3)V.Siivola, A.Honkela. A State-Space Method for Language Modeling, Proc. ASRU 2003.

(4)T.Mikolov & al. Recurrent neural network based language model. Proc. Interspeech 2010.

(5)T.Alumäe, M.Kurimo. Domain adaptation of maximum entropy language models. Proc. ACL 2010.
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Maximum entropy LMs

 Represents dependency information

by a weighted sum of features f(x,h)
 Features can be e.g. n-gram counts
 Alleviates the data sparsity problem by smoothing the feature 

weights (lambda) towards zero
 The weights can be adapted in more flexible ways than n-grams

 Adapting only those weights that significantly differ from a 
large background model (1)

 Normalization is computationally hard, but can be approximated 
effectively

(1) T.Alumäe, M.Kurimo. Domain adaptation of maximum entropy language models. Proc. ACL 2010.
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Mapping words into continuous 
space

 Map words into a continuous vector space 

to learn a distributed representation known 

as word embedding
 The goal is to use a vector space that keeps 

similarly behaving words near each other
 Words can be clustered by context, e.g. n-gram probabilities

 word2vec [1] is one widely used option
 Other embeddings to reflect various contextual properties

 Set of words can be represented by a sum of the vectors
 N-gram can be represented by a sequence of vectors

car
horse

cat
black

run

(1) T.Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013. ArXiv:1301.3781.
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Continuous space LMs

 Alleviates the data sparsity problem by representing words in a 
distributed way 

 Various algorithms can be used to learn the most efficient and 
discriminative representations and classifiers

 The most popular family of algorithm is called (Artificial) Neural 
Networks (NN)

 can learn very complex functions by combining simple 
computation units in a hierarchy of non-linear layers

 Fast in action, but training takes a lot of time and labeled 
training data 

 Can be seen as a non-linear multilayer generalization of the 
maximum entropy model
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A simple bigram NN LM
 Outputs the probability of next word y(t) given the previous word x(t)
 Input layer maps the previous word as a vector x(t)
 Hidden layer has a linear transform h(t) = Ax(t) + b to compute a 

representation of linear distributional features
 Output layer maps the values by y(t) = softmax (h(t)) to range (0,1) 

that add up to 1
 Resembles a bigram Maximum entropy LM

softmax

x(t) y(t)

h(t)

Ax+bSoftmax:
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A non-linear bigram NN LM

 The only difference to the simple NN LM is that the hidden layer 
h(t) now includes a non-linear function  h(t) = U(Ax(t) + b)

 Can learn more complex feature representations 
 Common examples of non-linear functions U: 

U V

x(t) y(t)

h(t)

Sigmoid

U (t) = tanh (t)

U
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Common NN LM extensions

 Input layer is expanded over 
several previous words x(t-1), 
x(t-2), .. to learn richer 
representations

 Deep neural networks have 
several hidden layers h1, h2, .. 
to learn to represent information 
at several hierarchical levels

 Can be scaled to a very large 
vocabulary by training also a 
class-based output layer c(t)

U1 V

x(t)

y(t)

h2(t)

x(t-1)

x(t-2)

h1(t)

U2

c(t)
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NN LM training

 Supervised training minimizes the 
output errors by training the weights 
for V by stochastic gradient descend

 Propagate the output error to hidden 
layer to train the weights for U

 In practice, a deep NN will require 
more complex training procedures, 
since the gradients vanish quickly

U V

x(t) y(t)

h(t)
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Recurrent Neural Network (RNN) LM

 Looks like a bigram NNLM
 But, takes an additional input from 

the hidden layer of the previous time 
step

 Hidden layer becomes a compressed 
representation of the word history

 Can learn to represent unlimited 
memory, in theory 

 Currently, the state-of-the-art in LMs
U V

x(t) y(t)

h(t)

h(t-1)

W
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RNN LM training

 Minimizes the output error 
by training the weights by 
stochastic gradient 
descend

 Propagates the output error 
to all layers and time steps 
(called  backpropagation 
through time) to train the 
hidden layer

 Looks now like a very 
deep neural network with 
shared weights U and W

U V

x(t) y(t)

h(t)

h(t-1)

U V

x(t-1) y(t-1)

U V

x(t-2)
y(t-2)

h(t-2)

W

W
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Feedback

Go to MyCourses > Lectures > Feedback for Lecture 2 and fill in the form. 

Some of the feedback from the previous week:

+ The lecture was clear and at an appropriate pace

+ The small group thing was okey. There was some talking. Not sure if 10 min is 
required for that

+ Aalto research stuff highlighting concept. First time saw this in any lecture..

- I didn't fully grasp the project work goals and practicalities

- Maybe some video presentation of available techniques would make the 
lecture even more thrilling

- I think you could end the break out rooms and then announce the break

- Why is only half of the recorded lecture available?

                                                              Thanks for all the valuable feedback!
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