
Robotic Manipulation Exercise 1
Introduction to ROS, mujoco, and git

Robotic Operating System
- ROS stand for Robotic Operating System and was released 2007 by a company

known as Willow Garage.
- ROS is an open-source, meta-operating system for your robot.
- ROS is designed to be modular at a fine-grained scale.
- ROS is widely used in industry and academic research

ROS concept
- ROS is build up of nodes
- ROS nodes are registered through a ROS Master
- Nodes can communicate with each other via topics
- For more in depth knowledge about ROS you can read, for example,

http://wiki.ros.org/ROS/Introduction

http://wiki.ros.org/ROS/Introduction

ROS Workspace Environment
- Default workspace loaded with:

$ source /opt/ros/melodic/setup.zsh

- Setup ROS workspace (http://wiki.ros.org/catkin/Tutorials/create_a_workspace)

$ mkdir -p ~/ros/src

$ cd ~/ros

$ catkin_make

- Always remember to source devel/setup.bash or devel/setup.zsh in your workspace after you
compiled the code in order to access the newly compiled ROS nodes.

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

Install MuJoCo
Download MuJoCo simulator from http://www.mujoco.org and put the simulator
code as well as your MuJoCo key into the folder ~/.mujoco/, i.e.: (you can find the
“mjkey.txt” file in “MyCourses > For Aalto users”)

 $ ls ~/.mujoco

mjkey.txt mjpro200

 $ ls ~/.mujoco/mjpro200/

bin doc include model sample

Inside ~/.mujoco folder run:

$ ~/.mujoco/mjpro200/bin/simulate ~/.mujoco/mjpro200/model/humanoid.xml

http://www.mujoco.org

Test ROS
Use three terminals

- First terminal (roscore)

$ source ~/ros/devel/setup.zsh

$ roscore

- Second terminal (publisher)

$ source ~/ros/devel/setup.zsh

$ rostopic pub -r 1 /course_name std_msgs/String "data: 'manipulation_course'"

- Third terminal (subscriber)

$ source ~/ros/devel/setup.zsh

$ rostopic list #should print three topics

$ rostopic echo /course_name

TF
- A robotic system typically has many 3D coordinate frames that change over

time. These coordinate systems are naturally expressed in a transformation
(TF) tree → http://wiki.ros.org/tf2

- tf maintains the relationship between coordinate frames in a tree structure
buffered in time, and lets the user transform points, vectors, etc between any
two coordinate frames at any desired point in time.

http://wiki.ros.org/tf2

RViz and TF tree
$ roslaunch lumi_description show.launch

$ rosrun tf view_frames && evince frames.pdf

Git
- git is a version-control system.
- In this course, gitlab is used for storing all exercises. If you have no previous

knowledge of git and/or gitlab then please read up about it online at, e.g.
https://docs.gitlab.com/ee/gitlab-basics/

- To use Aalto gitlab you need to log in to https://version.aalto.fi/ and then set up your
ssh key https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html

- Or follow these two links here and here.

https://docs.gitlab.com/ee/gitlab-basics/
https://version.aalto.fi/
https://docs.gitlab.com/ee/gitlab-basics/create-your-ssh-keys.html
https://subscription.packtpub.com/book/application_development/9781783986842/2/ch02lvl1sec18/generating-your-ssh-key-on-unix-like-systems
https://subscription.packtpub.com/book/application_development/9781783986842/2/ch02lvl1sec20/adding-your-ssh-key-to-gitlab

gitlab group, forking the course material, and
pushing code

- Interactive session during the exercise session.
- For the gitlab repository, we created one subgroup for each one of you. You

can use the following pattern to access that:

https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2021/<your email address without @aalto.fi>

for example if your email address is eshagh.kargar@aalto.fi use:

https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2021/eshagh.kargar

- On your computer, remember to always clone your newly forked exercise
repository into the src directory of your ROS workspace

https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2020/
https://version.aalto.fi/gitlab/robotic_manipulation_students_projects_2020/eshagh.kargar

Exercise file system
The file system for each exercise is visualized in the figure to the right

- The src folder contains the template code you
need to fix

- The feedback folder will contain the TA’s
feedback and points awarded

- In the report folder you will upload the
exercise report as a pdf

- The docs folder will contain all necessary
information for the current exercise.

- Other files are ROS specific which you do not need to touch.

What did we not cover?
- Specifically to ROS, we did not cover concepts such as:

- ROS Services http://wiki.ros.org/Services,
- ROS Parameter Server http://wiki.ros.org/Parameter,
- ROS Bags http://wiki.ros.org/Bags,
- and much more http://wiki.ros.org/ROS/Concepts.

- With respect to Git we did not cover concepts such as
- Git Branching and Merging https://git-scm.com/book/en/v2/
- Git-Branching-Basic-Branching-and-Merging
- git-diff https://git-scm.com/docs/git-diff
- and much more http://thepilcrow.net/ explaining-basic-concepts-git-and-github/

- You will probably not need to master nor need these concepts during the
course, but it is good to know about them.

https://git-scm.com/book/en/v2/

