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Topics

Topics:

Minimisation of finite automata

Nondeterministic finite automata

ε-automata

Material in Finnish:

Sections 2.4–2.5 in Finnish lecture notes (and the concept of
computation tree in these slides)

Material in English:

Minimisation: e.g. Wikipedia

Nondeterminism: Section 1.2 in the Sipser book
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Recap: Finite automata
Example:

A finite automaton M recognising floating point numerals in C

.

.

+,- digit

digit

digitdigit

digitdigit

exp

q0 q1 q2 q3

q4

q5

q6

exp exp

digit

digitq7

where digit = {0,1, . . . ,9} and exp = {E,e}.
Now 12.3E−2 ∈ L(M) and .32 ∈ L(M) but 12E /∈ L(M).
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Finite Automata: Minimisation and Nondeterminism
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3.1 Minimisation of finite automata

One can show that, for each finite automaton, there exists a
unique automaton (up to renaming of the states) with a minimum
number of states that recognises the same language.

Minimisation of automata allows us to e.g. decide whether two
automata recognise the same language. (This is the case if and
only if the corresponding minimal automata are the same).

Minimisation can be done with an efficient algorithm discussed
below. Its main idea is to merge all the states from which the
automaton works in exactly the same way w.r.t. acceptance for all
input strings.
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Let M = (Q,Σ,δ,q0,F) be a finite automaton.

Extend the transition function δ of M from symbols to strings as
follows: if q ∈ Q and x ∈ Σ∗, define

δ∗(q,x) = q′ s.t. (q,x)
M̀
∗ (q′,ε).

Two states, q and q′, of M are equivalent, denoted by

q≡ q′,

if for all x ∈ Σ∗ it holds that

δ∗(q,x) ∈ F if and only if δ∗(q′,x) ∈ F.

In other words, states q and q′ are equivalent if the automaton
accepts exactly the same strings when started from either one.
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A weaker equivalence condition: two states, q and q′, are
k-equivalent, denoted by

q
k≡ q′,

if for all x ∈ Σ∗, |x| ≤ k, it holds that

δ∗(q,x) ∈ F if and only if δ∗(q′,x) ∈ F.

In other words, q and q′ are k-equivalent if no string of length k or
less can distinguish them from each other.
Obviously,

(i) q
0≡ q′ iff both q and q′ are accept states

or neither is; and

(ii) q≡ q′ iff q
k≡ q′ for all k = 0,1,2, . . .

(1)

The minimisation algorithm proceeds by refining equivalence
classes of states induced by k-equivalence into ones induced by
(k+1)-equivalence until full equivalence is reached.
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The algorithm is based on the following simple lemma:

Lemma 3.1
(i) Two k-equivalent states, q1 and q2, are (k+1)-equivalent if and

only if δ(q1,a)
k≡ δ(q2,a) for all a ∈ Σ.

(ii) If for some k it holds that all mutually k-equivalent states are also
(k+1)-equivalent, then they are fully equivalent as well.

(Claim 2 follows by induction from claim (i) and observation 1(ii) on the
previous slide.)
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Algorithm MIN-FA [Minimisation of finite automata]

Input: A finite automaton M = (Q,Σ,δ,q0,F).

Output: A finite automaton M̂ that is (i) equivalent to M, meaning
that it recognises the same language, and (ii) has a minimum
number of states.
Procedure:

1. [Removal of redundant states]
Remove all the states of M that cannot be reached from the initial
state q0 with any input string.

2. [0-equivalence]
Partition the remaining states of M into two equivalence classes:
non-accept and accept states.
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Procedure continues...
3. [from k-equivalence to (k+1)-equivalence]

Check if it is the case that, for each alphabet symbol a, from all the
states in the same equivalence class there is a transition with the
symbol a to states in the same “successor equivalence class”.

If this is the case, the algorithm terminates and the states of the
minimal automaton M̂ correspond to the equivalence classes of
the states of M. For each alphabet symbol σ, there is a
σ-transition from class state q̂1 to class state q̂2 in M̂ if there is a
σ-transition from any state in class q̂1 to any state in class q̂2 in M.

Otherwise, refine the partitioning by splitting each equivalence
class of states that violates the above condition into smaller
classes according to the respective successor classes. Repeat
step 3.
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Given a finite automaton M, algorithm MIN-FA constructs a finite
automaton M̂ that recognises the same language and has a minimum
number of states. The resulting automaton is unique (up to renaming
of the states).

The algorithm always terminates: each time Step 3 is executed,
at least one of the (finitely many) equivalence classes is split in
two non-empty smaller classes.
Step 3 refines k-equivalence classes into (k+1)-equivalence
classes. [Lemma 3.1(i)]
When all k-equivalence classes are (k+1)-equivalence classes
as well, the states in each of them are mutually fully equivalent.
[Lemma 3.1(ii)]
Each equivalence class contains at least one state and any such
state is reachable from the initial state, meaning that all the
classes are necessary.
The minimality and uniqueness proofs for the resulting automaton
can be found in the Finnish lecture notes.
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Example

Let us minimise the automaton shown below.

5

1
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3

4

6

b

b

a

a

b

b

b b

a

a

a

a

a b
→ 1 2 3

2 4 2
3 2 3

← 4 3 5
← 5 1 4

6 4 5



CS-C2160 Theory of Computation / Lecture 3

Aalto University / Dept. Computer Science

13/37

Example

In step 1, state 6 is removed as it cannot be reached from the initial
state with any input string.

$a$
$b$

3

4

1

2

5

a

a

a

b

b

b

b

a

a b
→ 1 2 3

2 4 2
3 2 3

← 4 3 5
← 5 1 4
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Example

In step 2, the remaining states {1,2,3,4,5} are partitioned into class I
that contains the non-accept states and class II that contains the accept
states.

$a$
$b$

3

4

1

2

5

a

a

a

b

b

b

b

a

a b
I : → 1 2 3

2 4 2
3 2 3

II : ← 4 3 5
← 5 1 4
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Example

In step 3, it is marked to which class the transition function maps each
(state,symbol)-pair:

$a$
$b$

3

4

1

2

5

a

a

a

b

b

b

b

a

a b
I : → 1 2, I 3, I

2 4, II 2, I
3 2, I 3, I

II : ← 4 3, I 5, II
← 5 1, I 4, II
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Since class I contains two kinds of states, {1,3} and {2}, the partition-
ing is refined and the transition function again inspected w.r.t the new
partitioning:

5

1

2

3

4

6

b

b

a

a

b

b

b b

a

a

a

a

a b
I : → 1 2, II 3, I

3 2, II 3, I
II : 2 4, III 2, II
III : ← 4 3, I 5, III

← 5 1, I 4, III

Now the states in each class behave similarly for each input symbol and
the algorithm terminates.
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The resulting minimal finite automaton is:

III

b

II
a a

b

a

b

I
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3.2 Nondeterministic finite automata

Nondeterministic automata are similar to deterministic ones
except that their transition function δ does not associate a
(state,input symbol) pair to a single successor state but to a set of
possible successor states.

A nondeterministic automaton accepts an input if at least one
possible execution path leads to an accepting final state.

Nondetermistic automata cannot be, as such, implemented with
computer programs but they are an important description
formalism for decision problems.

Note: In these slides, as well as in the Finnish lecture notes,
nondeterministic automata are introduced in two stages, first
without allowing ε-transitions and then with them. The Sipser
book allows ε-transitions at once.
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Example:

A nondeterministic automaton that detects whether the input string con-
tains substring aba:

q0

b

a

q1

a
b

q2
a

q3
a

b

The automaton accepts the string aaba because it is possible for it to
proceed as follows:

(q0,aaba) ` (q0,aba) ` (q1,ba) ` (q2,a) ` (q3,ε)

The automaton could also have ended in a non-accepting state:

(q0,aaba) ` (q0,aba) ` (q0,ba) ` (q0,a) ` (q0,ε)

But this does not matter: intuitively we can think that the automaton is
capable of always taking ”the best possible choice”.

CS-C2160 Theory of Computation / Lecture 3

Aalto University / Dept. Computer Science

20/37

A nondeterministic automaton that detects whether the input string con-
tains substring aba:

q0

b

a

q1

a
b

q2
a

q3
a

b

Notice: The automaton does not accept e.g. the string aabbab because
it is not possible to reach the (only) accepting final configuration (q3,ε)
from the initial configuration (q0,aabbab) in any way.
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Formally, we define nondeterministic FA (NFA) as follows:

Definition 3.1 (Nondeterministic finite automata)
A nondeterministic finite automaton is a tuple

M = (Q,Σ,δ,q0,F),

where

Q is a finite set of states,

Σ is the input alphabet,

δ : Q×Σ→ P (Q) is the set-valued transition function,

q0 ∈ Q is the initial state,

F ⊆ Q is the set of accept states.
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Example:

An “aba-automaton” that detects whether the input string contains a
substring aba:

q0

b

a

q1

a
b

q2
a

q3
a

b

The transition function is

a b
→ q0 {q0,q1} {q0}

q1 /0 {q2}
q2 {q3} /0

← q3 {q3} {q3}

For example, δ(q0,a) = {q0,q1} and δ(q1,a) = /0.
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A configuration (q,w) of a nondeterministic FA can lead directly
to a configuration (q′,w′), denoted by

(q,w)
M̀
(q′,w′),

if (i) w = aw′ for an a ∈ Σ and (ii) q′ ∈ δ(q,a).

In such a case we may also say that (q′,w′) is a possible
immediate successor of the configuration (q,w).

Non-immediate successor configurations, acceptance of strings
etc. are defined similarly to those for deterministic finite automata
discussed in the previous lecture.
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Example:

For the “aba-automaton”

q0

b

a

q1

a
b

q2
a

q3
a

b

the possible computations on input string aabb are

(q0,aabb)
M̀
(q0,abb)

M̀
(q0,bb)

M̀
(q0,b)

M̀
(q0,ε)

(q0,aabb)
M̀
(q0,abb)

M̀
(q1,bb)

M̀
(q2,b)

(q0,aabb)
M̀
(q1,abb)

None of these is ending in a configuration with an accept state and
empty remaining string. Therefore, the string aabb is not accepted and
does not belong to the language recognised by the automaton.
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Example:

The computations of the “aba-automaton” on the input aabb can also
be illustrated as a computation tree

read:
Input symbol q0

q0

q2

q0

q0

q1

b

b

a

a

q0

q1

where each path from the root to a leaf describes one computation.
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Example:

The computation tree for the “aba-automaton” on input aaba:

read:
Input symbol

q2

q3q1q0

q0

q0

q1

a

b

a

a

q0

q1

q0

Now at least one computation path ends in an accept state when the in-
put is fully processed, and thus the string aaba belongs to the language
recognised by the automaton.
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Theorem 3.2 (Determinisation of NFA)

Let A = L(M) be a language recognised by a nondeterministic FA M.
Then there exists also a deterministic FA M̂ such that A = L(M̂).

Proof

Let A = L(M) for some nondeterministic FA M = (Q,Σ,δ,q0,F). The
idea is to construct a deterministic FA M̂ that simulates the operation of
M in all states possible at each step in parallel.
Formally, the states of M̂ are sets of states of M:

M̂ = (Q̂,Σ, δ̂, q̂0, F̂),

where
Q̂ = P (Q) = {S | S⊆ Q},
q̂0 = {q0},
F̂ = {S⊆ Q | S∩F 6= /0},

δ̂(S,a) =
⋃

q∈S

δ(q,a).
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Example:

When applied to the aba-automaton

q0

b

a

q1

a
b

q2
a

q3
a

b

the algorithm produces the following deterministic automaton (only
those states that can be reached from the new initial state are drawn):

{q0, q2}{q0} {q0, q1}

ab

b

a

{q0, q1, q3}
a {q0, q2, q3}

b

a

{q0, q3} b

ba

a

b
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Minimising the deterministic automaton

{q0, q2}{q0} {q0, q1}

ab

b

a

{q0, q1, q3}
a {q0, q2, q3}

b

a

{q0, q3} b

ba

a

b

leads to this final result (where also the states have been renamed):

b

a
s1

b a
b

s2 a, bs3
a

s0
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[Proof continues.] Let us verify that the automaton M̂ is equivalent to
M, meaning that L(M̂) = L(M).
By definition,

x ∈ L(M) iff (q0,x)
M̀
∗ (qf ,ε) for some qf ∈ F

and

x ∈ L(M̂) iff ({q0},x) `̂
M

∗ (S,ε) and S contains an accept state qf ∈ F

Thus it is enough to prove that, for all x ∈ Σ∗ and all q ∈ Q, it holds that

(q0,x)
M̀
∗ (q,ε) iff ({q0},x) `̂

M

∗ (S,ε) and q ∈ S. (2)
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Claim (2):

(q0,x)
M̀
∗ (q,ε) iff ({q0},x) `̂

M

∗ (S,ε) and q ∈ S.

Proof of claim (2) is by induction on the length of the string x.

(i) Base case |x|= 0:

(q0,ε)
M̀
∗ (q,ε) iff q = q0;

similarly, ({q0},ε) `̂
M

∗ (S,ε) iff S = {q0}.
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(ii) Induction step: Let x = ya for some a ∈ Σ and assume that
claim (2) holds for y. Now

(q0,x) = (q0,ya)
M̀
∗ (q,ε) iff

∃q′ ∈ Q s.t. (q0,ya)
M̀
∗ (q′,a) and (q′,a)

M̀
(q,ε) iff

∃q′ ∈ Q s.t. (q0,y)
M̀
∗ (q′,ε) and (q′,a)

M̀
(q,ε) iff [induction]

∃q′ ∈ Q s.t. ({q0},y) `̂
M

∗ (S′,ε) and q′ ∈ S′ and q ∈ δ(q′,a) iff

({q0},y) `̂
M

∗ (S′,ε) and ∃q′ ∈ S′ s.t. q ∈ δ(q′,a) iff

({q0},y) `̂
M

∗ (S′,ε) and q ∈⋃
q′∈S′ δ(q′,a) = δ̂(S′,a) iff

({q0},ya) `̂
M

∗ (S′,a) and q ∈ δ̂(S′,a) = S iff

({q0},ya) `̂
M

∗ (S′,a) and (S′,a)`M̂(S,ε) and q ∈ S iff

({q0},x) = ({q0},ya) `̂
M

∗ (S,ε) and q ∈ S.
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3.3 ε-automata
In the future we will also need one more extension of FAs:
nondeterministic FA that allow ε-transitions. Such transitions allow an
automaton to make nondeterministic choices without reading any
symbols from the input.

For instance, the language {aa,ab} can be recognised with the
following ε-automaton:

ε

b

aa

a

ε
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Definition 3.2 (ε-automata)
An ε-automaton is a tuple

M = (Q,Σ,δ,q0,F),

where the transition function δ is a function

δ : Q× (Σ∪{ε})→ P (Q).

The other definitions are as for standard nondeterministic FA except
that the “leads directly” relation is now defined so that

(q,w)
M̀
(q′,w′)

if

w = aw′ for an a ∈ Σ and q′ ∈ δ(q,a), or

w = w′ and q′ ∈ δ(q,ε).
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Theorem 3.3 (Eliminating ε-transitions)

Let A = L(M) for an ε-automaton M. Then there exists also a
standard nondeterministic FA M̂ such that L(M̂) = A.

Proof

Let M = (Q,Σ,δ,q0,F) be any ε-automaton. Intuitively, the automa-
ton M̂ we construct below works otherwise exactly as M except that
it “jumps over” ε-transitions by taking only those “real” transitions
from each state that may follow immediately after a sequence of ε-
transitions.
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Formally, given a state q ∈ Q, we define its ε-closure ε∗(q) in M by

ε∗(q) = {q′ ∈ Q | (q,ε)
M̀
∗ (q′,ε)}.

That is, ε∗(q) consists of all the states of M that can be reached from q
by taking only ε-transitions.

The automaton M̂ can now be defined as follows:

M̂ = (Q,Σ, δ̂,q0, F̂),

where

δ̂(q,a) =
⋃

q′∈ε∗(q)
δ(q′,a),

F̂ = {q ∈ Q | ε∗(q)∩F 6= /0}
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Example:

By removing ε-transitions from an ε-automaton with the above construc-
tion we get a standard nondeterministic automaton:

Original ε-automaton:

3 6 9

1

2

5

4

8

7

ε
ε

ε

a

a ε

a

ε

After removing
ε-transitions:

3 6 9

1

2

5

4

8

7

a

a

a

a

a

a

a

After removing
unreachable states:

6

1

4

8

a

a

a

Consider the automaton after removing the ε-transitions:

1. Why is the initial state “1” now an accepting final state?

2. Why does it not matter that the accepting final state “7” is not
anymore reachable from the initial state?


