
CS-C2160 Theory of Computation

Lecture 2. Finite Automata

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

2/39

Topics

State diagrams and transition tables

Programming with finite automata

Formal definition of finite automata

* Excursion: Extensions of finite automata

Material:

Sections 2.1–2.3 in Finnish lecture notes
(or Section 1.1 in the Sipser book)

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

3/39

Recap: Languages and automata
Computer programs and devices that solve computational
problems can be seen as automata:

x = 4831
...

...

false

...

return res

...

def isPrime(x):

true

x = 5899

Alphabet: a finite set of symbols, e.g., Σ = {0,1,2, ...,9}.
Language: a set of strings over Σ, e.g.,

I P = {x ∈ Σ? | x is a prime}= {2,3,5,7,11,13, ...}
I F = {z ∈ {0x00,0x01, ...,0xFF}? |

z is a virus-free machine-language program}
Given a problem, what kind of automaton is required to solve it
(that is, to recognise a given language)?
Can all problems be solved with some (effective) automaton?

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

4/39

Finite Automata (aka Finite State Machines)

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

5/39

2.1 State diagrams and transition tables

We first study computing systems that have only finitely many
possible states.

Such systems can be modelled as finite automata (FA, also
called finite state machines, FSM). (Wikipedia pages: FA, FSM.)

There are many alternative representations for FA: state
diagrams, transition tables, ...

http://en.wikipedia.org/wiki/Deterministic_finite_automaton
http://en.wikipedia.org/wiki/Finite-state_machine

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

6/39

Example: A simple coffee machine

10c 10c 10c

20c 20c

20c
20c

10c

10c

20c

10c

20c

0.10

enough

0.00 0.20 0.30 enough

more than

The state diagram above solves the decision problem “Has enough
money been inserted for a cup of coffee?”

In general, finite automata can be used to model procedures for
solving simple decision (yes/no) problems.
There are also variants of FA with more expressive output (e.g.,
Moore and Mealy machines) but these are not studied in detail on
this course.

https://en.wikipedia.org/wiki/Moore_machine
https://en.wikipedia.org/wiki/Mealy_machine

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

7/39

State diagram notation:

q A state q

q0 A start state q0 (also called initial state)

qf An accepting state qf

q1 q2
a A transition from state q1 to state q2 on input

symbol a

An abbreviation:
a

c

b≡ q2q1q1 q2
a, b, c

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

8/39

Example:

Floating point numerals in the C programming language.

.

.

+,- digit

digit

digitdigit

digitdigit

exp

q0 q1 q2 q3

q4

q5

q6

exp exp

digit

digitq7

Abbreviations: digit = {0,1, . . . ,9}, exp = {E,e}.

https://en.wikipedia.org/wiki/Floating_point

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

9/39

Representing an FA with a transition table: describe the successor
state as a function of (i) the current state and (ii) the input symbol.
Example:

Transition table for the floating point automaton:

digit . exp + −
→ q0 q1 q7

q1 q1 q2 q4
← q2 q3 q4
← q3 q3 q4

q4 q6 q5 q5
q5 q6

← q6 q6
q7 q3

where “→” marks the initial state and “←” denotes an accept state.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

10/39

Question: What are the empty cells in the transition table?

Answer: Empty cells in transition tables, and similarly missing
edges in state diagrams, correspond to ”error situations”
in the automaton.
If the automaton takes such a transition, the input is
rejected.
Formally, the automaton contains a specific error state
but we omit drawing the state and the transitions to it for
the sake of clarity.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

11/39

Example:

The complete state diagram of the floating point automaton would look
like this:

.

+,-

digit

digit .

error
· · ·

· · ·
.

q0 q1

exp,
+,-

exp, .,+,-
digit,

exp

· · ·

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

12/39

and the complete transition table would be:

digit . exp + −
→ q0 q1 q7 error error error

q1 q1 q2 q4 error error
...

...
...

...
...

...
...

← q6 q6 error error error error
error error error error error error

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

13/39

2.2 Programming with finite automata

Given a finite automaton, it is straightforward to implement it as a
corresponding program in some programming language.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

14/39

Example:

A Python program based on the floating point automaton, testing
whether a string is a valid floating point numeral in C.
from sys impor t s t d i n
q=0
f o r c i n s t d i n . r ead l i ne () . s t r i p (" \ n ") :

i f q==0:
i f c . i s d i g i t () : q=1
e l i f c==" . " : q=7
else : q=99

e l i f q==1:
i f c . i s d i g i t () : q=1
e l i f c==" . " : q=2
e l i f c=="E" or c==" e " : q=4
else : q=99

. . .
e l i f q==7:

i f c . i s d i g i t () : q=3
else : q=99

i f q i n [2 , 3 , 6] : p r i n t (" I s a v a l i d f l o a t i n g po in t numeral ")
e lse : p r i n t (" Not a f l o a t i n g po in t numeral ")

from sys import stdin
q=0
for c in stdin.readline().strip("\n"):
 if q==0:
 if c.isdigit(): q=1
 elif c==".": q=7
 else: q=99
 elif q==1:
 if c.isdigit(): q=1
 elif c==".": q=2
 elif c=="E" or c=="e": q=4
 else: q=99
 elif q==2:
 if c.isdigit(): q=3
 elif c=="E" or c=="e": q=4
 else: q=99
 elif q==3:
 if c.isdigit(): q=3
 elif c=="E" or c=="e": q=4
 else: q=99
 elif q==4:
 if c.isdigit(): q=6
 elif c=="+" or c=="-": q=5
 else: q=99
 elif q==5:
 if c.isdigit(): q=6
 else: q=99
 elif q==6:
 if c.isdigit(): q=6
 else: q=99
 elif q==7:
 if c.isdigit(): q=3
 else: q=99

if q in [2,3,6]: print("Is a valid floating point numeral")
else: print("Not a floating point numeral")

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

15/39

Finite automata with semantic actions

One can add actions to the states and transitions of (a program
based on) a finite automaton.

Example:

An automaton recognising octal numerals:

q0 dq2q1
+,− d

d

Abbreviation: d = {0,1, . . . ,7}.
Let us build a program from this that computes the number value
of a given octal numeral, and outputs it in decimal notation.

https://en.wikipedia.org/wiki/Octal

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

16/39

A corresponding Python program for the syntax check:
from sys impor t s t d i n

q=0
f o r c i n s t d i n . r ead l i ne () . s t r i p (" \ n ") :

i f q==0:
i f c=="+" or c=="−" : q=1
e l i f c i n " 01234567 " : q=2
else : q=99

e l i f q==1:
i f c i n " 01234567 " : q=2
else : q=99

e l i f q==2:
i f c i n " 01234567 " : q=2
else : q=99

i f q==2: p r i n t (" Octa l numeral ")
e lse : p r i n t (" Not an o c t a l numeral ")

from sys import stdin

q=0
for c in stdin.readline().strip("\n"):
 if q==0:
 if c=="+" or c=="-": q=1
 elif c in "01234567": q=2
 else: q=99
 elif q==1:
 if c in "01234567": q=2
 else: q=99
 elif q==2:
 if c in "01234567": q=2
 else: q=99
if q==2: print("Octal numeral")
else: print("Not an octal numeral")

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

17/39

Adding operations that compute the value of the input octal numeral
and output it in decimal notation:
from sys impor t s t d i n

q=0
sgn=1 # SEM: s ign
va l =0 # SEM: absolu te value
f o r c i n s t d i n . r ead l i ne () . s t r i p (" \ n ") :

i f q==0:
i f c=="+" : q=1
e l i f c=="−" : sgn=−1; q=1
e l i f c i n " 01234567 " : va l= i n t (c) ; q=2
else : q=99

e l i f q==1:
i f c i n " 01234567 " : va l= i n t (c) ; q=2
else : q=99

e l i f q==2:
i f c i n " 01234567 " : va l =8* va l+ i n t (c) ; q=2
else : q=99

i f q==2: p r i n t (" Octa l numeral ; decimal p resen ta t i on i s " , sgn * va l)
e lse : p r i n t (" Not an o c t a l numeral ")

from sys import stdin

q=0
sgn=1 # SEM: sign
val=0 # SEM: absolute value
for c in stdin.readline().strip("\n"):
 if q==0:
 if c=="+": q=1
 elif c=="-": sgn=-1; q=1
 elif c in "01234567": val=int(c); q=2
 else: q=99
 elif q==1:
 if c in "01234567": val=int(c); q=2
 else: q=99
 elif q==2:
 if c in "01234567": val=8*val+int(c); q=2
 else: q=99
if q==2: print("Octal numeral; decimal presentation is", sgn*val)
else: print("Not an octal numeral")

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

18/39

* Other application examples

Finite automata can used when designing and implementing
behaviours of actors in computer games, see e.g.
https://www.techopedia.com/finite-state-machine-how-it-has-
affected-your-gaming-for-over-40-years/2/33996 and
https://www.youtube.com/watch?v=JyF0oyarz4U/.

The graphical state diagram editor used in the course’s
computerised home assignments has itself been designed as an
automaton with transitions of the form: “If the present state is
’adding transitions’ and an event ’mouseclick on an edge’ is
received, then go to state ’modifying edge symbol set’ ”, etc.

Also see Wikipedia for automata-based programming and
event-driven finite state machines.

https://www.techopedia.com/finite-state-machine-how-it-has-affected-your-gaming-for-over-40-years/2/33996
https://www.techopedia.com/finite-state-machine-how-it-has-affected-your-gaming-for-over-40-years/2/33996
https://www.youtube.com/watch?v=JyF0oyarz4U/
http://en.wikipedia.org/wiki/Automata-based_programming
http://en.wikipedia.org/wiki/Event-driven_finite-state_machine

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

19/39

2.3 Formal definition of a finite automaton
Mechanistic model:

tape head:

i tupn

δ

q1 q2

q0

input tape:

control unit:

A finite automaton M consists of
a control unit with a finite number of states and a transition
function δ, and
an input tape that is accessed symbol-by-symbol with a tape
head.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

20/39

The behaviour of the automaton on an input string is as follows:

In the beginning, the automaton is in its start state q0, the input is
written on the input tape, and the tape head is pointing to the first
symbol of the input.
In one step, the automaton:

I reads the symbol under the tape head,
I decides, based on its current state and the symbol, the next state,
I changes to the next state, and
I moves the tape head to the next symbol on the input tape.

The automaton halts after the last symbol on the input tape has
been processed.

If the current state at the time of halting is a special accept state,
the automaton accepts the input. Otherwise, it rejects the input.

The language recognised by the automaton is the set of strings it
accepts.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

21/39

The verbal description above may have many interpretations, e.g.,
what happens when the empty string ε is input?

A precise mathematical formulation:

Definition 2.1 (Finite automata)
A finite automaton is a 5-tuple

M = (Q,Σ,δ,q0,F),

where

Q is a finite set of states,

Σ is a finite set called alphabet,

δ : Q×Σ→ Q is the transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is the set of final or accepting states.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

22/39

Example:

Formal presentation of the floating point automaton:

M = ({q0, . . . ,q7,error},{0,1,...,9,.,E,e,+,-},
δ,q0,{q2,q3,q6}),

where δ is as described in the complete transition table earlier:

δ(q0,0) = δ(q0,1) = · · ·= δ(q0,9) = q1,

δ(q0, .) = q7, δ(q0,E) = δ(q0,e) = error,

δ(q1, .) = q2, δ(q1,E) = δ(q1,e) = q4,

etc.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

23/39

Formal definition for the semantics of FA
The previous definition describes the structure of a finite automaton
but not yet how it works. The behaviour (i.e., semantics) of an
automaton (Q,Σ,δ,q0,F) can also be described mathematically with a
few additional definitions.

A configuration of the automaton is a pair (q,w) ∈ Q×Σ?.

The start configuration on input x ∈ Σ? is the pair (q0,x).

Intuition: q is the current state of the automaton and w is the part
of the input that has not yet been processed.

Example
The following (among many others) are configurations of the floating
point automaton shown earlier: (q0,0.25E2), (q0,EE..33),
(error,E..33), (q1, .25E2), (q6,ε).

On input .242E10, the start configuration is (q0, .242E10).

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

24/39

A configuration (q,w) leads in one step or leads directly to
configuration (q′,w′), denoted by

(q,w)
M̀
(q′,w′),

if w = aw′ (a ∈ Σ) and q′ = δ(q,a). We say configuration (q′,w′)
is the immediate successor of configuration (q,w).
Intuition: if the automaton is in state q and reads the first symbol
a of the yet unprocessed string w = aw′ on the tape, it will move
to state q′ and move the tape head one step right, so that the
remaining string on the tape is w′.
If the automaton M is clear from the context, we simply write

(q,w) ` (q′,w′).
Example:

Consider again the floating point automaton. Why does

(q0,0.25E2) ` (q1, .25E2) hold?

(q0,0.25E2) ` (q6,5E2) not hold?

configuration (q6,ε) not have immediate successors?

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

25/39

A configuration (q,w) leads to a configuration (q′,w′), i.e., the
configuration (q′,w′) is a successor of (q,w), denoted by

(q,w)
M̀
∗ (q′,w′),

if there exists a sequence (q0,w0),(q1,w1), . . . ,(qn,wn) of
configurations, for some n≥ 0, such that

(q,w) = (q0,w0), (q0,w0)
M̀
(q1,w1), (q1,w1)

M̀
(q2,w2)

. . . (qn−1,wn−1)
M̀
(qn,wn) and (qn,wn) = (q′,w′).

As a special case when n = 0, we have (q,w)
M̀
∗ (q,w) for any

configuration (q,w).
Again, when the automaton M is clear from the context, we
simply write

(q,w) `∗ (q′,w′).

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

26/39

The automaton M accepts a string x ∈ Σ? if

(q0,x)
M̀
∗ (qf ,ε) for some qf ∈ F;

otherwise M rejects x.

In other words, the automaton accepts x if its start configuration
on x leads to a configuration with an accept state and no
remaining input.

The language recognised by the automaton M is defined as

L(M) = {x ∈ Σ
? | (q0,x)

M̀
∗ (qf ,ε) for some qf ∈ F}.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

27/39

Example:

The behaviour of the floating point automaton on the input “0.25E2”:

(q0,0.25E2) ` (q1, .25E2) ` (q2,25E2)
` (q3,5E2) ` (q3,E2)
` (q4,2) ` (q6,ε).

Because q6 ∈ F = {q2,q3,q6}, we have 0.25E2 ∈ L(M).

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

28/39

* An alternative definition (from the Sipser book)
Acceptance can also be defined without using “configurations”.
In this case, the remaining input string is not directly visible in the
presentation.

Definition
Let M = (Q,Σ,δ,q0,F) be an FA.
M accepts a string w = w1w2...wn ∈ Σ? if there exists a finite
sequence r0r1r2...rn ∈ Q? of states such that

I r0 = q0
I δ(ri,wi+1) = ri+1 for all 0≤ i < n
I rn ∈ F

L(M) = {w ∈ Σ? |M accepts w}.

Example:

The floating point automaton accepts the string “0.25E2” as the state
sequence q0q1q2q3q3q4q6 fulfills all the requirements above.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

29/39

More examples
Example:

The languages

{w ∈ {0,1}? | w contains an even number of symbol 1}

and
{w ∈ {0,1}? | w contains 001 as a substring}

can be recognised with the following automata:

0

1

0
1

oe

1

0
0 1

1 0 0, 1

da b c

An “intuitive interpretation” for the state a could be “we have not yet
seen the substring 001 and the previous symbol was 1”. What could be
the “explanations” for the other states in the automaton?

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

30/39

Lemma 2.1
If a language L⊆ Σ? can be recognised with a finite automaton, then
the complement language L = {w ∈ Σ? | w /∈ L} can be recognised
with a finite automaton as well.

Proof

Let ML = (Q,Σ,δ,q0,F) be any FA that recognises the language L (i.e.,
has L(ML) = L).
As the state of ML at the end of its computation on any input string
is unique and well-defined, we get an automaton for the complement
language L= {w ∈ Σ? |w /∈ L} simply by replacing all the accept states
in ML by non-accept ones and vice versa. (Note that the presentation of
ML is here assumed to be complete, i.e. all the entries in the transition
table/diagram have been filled in.)
Thus, the FA ML = (Q,Σ,δ,q0,Q\F) recognises L.

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

31/39

Example:

By applying the construction of the above proof to the automaton of the
previous example recognising the language

L = {w ∈ {0,1}? | w contains 001 as a substring},

we get an automaton recognising the complement language

L = {w ∈ {0,1}? | w does not contain 001 as a substring}.

The automaton is

1

0
0 1

1 0 0, 1

a b c d

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

32/39

Lemma 2.2
If languages A,B⊆ Σ? can be recognised with finite automata, then so
can the language A∩B = {w ∈ Σ? | w ∈ A and w ∈ B}.

Proof
Proof by construction.
Let MA = (QA,Σ,δA,qA,0,FA) and MB = (QB,Σ,δB,qB,0,FB) be some
FA that recognise the languages A and B, respectively.
We build an automaton MA∩B =(QA∩B,Σ,δA∩B,qA∩B,0,FA∩B) that “sim-
ulates” both automata at the same time and accepts a string if and only
if both automata would.
MA∩B is called the (synchronous) product automaton, and defined as:

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

33/39

QA∩B = QA×QB, meaning that the states are pairs that record in
which states the simulated automata A and B would be.

qA∩B,0 = (qA,0,qB,0), indicating that in the beginning both
simulated automata are in their start states.

δA∩B((qa,qb),σ) = (δA(qa,σ),δB(qb,σ)), meaning that MA∩B

moves to a new state that corresponds to the states of A and B
when they would read the same symbol σ.

FA∩B = FA×FB, so that MA∩B accepts exactly when both of the
simulated automata would.

Now one could prove, by using induction on the length of the input
string, that if, after reading the input string, automaton A is in state qa

and B is in state qb, then automaton MA∩B is in state (qa,qb).

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

34/39

Example:

By using our earlier examples and the construction in the previous
proof, we can build an automaton that accepts exactly the strings that
contain an even number of symbol 1 and 001 as a substring.

Component automata:

0

1

0
1

oe

1

0
0 1

1 0 0, 1

da b c

The product automaton:

1 111

0

0 0

0 0

0 0

1

0

1
1

1

(e, d)

(o, b)

(e, a) (e, b)

(o, c) (o, d)(o, a)

(e, c)

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

35/39

* Excursion: Extensions of Finite Automata

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

36/39

* Extensions of finite automata

Finite automata are perhaps the simplest automata class. There are
many extensions, those described shortly in the next slides as well as:

Pushdown automata, where the input tape is replaced by a
read-write stack. These are discussed later in the course.

Timed automata that extend FA with real-valued clocks (see, e.g.,
this tutorial article and the Uppaal tool).

Hybrid automata that allow more general use of real-valued
variables. They are used to model and analyse systems that
control and interact with physical processes.

Turing machines, where the input tape is replaced by an infinite
(more precisely, infinitely extendible) read-write storage tape.
These are also discussed later in the course.

https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Timed_automaton
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/bouyer-etr05.pdf
http://www.uppaal.org/
http://en.wikipedia.org/wiki/Hybrid_automaton
https://en.wikipedia.org/wiki/Turing_machine

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

37/39

* Automata accepting infinite strings

In this course, we only consider finite input strings.

However, in some applications infinite strings are needed: for
instance, the executions of many reactive systems (servers,
protocols, etc) are not expected to terminate but to continue
forever.

Many automata classes have been defined to handle infinite
strings.

E.g., Büchi automata accept an infinite string if an accept state is
visited infinitely often.

One application example: the Spin verification tool.

https://en.wikipedia.org/wiki/B%C3%BCchi_automaton
http://spinroot.com/spin/whatispin.html

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

38/39

Example:

A Büchi automaton accepting the infinite
strings over {a,b,c} whose even indices
have the symbol a.

b, c

a s1s0

Now abacacaba... is accepted but bbacacaba... and abacaccba... are
rejected.

Example:

A Büchi automaton that accepts the infinite strings over {req,ack,data}
in which each req symbol (“request”) is followed at some point by an
ack symbol (“acknowledgement”).

ack

reqs0 s1 req, data

ack, data

CS-C2160 Theory of Computation / Lecture 2

Aalto University / Dept. Computer Science

39/39

* Transducers
Finite state transducers do not accept/reject input but transform it into
output.

Moore machines associate output to states:

output:

c . . .
. . .

0 0 0 0 1 1 0 . . .

input:
state:a

b, c

a

b, c

b, c

a

b c aa a a
s0 s0 s1s1 s0 s2

s1/0 s2/1s0/0
s2 s0

Mealy machines associate output to state transitions, which
allows it to also depend on the current input symbol:

a/1

state:
output:

b/0, c/0

0 0 0 0 1 1 0 . . .

b/0, c/0

a/0

b c aa a a c . . .
. . .

input:
s0s1 s1s0

s1s0
s0 s1s1 s0

http://en.wikipedia.org/wiki/Finite_state_transducer
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Mealy_machine

	Finite Automata (aka Finite State Machines)
	State diagrams and transition tables
	Programming with finite automata
	Formal definition of a finite automaton
	Formal definition for the semantics of FA
	More examples

	* Excursion: Extensions of Finite Automata

