

School of Science

## **CS-C2160** Theory of Computation

Introduction and Practical Arrangements

Pekka Orponen Aalto University Department of Computer Science

Spring 2021

# What is Theory of Computation?



CS-C2160 Theory of Computation / Lecture 0 Aalto University / Dept. Computer Science

# **Theory of Computation**

- The mathematical theory of fundamental computational models their power, limitations and representations.
- Constitutes the basic mathematical framework for designing and understanding computational systems *exactly* and *generally*, *independent of implementation*.



CS-C2160 Theory of Computation / Lecture 0 Aalto University / Dept. Computer Science

- Commonly grouped into three strongly interrelated areas:
  - Automata theory: Models and characterisations of "simple" computational systems.
    - Key developments: S. Kleene (1950's), R. Büchi, S. Ginsburg, M. Rabin, A. Salomaa, M. Schützenberger et al. (1960's).
    - Applications: finite-state communication and computation protocols, string processing, pattern matching.
  - Formal languages and grammars: Representations of structure in strings ("words", "sentences").
    - Key developments: N. Chomsky (1950's), S. Ginsburg, S. Greibach, M. Harrison, A. Salomaa, M. Schützenberger et al. (1960's).
    - Applications: Programming language compilers, natural language processing.
  - Computability theory: Models, power and limitations of "universal" computational systems.
    - Key developments: A. Turing, K. Gödel, A. Church, E. Post (1930's); S. Kleene, A. Markov (1950's).
    - Applications: Understanding the ultimate limits of computation, recognising possibilities for universal computation in natural and artificial systems (e.g. biology, physics).
    - Strong connections to mathematical logic, further developments in that direction under the name "Recursion Theory".

- Subfield of the broader area of *Theoretical Computer Science*:
  - Mathematical concepts and methods for modelling and analysing computing systems and for designing efficient solutions for computational problems.
- Other subfields of Theoretical Computer Science:
  - Computational complexity theory: The theory of feasible ("practical") computation (J. Hartmanis, R. Stearns (1960's);
     S. Cook, L. Levin, R. Karp (1970's); C. Papadimitriou, M. Sipser,
     J. Håstad, A. Razborov etc. (1980's –)).
  - Program correctness and verification: Mathematically precise ways of defining computing systems and verifying the correctness of their behaviour (E. Dijkstra, A. Hoare (1960's); R. Manna, A. Pnueli, D. Scott etc. (1970's–)).
  - Design and analysis of algorithms (D. Knuth, J. Hopcroft, R. Tarjan etc.)
  - Cryptology (R. Rivest, A. Shamir, L. Adleman etc.)
  - Theory of parallel and distributed systems (L. Lamport, N. Lynch, R. Milner, L. Valiant etc.)
  - Machine learning theory (L. Valiant (1984) etc.)
  - Quantum computing theory (P. Shor (1994) etc.)

# **Practical Arrangements**



CS-C2160 Theory of Computation / Lecture 0 Aalto University / Dept. Computer Science

### Registration, teaching, webpage

Registration: Obligatory, by OODI, deadline Jan 26, 2021.

- Lectures: Tuesdays 10–12 on Zoom, in English by Pekka Orponen Lectures will be pre-recorded and made available via MyCourses.
- Tutorials: Not obligatory but highly recommended! Plus you earn bonus exam points!
  - Tuesdays 16–18 Zoom, from 12 Jan
  - Wednesdays 10-12 Zoom, from 13 Jan
  - Wednesdays 12–14 Zoom, from 13 Jan
  - Thursdays 12–14 Zoom, from 14 Jan
  - Fridays 10-12 Zoom, from 15 Jan

Computerised home assignments: Obligatory and personalised.

Available soon, announced on MyCourses.

## Course links:

#### MyCourses:

https://mycourses.aalto.fi/course/view.php?id=28164
Zoom: https://aalto.zoom.us/j/66313829636
Zulip: https://cs-c2160.zulip.cs.aalto.fi



## To pass the course, you need to...

- 1. Pass the computerised assignments *before taking the exam*. Otherwise your exam will not be graded.
- 2. After passing the computer exercises, take an exam (next exam Wed 14 Apr 2021, more in Summer and Autumn 2021).
- 3. Maximum number of points on exam is 60. Grade limits may vary by exam but
  - with 30 points, grade 1 is guaranteed, and
  - with 54 points, grade 5 is guaranteed.
- 4. There are 3 homework problems each week. By doing these, you gain bonus points for exams according to the table (1 for every 5 problems):

| #solved: | 0–4 | 5–9 | 10–14 | 15–19 | 20–24 | 25–29 | 30-33 |
|----------|-----|-----|-------|-------|-------|-------|-------|
| bonus:   | +0  | +1  | +2    | +3    | +4    | +5    | +6    |

5. In addition, you earn one extra bonus point by filling in the feedback questionnaire at the end of the course.

Bonus points are valid in all exams in 2021.

## Weekly tutorials

Teaching asssistants helping you:

- Sander Aarts
- Siiri Kuoppala
- Trang Nguyen

Procedure to learn (and get bonus points):

- 1. solve the homework problems and prepare notes on your solutions
- 2. attend a tutorial session and mark the problems you have solved as "done"
- (when requested) explain your solution to other students on whiteboard Zoom, by e.g. sharing your notes via camera Returning homework solutions by email is unfortunately *not* possible.

Before covering the homework problems, each session begins with a few *ex tempore*, no-credit classroom problems that review the lecture material from the same week. (NB. Hence the sessions begin already in the first lecture week, with only classroom problems for discussion.)



### **Material**

### On MyCourses

- Lecture slides
- Typeset lecture notes (in Finnish)
- Example homework/exam problems with solutions
- Solutions to weekly non-credit "Supplementary exercises"
- Plus some other hopefully helpful stuff

### Recommended supporting textbook

Michael Sipser, Introduction to the Theory of Computation (3rd Edition), 2013.



