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I Equivalence relations
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Mathematical Preliminaries
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1.1 Sets

A set is a collection of elements.

The elements can be given by enumerating, e.g.,

S = {2,3,5,7,11,13,17,19}

or by some rule, e.g.,

S = {p | p is a prime number and 2≤ p≤ 20}.

We write a ∈ A to denote that element a belongs to set A. In the
opposite case, we write a /∈ A.

For instance, 3 ∈ S and 8 /∈ S for the set S above.

An important special case is the empty set /0 which does not have
any elements.
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If all the elements of set A also belong to set B, we say that A is a
subset of B (or that A is included in B) and write A⊆ B.
[Sometimes also notation A⊂ B is used in the literature.]
If A is not a subset of B, we write A 6⊆ B.
For instance,

{2,3} ⊆ S and {1,2,3} 6⊆ S.

Trivially, /0⊆ A holds for all sets A.

Two sets, A and B, are the same (denoted A = B), if they contain
the same elements, i.e. if A⊆ B and B⊆ A.

If A⊆ B but A 6= B, we say that A is a proper subset of B and
write A ( B.
For instance, {2,3}( S and /0 ( A whenever A 6= /0.
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The elements in a set can also be other sets (in this case one
often talks of a “family of sets”). For instance, we could define

X = { /0,{1},{2},{1,2}}.

The family of sets formed by taking all the subsets of a base set A
is called the power set over A and is denoted with P (A).
As an example,

P ({1,2}) = { /0,{1},{2},{1,2}}.

[Because the power set over a base set with n elements contains
2n elements, the notation 2A is also used in the literature.]

Observe that A⊆ B if and only if A ∈ P (B).

Pay attention to the empty set:

/0 6= { /0}, P ( /0) = { /0}, P ({ /0}) = { /0,{ /0}}.
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The most common operations used to combine sets are:

Union
A∪B = {x | x ∈ A or x ∈ B},

E.g. {1,2,3}∪{1,4}= {1,2,3,4}.
Intersection

A∩B = {x | x ∈ A and x ∈ B},

E.g. {1,2,3}∩{1,4}= {1}.
Difference

A−B = {x | x ∈ A and x /∈ B},

E.g. {1,2,3}−{1,4}= {2,3}.

[The notation A\B is also used for set difference.]
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The union and intersection operations are associative:

A∪ (B∪C) = (A∪B)∪C

A∩ (B∩C) = (A∩B)∩C

and commutative:

A∪B = B∪A

A∩B = B∩A

Furthermore, intersection distributes over union and vice versa:

A∩ (B∪C) = (A∩B)∪ (A∩C)

A∪ (B∩C) = (A∪B)∩ (A∪C)
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If all the sets we consider are subsets of some common “universal set”
U, we call the difference U−A the complement of A (in U) and denote
it by Ā.

The union, intersection and complement operations are related by the
important De Morgan laws:

A∪B = Ā∩ B̄

A∩B = Ā∪ B̄

In addition, the difference of two sets can be expressed using
intersection and complementation:

A−B = A∩ B̄
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If the elements of a set family A are indexed, e.g.

A = {A1,A2,A3, . . .},

we define the following notation:⋃
i≥1

Ai = A1∪A2∪A3 · · · and
⋂
i≥1

Ai = A1∩A2∩A3 · · ·

The indices do not need to be natural numbers. The index set can be
any set I. In such a case, we use the notations

A = {Ai | i ∈ I}

and ⋃
i∈I

Ai,
⋂
i∈I

Ai.
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1.2 Relations and functions

Let A and B be sets.

An ordered pair of two elements a ∈ A and b ∈ B is denoted by
(a,b).

Observe that for sets we have {a,b}= {b,a}, but (a,b) 6= (b,a)
whenever a 6= b.

The Cartesian product of A and B is defined as

A×B = {(a,b) | a ∈ A and b ∈ B}.

Example

{1,2,3}×{1,4}= {(1,1),(1,4),(2,1),(2,4),(3,1),(3,4)}
{a,b}×N= {(a,0),(b,0),(a,1),(b,1),(a,2),(b,2), ...}
{a,b}× /0 = /0
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A relation R between a set A and a set B is a subset of the
Cartesian product A×B:

R⊆ A×B.

When (a,b) ∈ R, we may also write a R b and say that a is in
relation R to b.

This infix notation is used especially when the relation name is
some mathematical symbol such as ≤, ≺, ≡, ∼...

If the domain A and range B sets of a relation R are the same, i.e.
R⊆ A×A, we say that R is a relation on the set A.
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The inverse of a relation R⊆ A×B is the relation R−1 ⊆ B×A
defined as

R−1 = {(b,a) | (a,b) ∈ R}.

If R⊆ A×B and S⊆ B×C are relations, then their composite
relation R◦S⊆ A×C is defined as follows:

R◦S = {(a,c) | ∃b ∈ B such that (a,b) ∈ R,(b,c) ∈ S}.
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Especially when the sets A and B are finite, a relation R⊆ A×B can
be illustrated as a directed graph

whose vertices are the elements in the sets A and B and
there is an arc (directed edge) from vertex a ∈ A to vertex b ∈ B if
and only if (a,b) ∈ R.

Example:

Consider the relation

R = {(a,b),(a,c),(b,d),(c,d),(d,d)}

on the set A = {a,b,c,d}.
R as a graph:

dc

a b

R◦R as a graph:
a b

dc
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A relation f ⊆ A×B is a function if each a ∈ A is in relation f with
exactly one b ∈ B. In this case, one uses the usual function
notations f : A→ B and f (a) = b.

Everything above that applies to relations thus also applies to
functions; however for historical reasons function composition is
written from right to left.

That is, if f : A→ B and g : B→ C are functions, then their
function composition is defined as (g◦ f )(a) = g(f (a)), i.e. as the
relation

g◦ f = {(a,c) | ∃b ∈ B s.t. f (a) = b,g(b) = c}.
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Let f : A→ B be a function.

f is surjective, or onto, if each b ∈ B is an image of some a ∈ A.

f is injective, or one-to-one, if each a ∈ A is mapped to a distinct
element in B, i.e., if a 6= a′⇒ f (a) 6= f (a′).

f is a bijection if it is both injective and surjective, i.e., if each
b ∈ B is the image of one, and only one, element a ∈ A.
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1.3 Equivalence relations

Equivalence relations are the mathematical formulation for the
common idea that some objects are mutually equivalent / similar /
indistinguishable with respect to some characteristic X.

The equivalence relation based on a characteristic X partitions
the set of objects into equivalence classes that correspond to the
different values of characteristic X.

Conversely, any partitioning Π of a set of objects into disjoint
classes defines an abstract ”characteristic” XΠ, where two
objects are equivalent w.r.t. XΠ if and only if they belong to the
same class in the partitioning Π.
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The common idea of “equivalence” or “similarity” can be captured with
three properties:

Definition 1.1
A relation R⊆ A×A is

1. reflexive if a R a holds for each a ∈ A;

2. symmetric if a R b⇒ b R a holds for all a,b ∈ A, and

3. transitive if a R b∧b R c⇒ a R c holds for all a,b,c ∈ A.

Definition 1.2 (Equivalence relation)
A relation R⊆ A×A that is reflexive, symmetric and transitive is called
an equivalence relation. The equivalence class (with respect to R) of
an element a ∈ A is

R[a] = {x ∈ A | a R x}.

Instead of R, equivalence relations are usually denoted by symbols
such as ∼, ≡, and '.
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Example:

Let
A = {all people born between 1900 and 1999}

and let a R b hold if the persons a and b were born in the same year.

Then R is clearly an equivalence relation whose equivalence classes
comprise all the persons who were born in a given year.

There are 100 equivalence classes, each corresponding to a year in
1900,. . . ,1999.
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Proposition 1.3
Let R⊆ A×A be an equivalence relation. Then for all a,b ∈ A it holds
that

R[a] = R[b] if and only if a R b.

Proposition 1.4
Let R⊆ A×A be an equivalence relation. Then the equivalence
classes of R partition A into mutually disjoint non-empty subsets, i.e.

R[a] 6= /0 for each a ∈ A,

A =
⋃

a∈A R[a], and

if R[a] 6= R[b], then R[a]∩R[b] = /0, for all a,b ∈ A.

Correspondingly, each partitioning of a set A into disjoint non-empty
subsets Ai, i ∈ I, defines an equivalence relation

a∼ b ⇔ a and b belong to the same subset Ai.
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1.4 Proof by induction

The induction principle on natural numbers:

Let P(k) be a predicate (∼ property) with natural number argument k.
If it holds that:

1. P(0) and

2. for all k ≥ 0:
P(k)⇒ P(k+1),

then P(n) holds for all n ∈ N.
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Example

Claim. For all n ∈ N it holds that

P(n) : (1+2+ · · ·+n)2 = 13 +23 + · · ·+n3.

Proof.

1. Induction basis P(0) : 02 = 0.

(continues)
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2. Induction hypothesis and step: assume that, for some given
k ≥ 0, the formula

P(k) : (1+2+ · · ·+ k)2 = 13 +23 + · · ·+ k3

holds. Then also

(1+2+ · · ·+ k+(k+1))2

= (1+ · · ·+ k)2 +2(1+ · · ·k)(k+1)+(k+1)2

= 13 + · · ·+ k3 +2 · k(k+1)
2

· (k+1)+(k+1)2

= 13 + · · ·+ k3 + k(k+1)2 +(k+1)2

= 13 + · · ·+ k3 +(k+1)3.

We have thus shown that whenever P(k) holds, then also P(k + 1)
holds, i.e., that P(k)⇒ P(k + 1) for all k ≥ 0. By induction, we can
thus deduce that the formula P(n) holds for all n ∈ N.
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Automata and Formal Languages
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Automata theory ∼ general theory of discrete I/O-mechanisms.

Input
”1011” ”yes”/”no”

Output
Automaton

Automata are mathematical abstractions. An automaton can be
implemented in many ways, e.g., as a digital circuit, mechanical device
or (most commonly) as a computer program.
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In this course the focus is on automata whose

1. inputs are finite, discrete strings

2. outputs are of the form “accept”/“reject” (∼ “yes”/“no” ∼
“input OK”/“input is invalid”)

Many generalisations exist, e.g.

1. inputs can be infinite (→ “reactive” systems, Büchi-automata)

2. outputs can be more complex (→ Moore- and Mealy-machines,
Turing machines computing functions)
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1.5 Alphabets, strings and languages
An alphabet is a finite, non-empty set of symbols (also called letters).

For instance,

the binary alphabet {0,1};
the Latin alphabet {A,B,. . . ,Z}.

A string is a finite sequence of symbols in some alphabet. As an
example,

“01001” and “0000” are strings over the binary
alphabet,
“TOC” and “XYZZY” are strings over the Latin
alphabet, and
the empty string contains no symbols and is
denoted by ε.

The length of a string x is denoted by |x| and is the
number of symbols in it. E.g., |01001|= 5, |TOC|= 3,
and |ε|= 0.
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A basic operation between strings is concatenation, i.e., writing
one string after another.

For clarity, sometimes the symbol ̂ is used for the binary
concatenation operator.
For instance,

I SEÂHORSE = SEAHORSE
I If x = 00 and y = 11, then xy = 0011 and yx = 1100
I For all strings x it holds that xε = εx = x
I For all strings x, y, and z it holds that (xy)z = x(yz)
I For all strings x and y, we have |xy|= |x|+ |y|
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The set of all strings over an alphabet Σ is denoted by Σ∗.

A subset A⊆ Σ∗ is called a (formal) language over Σ.

Example:

If Σ = {0,1}, then Σ∗ = {ε,0,1,00,01,10,11,000, . . .}.

Example:

If Σ = {0,1}, then the following are formal languages over Σ:

/0

{ε,0,110110110011100}
{0,1,11,111,1111, ...}
Σ∗ = {ε,0,1,00,01,10,11,000 . . .}
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1.6 Automata and languages
Let M be an automaton whose inputs are strings over an
alphabet Σ, and the outputs are simply of form “input accepted” or
“input rejected”. (Abbreviated as 1/0.)
Denote the output of M on input x by M(x), and the set of all
inputs accepted by M by AM, i.e.

AM = {x ∈ Σ
∗ |M(x) = 1}.

We say that M recognises the language AM ⊆ Σ∗.
A main idea in automata theory: the structure of an automaton M
is reflected in the properties of the language AM.
Conversely: suppose that we are interested in an I/O-mapping
f : Σ∗→{0,1}. By studying the language

Af = {x ∈ Σ
∗ | f (x) = 1}

we may deduce what kind of an automaton is needed to
implement the function f .
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1.7 Common notation

In principle, we could use arbitrary symbols and notation for the
concepts introduced above. However, for the sake of readability, it is
customary to use the following fairly standard conventions:

Alphabets: Σ, Γ, . . . (uppercase Greek letters). E.g. the binary
alphabet Σ = {0,1}.

Size of an alphabet (or more generally any set): |Σ|.
Alphabet symbols: a, b, c, . . . (lowercase Latin letters from the

beginning of the alphabet). For instance, if
Σ = {a1, . . . ,an} is an alphabet, then |Σ|= n.

Strings: u, v, w, x, y, . . . (lowercase Latin letters from the end of
the alphabet).
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Concatenation of strings: x̂y or simply xy.

Length of a string: |x|. For instance,

|abc|= 3;
If x = a1 . . .am and y = b1 . . .bn, then |xy|= m+n.

Empty string: ε.

String of n symbols a: an. As an example,

an = aa . . .a︸ ︷︷ ︸
n symbols

,

a2b3 = aabbb, and
|aibjck|= i+ j+ k.

Repeating a string x k times: xk. For instance,

(ab)2 = abab, and
|xk|= k|x|.

Set of all string over an alphabet Σ: Σ∗. As an example,

{a,b}∗ = {ε,a,b,aa,ab,ba,bb,aaa,aab, . . .}.
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1.8 Induction on strings

In automata theory it is common to construct things “by induction on
the length of the string”. That is, one first defines an operation on the
empty string ε (or on a single alphabet symbol). One then assumes
that the operation is defined for all strings u of some length k and
shows how to define it on strings of length k+1, i.e. strings of the form
w = ua, where a is a single symbol.

Example:

Let Σ be an alphabet. The reversal wR of a string w ∈ Σ∗ is defined
inductively with the following rules:

1. εR = ε

2. if w = ua, u ∈ Σ∗, and a ∈ Σ, then wR = âuR.
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Such an inductive (“recursive”) definition can naturally be used in
calculations, e.g.,

(011)R = 1̂(01)R = 1̂(1̂0R)
= 11̂(0̂εR) = 110̂εR

= 110̂ε = 110.

However, induction is more often used to prove general properties of
constructions, as shown on the next slide.
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Claim. Let Σ be an alphabet. For all x,y ∈ Σ∗ it holds that
(xy)R = yRxR.

Proof. By induction on the length of y.

1. Base case when |y|= 0, i.e., y = ε: (xε)R = xR = εRxR.

2. Induction hypothesis and step: assume that the claim holds for all
strings y of length k. Take any string w = ya of length k+1,
where y ∈ Σ∗, |y|= k and a ∈ Σ. Then

(xw)R = (xya)R

= â(xy)R [definition of R]
= â(yRxR) [induction hypothesis]
= (âyR)xR [associativity of ]̂
= (ya)RxR [definition of R]
= wRxR.
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