CS-C2160 Theory of Computation

Appetizer: Computational Problems, Models of Computation
Pekka Orponen
Aalto University
Department of Computer Science
Spring 2021

Computational Problems

Computational Problems

Can one make a program that detects whether a given number x is a prime number? (Very large primes are important in cryptography.)

Computational Problems

Can one make a program that detects whether a given number x is a prime number? (Very large primes are important in cryptography.)

Answer: Yes, a very inefficient way is to just go through all the pairs of integers in $\{2, \ldots, x-1\}$ and check that their product does not equal x.

Computational Problems

Can one make a program that tells whether a multivariate polynomial equation system has a real-valued solution?

Computational Problems

Can one make a program that tells whether a multivariate polynomial equation system has a real-valued solution?

Answer: Yes, but this is not easy, see e.g. this report.

Computational Problems

Can one make a program that tells whether a multivariate polynomial has integer-valued roots?

Computational Problems

Can one make a program that tells whether a multivariate polynomial has integer-valued roots?

Answer: No, this is called Hilbert's tenth problem and it cannot be solved by a computer.

Computational Problems

Can one make a program that tells if a text file is a valid Python program?

Computational Problems

Can one make a program that tells if a text file is a valid Python program?

Answer: Yes, the Python interpreter/compiler does this as the first step.

Computational Problems

Can one make a program that tells if there exists an input that causes a given Python program to throw an exception, e.g.
ZeroDivisionError? (Such a program would be a very convenient "perfect compiler", able to detect all possibilities for run-time errors in advance.)

Computational Problems

Can one make a program that tells if there exists an input that causes a given Python program to throw an exception, e.g.
ZeroDivisionError? (Such a program would be a very convenient "perfect compiler", able to detect all possibilities for run-time errors in advance.)

Answer: Assuming that the source Python program can access unlimited memory resources, this is not possible.

Computational Problems

Can one make a program that solves sudokus?

Computational Problems

Can one make a program that solves sudokus?

Answer: Yes, an inefficient way is to just enumerate through all the solution candidates.

Computational Problems

Can one make a program that decides whether blocks from a given set (multiple copies are allowed) can be organised so that the top and bottom row have the same string?

Computational Problems

Can one make a program that decides whether blocks from a given set (multiple copies are allowed) can be organised so that the top and bottom row have the same string?

Answer: No, this is called Post's Correspondence Problem and it cannot be solved by a computer.

Models of Computation

Problem: To answer these kinds of questions, we need a model of a computer/computer program.
Question: Mathematical model of a computer/computer program?

This course:

- Different classes of automata that process input.
- The inputs "accepted" by an automaton form its language.
- Also: grammars (duals of automata) generating the same languages.

E.g. the language of a primality testing automaton would be $\{2,3,5,7,11,13,17,23, \ldots\}$

Model I: Finite state automata

- Finite amount of memory
- Can only read input, one step at time

Application areas of variants:

- Communication protocols
- Simple embedded controllers
- Lexers in compilers (e.g. recognising keywords etc. when compiling Java to bytecode)
- ...

Model II: Turing machines

Turing machines (Alan Turing 1935-36)
tape:
read/write head:

A finite state automaton with an unbounded tape that it can read, write, and move left/right one step at time.

Church-Turing thesis:
Any mechanically solvable problem can be solved with a Turing machine.

Model II: Turing machines

A Turing machine is a 7-tuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}\right),
$$

where:

- Q is a finite set of states;
- Σ is the input alphabet;
- $\Gamma \supseteq \Sigma$ is the tape alphabet (s.t. $\triangleright, \triangleleft \notin \Gamma$
- $\delta:\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times(\Gamma \cup\{\triangleright, \triangleleft\}) \rightarrow$ $Q \times(\Gamma \cup\{\triangleright, \triangleleft\}) \times\{L, R\}$ is the transition function;
- $q_{0} \in Q$ is the initial state;
- $q_{\mathrm{acc}} \in Q$ is the accepting state; and
- $q_{\mathrm{rej}} \in Q$ is the rejecting state.

FAQ: Why do we need all these symbols and formal definitions?
Answers:

- To precisely communicate complex constructions (concepts, problems, algorithms, etc) to other people.
- To make solid, mathematical arguments about properties of constructions.
- In the general case, this problem cannot always be solved because ...
- This problem is computationally difficult because ...
- My algorithm outputs "yes" if and only if the input ...

Some interesting courses to continue after this course

- CS-E3190 Principles of Algorithmic Techniques
- CS-E4530 Computational Complexity Theory
- CS-E4320 Cryptography and Data Security
- Many other CS courses

