51 Partitioning for Synthesis
Partitioning can be viewed as, utilizing the “Divide and Conguer” concept to
reduce complex designs into simpler and manageable blocks. Promoting

design reuse is one of the most significant advantages to partitioning the
design,

Apart from the ease in meeting timing constraints for a properly partitioned
design, 1t is also convenient to distribute and manage different blacks of the
design between team members.

The following recommendations achieve best synthesis results and reduction
in compile time,

a) Keep related combinational logic in the same module.

b) Partition for design reuse.

¢) Separate modules according to their functionality.

d) Separate structural logic from random logic.

¢) Limit a reasonable block size (perhaps, maximum of 10K gates per block)
f) Partition the top level (separate 'O Pads, Boundary Scan and core logic).
£) Do not add glue-logic at the top level.

h) Isolate state-machine from other logic,

i) Avoid multiple clocks within a block.

i) Isolate the block that is used for synchronizing multiple clocks.

k) WHILE PARTITIONING, THINK OF YOUR LAYOUT STYLE.

The group and ungroup commands provide the designer with the capability
of altering the partitions in DC, after the design hierarchy has already been
defined by the previously written HDL code. Figure 5-1, illustrates such an
action.

lop N top

D -
k.
+ o M e

Before Grouping After Grouping

L A

top top

U

L
b
S-J
=

Before Ungrouping After Ungrouping

Figure 5-1. Changing Partitions
The group command combines the specified instances into a separate block,
In Figure 5-1, instances Ul and U2 are grouped together to form a sub-block
named subl, using the following command.
dc shell> current_design top

de shells group {U1U2} —design_name subl

The ungroup command performs the opposite function. It is used to remove
the hierarchy, as shown in Figure 5-1, by using the following command.

de shells current design top
dc_shells ungroup —all

The designer can also use the ungroup command along with the —flatten and
—all options to flatten the entire hierarchy. This is illustrated below:

dc_shell: ungroup —flatten —all

5.2 What is RTL?

Today, RTL or the Register Transfer Level is the most popular form of high-
level design specification. An RTL description of a design describes the
design in terms of transformation and transfer of logic from one register to
another. Logic values are stored in registers where they are evaluated through
some combinational logic, and then re-stored in the next register.

RTL functions like a bridge between the software and hardware. It is text
with strong graphical connotations — text that implies graphics or structure. It
can be described as technology independent, textual structural description,
similar to a netlist.

5.2.1 Software versus Hardware

A frequent obstacle to writing HDL code is the software mind-set. HDLs
have evolved from logic netlist representations. HDLs in their initial form
(the Register Transfer Level) were a forum to represent logic in a format
independent from any particular technology library. A higher level of HDL
abstraction is the behavioral level that allows the design to be independent of
timing and explicit sequencing. Lately, many system designers have adapted
to HDLs to describe the full system.

Frequently, the expectation is that the synthesis tool will synthesize the HDL
to the minimal area and maximum performance, regardless of how the HDL
is written. The problem remains that at high level there are numerous ways of
writing code to perform the same function. For example, a conditional
expression could be written using case statements or if statements. Logically,
these expressions are responsible for performing the same task, but when
synthesized they can give drastically different results, as far as type of logic
inferred, area, and timing are concerned. A reasonable caveat told to recent
adopters of synthesis is — THINK HARDWARE!

5.3 General Guidelines

The following are general guidelines that every designer should be aware of,
There is no fixed rule to adhere to these guidelines, however, following them
vastly improves the performance of the synthesized logic, and produces a
cleaner design that is well suited for automating the synthesis process.

53.1 Technology Independence

HDL should be written in a technology independent fashion. Hard-coded
instances of library gates should be minimized. Preference should be given to
inference rather than instantiation. The benefit being that the RTL code can
be implemented with any ASIC library and new technology through re-
synthesis. This is especially important for synthesizable IP cores that are
commonly used by many designs.

In cases where placement of library gates is unavoidable, all the instantiated
gates may be grouped together to form their own module. This helps in
management of library specific aspects of a design.

5§3.2 Clock Logic
a) Clock logic including clock gating logic and reset generation should be

kept in one block — to be synthesized once and not touched again. This
‘helps in a clean specification of the clock constraints. Another advantage

is that the modules that are being driven by the clock logic can be
constrained using ideal clock specifications.

b) Avoid multiple clocks per block — try keeping one clock per block. Such
restrictions later help avoid difficulties that may arise while constraining a
block containing multiple clocks. It also helps in managing clock skew
that may arise at the physical level. Sometimes this becomes unavoidable,
for instance where synchronization logic is present to sync signals from
one clock domain to the other. For such cases, it 18 recommended that
designer isolate the sync logic, and synthesize it separately using special
techniques. This includes setting a dont_touch attribute on the sync logic
before instantiating it in the main block.

¢) Clocks should be given meaningful names. A suggestion is to keep the
name of the clock that reflects its functionality in addition to its
frequency. Another good practice is to keep the same name for the clock,
uniform throughout the hierarchy, ie., the clock name should not change
as it traverses through the hierarchy. This simplifies the script writing and
helps in automating the synthesis process.

d) For DFT scan insertion, it is a requirement that the clocks be controlled
from primary inputs. This may involve adding a mux at the clock source
for controllability. Although not a hard and fast rule, it is recommended to
hand-instantiate the ¢lock-mux in the RTL (preferably at the top-level of
the design). This allows the designer to know the instance name of the
clock-mux at the stage of RTL elaboration, which in turn allows selective
clock-mux timing path to be disabled, using set_disable_timing.

53.3 No Glue Logic at the Top

The top-level should only be used for connecting modules together. It should
not contain any combinational glue logic. One of the benefits of this style is
that it makes redundant the very time consuming top-level compile, which
can now be simply stitched together without undergoing additional synthesis.
Absence of glue logic at the top-level also facilitates layout, if performing
hierarchical place and route.

534 Module Name Same as File Name

A pood practice is to keep the module name (or entity name), same as the file
name. Never describe more than one module or entity in a single file. A
single file should only contain a single module/entity definition for synthesis.
This has enormous benefits in defining a clean methodology using scripting
languages like PERL, AWK etc.

5.3.5 Pads Separate from Core Logic

Divide the top-level into two separate blocks “pads™ and “core™. Pads are
usually instantiated and not inferred, therefore it is preferred that they be kept
separate from the core logic. This simplifies the setting of the dont_touch
attribute on all the pads of the design, simultaneously. By keeping the pads in
a separate block, we are isolating the library dependent part of RTL code.

53.6 Minimize Unnecessary Hierarchy

Do not create unnecessary hierarchy, Fvery hierarchy sets a boundary.
Performance is degraded, if unnecessary hierarchies are created. This is
because DC is unable to optimize efficiently across hierarchies. One may use
the ungroup command to flatten the unwanted hierarchies, before compiling
the design to achieve better results.

53.7 Register All Qutputs

This is a well-known Synopsys recommendation, The outputs of a block
should originate directly from registers. Although not always practical, this
coding/design style simplifies constraint specification and also helps
optimization. This style prevents combinational logic from spanning module
boundaries. It also increases the effectiveness of the characterize-write-script
synthesis methodology by preventing the pin-pong effect that is common to
this type of compilation technique.

538 Guidelines for FSM Synthesis

The following guidelines are presented for writing finite state machines that
may help in optimizing the logic:

a) State names should be described using “enumerated types™ in VHDL, or
“parameters” in Verilog.

b) Combinational logic for computing the next state should be in its own
process or always block, separate from the state registers.

¢} Implement the next-state combinational logic with a case statement.

5.4 Logic Inference

High-level Description Languages (HDLs) like VHDL and Verilog are front-
ends to synthesis. HDLs allow a design to be represented in a technology
independent fashion. However, synthesis imposes certain restrictions on the
manner in which HDL description of a design is written. Not all HDL
constructs can be synthesized. Not only that, synthesis expects HDLs to be
coded in a specific way so as to get the desired results. We can say that
synthesis is template driven — if the code is written using the templates that
are understood and expected by the synthesis tool, then the results will be
correct and predictable. The templates and other coding pattemns for synthesis
are called coding styles. For quality results it is imperative that designers
possess a keen understanding of the coding styles, logic inferences, and the
corresponding logic structures that DC generates.

5.4.1 Incomplete Sensitivity Lists

This is one of the most common mistakes made by designers. Incomplete
sensitivity lists may cause simulation mismatches between the source RTL
and the synthesized logic. DC issues a warning for signals that are present in
the process or always block, but are absent from the sensitivity list. This is
primarily a simulation problem since the process does not trigger when
sensitized (because of the missing signal in the sensitivity list). The

synthesized logic, however, is generally correct for blocks containing
incomplete sensitivity lists,

Verilog Example

always @(weekend or go_to_beach or go_to_work)
begin
if (weekend)
action = go_to_beach
else if (weekday)
action = go_to_work;

VHDL Example

process (weekend, go_to_beach, go_to_work)
begin
if (weekend) then
action <= go_to_beach;
elsif (weekday) then
actlion <= go_to_work;
end if;
end process;

The examples illustrated above do not contain the signal “weekday” in their
- sensitivity lists. The synthesized logic may still be accurate, however, during

- simulation the process will not trigger each time the signal “weekday”
‘changes value. This may cause a mismatch between the simulation result of
- the source RTL and the synthesized logic.

; 542 Memory Element Inference

- There are two types of memory elements — latches and flip-flops. Latches are
E‘kvel-sensitive memory clements, while flip-flops in general are edge-
‘sensitive. Latches are transparent as long as the enable to the latch is active.
‘At the time the latch is disabled, it holds the value present at the D input, at

its Q output. Flip-flops on the other hand, respond to rising or falling edge of
the clock.

Latches are simple devices, therefore they cover less area as compared to
their counterparts, flip-flops. However, latches in general are more
troublesome because their presence in a design makes DFT scan insertion
difficult, although not impossible, It is also complicated to perform static
timing analysis on designs containing latches, due to their ability of being
transparent when enabled. For this reason, designers generally. prefer flip-
flops over latches.

The following sub-sections provide detailed information on how to avoid
latches, as well as how to infer them, if desired.

54.2.1 Latch Inference

A latch is inferred when a conditional statement is incompletely specified.
An if statement with a missing else part is an example of incompletely
specified conditional. Here is an example, both in Verilog and VHDL:

always @(weekend)
begin
if (weekend)
action <= go_to_beach;
end

VHDL Example

process (weekend)
begin
if (weekend = *1") then
action <= go_to_beach;
end process;

The above statement will cause the DC to infer a latch enabled by a signal
called “weekend". In the above example, “action” is not given any value
when the signal “weekend” is 0. Always cover all the cases in order to avoid
unintentional latch inference. This may be achieved by using an else
statement, or using a default statement outside the if branch.

A latch may also get inferred from an incompletely specified case statement
in Verilog.

“define sunny 2'b00
"define snowy 2'b01
‘define windy 2'b10

wire [1:0] weather;

case (weather)
sunny : action <= go_motorcycling;
snowy : action <= go_skiing;
windy ; action <= go_paragliding:;
endcase;

In the above case statement only 3 of the 4 possible values of “weather” are
covered. This causes a latch to be inferred on the signal “action”. Note, for
the above example the Synopsys full_case directive may also be used to
avoid the latch inference as explained in Chapter 3. The following example
contains the default statement that provides the fourth condition, thereby
preventing the latch inference.

case (weather)
sunny : action <= go_motorcycling;
snowy : action <= go_skiing;
windy : action <= go_paragliding;
default : action <= go_paragliding;
endcase;

VHDL does not allow incomplete case statements. This often means that the
others clause must be used, consequently the above problem does not oceur
in VHDL. However, latches may still be inferred by VHDL, if a particular

output signal is not assigned a value in each branch of the case statement.
The inference being that outputs must be assigned a value in all branches to
prevent latch inference in VHDL.

case (weather) is
when sunny == action <= go_motorcycling;
when snowy => action <= go_skiing;
when windy == action <= go_paragliding;
when others => null; -

end case,;

The above example, although containing the others clause will infer latches
because the output signal “action” is not assigned a particular value in the
others clause. To prevent this, all branches should be completely specified,
as follows:

case (weather) is
when sunny => action <= go_motorcycling;
when snowy == action <= go_skiing;
when windy => action <= go_paragliding;
when others == action <= go_paragliding;
end case,

5.4.2.2 Register Inference

DC provides a wide variety of templates for register inference. This is to
support different edge-types of the clock and reset mechanisms. A register is
inferred, when there is an edge specified in the sensitivity list. The edge
could be a positive edge or a negative edge.

5.4.2.2.1 Register Inference in Verilog

In Verilog, a register is inferred when an edge is specified in the sensitivity
list of an always block. One register is inferred for each of the variables
assigned in the always block. All variable assignments, not directly
dependent on the clock-edge should be made in a separate always block,
which does not have an edge specification in its sensitivity list.

A plain and simple positive edge-triggered D flip-flop is i ;
following template: ge-lnge flip-flop is inferred using the

always @(posedge clk)
reg_out <= data;

In urdcr tu_ infe!* registers with resets, the reset signal is added to the
sensitivity list, with reset logic coded within the always block. Following is
an example of a D flip-flop with an asynchronous reset: L

always @(posedge clk or reset)
if (reset)
reg_out <= 1'b0:
else
reg_out <= data;

Having a synchmltmus: reset is a simple matter of removing the “reset” signal
from the sensitivity Ihst. In this case, since the block responds only to the
clock edge, the reset is also, only recognized at the clock edge.

always @(posedge clk)
if (reset)
reg_out <= 1'b0;
else
reg_ﬂl,lt <= data:

Negative edge-triggered flop may be i c 1
template: P may be inferred by using the following

always @(negedge clk)
reg_out <= data;

- Absence of negative edge-triggered flop in the technology library will result

i DC inferring a positive edge-triggered flop with an additional inverter to

:- invert the clock signal.

5.4.2.2.2 Register Inference in VHDL -
In VHDL a register is inferred when an edge is specified i the process body.
The following example illustrates the VHDL template to infer a D flip-tlop:

regl: process (clk)
begin
if (¢lk'event and clk =*1") then
reg_out <= dala;
end if;
end process Regl;

DC does not infer latiches for variables declared inside functions, 1sinc.e
variables declared inside functions are reassigned each time the function is

called.

Coding style template for registers with asynchronous and s:rfnchmr!nus
resets are similar in nature to that of Verilog templates, shown in previous

sectlon.

Negative edge-triggered flop may be inferred by using the following
template:

reg1: process (clk)
begin
if (clk'event and clk ='0") then
reg_out <= data;
end if;
end process Regl,;

Absence of negative edge-triggered flop in the technology li!;-rary ‘will result
in DC inferring a positive edge-triggered flop with an additional inverter 1o

invert the clock signal.

543 Multiplexer Inference

Depending upon the design requirements, the HDL may be coded in diﬁ_‘m-ent
ways to infer a variety of architectures using muxes. These may comprise of

R A e i

a single mux with all inputs having the same delay to reach the output, or a
priority encoder that uses a cascaded structure of muxes to prioritize the
input signals. A mixture of the above techniques is also commonly used to
place the late arriving signal closer to the output.

The correct use of if and case statements is a complex topic that is outside the
scope of this chapter. There are application notes (from Synopsys) and other
published materials currently available that explain the proper usage of these
statements. It 1s therefore the intent of this chapter to refer the users to
outside sources for this information. Only brief discussion is provided in this
section,

5.4.3.1 Use case Statements for Muxes

In general, if statements are used for latch inferences and priority encoders,
while case statements are used for implementing muxes. Tt is recommended
to infer muxes exclusively through case statements. The if statements may be
used for latch inferencing and priority encoders. They may also be
effectively used to prioritize late arriving signals. This kind of prioritizing
may be implementation dependent. Tt also limits reusability.

To prevent latch inference in case statements the default part of the case
statement should always be specified. For example, in case of a state
machine, the default action could be that all states covered by the defiaudt
clause cause a jump to the “start” state. Having a default clause in the case
statement is the preferred way to write case statements, since it makes the
HDL independent of the synthesis tool. Using directives like full_case ete
makes the code dependent on the synthesis tool.

If the default action is to assign don’t-cares, then a difference.in behavior
between RTL simulation and synthesized result may occur. This is because,
DC may optimize the don’t-cares randomly causing the resulting logic to
differ.

5.4.3.2 if versus case Statements — A Case of Priorities

Multiple if statements with multiple branches result in the creation of priority
encoder structure.

always @(weather or go_to_work or go_to_beach)
begin

if (weather{0]) action = go_to_work;

if (weather{1]) action = go_to_beach; -
end

In the above example, the signal “weather” is a two-bit input signal and is
used to select the two inputs, “go_to_work™ and “go_to_beach”, with

“action™ as the output. When synthesized, the cascaded mux structure of the
priority encoder is produced as shown in Figure 5-2.

go_to_work go_to_beach

]—P 1
1\| aion
La

0 —>0

weather{0] weather[1]

Figure 5-2. Result of using Multiple jf Statements

If the above example used the case statement (instead of multiple if
statements) in which all possible values of the selection index were covered
and were exclusive, then it would have resulted in a single multiplexer as

shown in Figure 5-3.

go to work ———p
action
go_to beach —

weather{0]

weather[1]

Figure 5-3. Result of using case Statement, or a Single if Statement

The same structure (Figure 5-3) is produced, if a single if statement is used,
along with elsif statements to cover all possible branches.

544 Three-State Inference

Tri-state logic is inferred when high impedance (Z) is assigned to an output.
Arbitrary use of tri-state logic is generally not recommended because of the
following reasons:

a) Tri-state logic reduces testability.

b) Tri-state logic is difficult to optimize — since it cannot be buffered. This
can lead to max_fanout violations and heavily loaded nets.

On the upside however, tri-state logic can provide significant savings in area.
Verilo

assign tri_out = enable ? tri_in : 1'bz;

“data” would have propagated all the way through to the thirdReg

VHDL
concurrently during simulation.

tri_out <= tri_in when (enable = "1 else’Z; . _
The blocking assignments should generally be used within the combinational
always block.

5.5 Order Dependency

Both, Verilog and VHDL provide variable assignments that are order 5.51 Signals versus Variables in VHDL

transfers. Use of blocking assignments within sequential processes may
cause race conditions, because the final result depends on the order in which -
the assignments are evaluated. The non-blocking assignments are order 4
independent; therefore they match closely to the behavior of the hardware.

dependent/independent. Correct usage of these produces desired results, 1 T ‘
while incorrect usage may cause synthesized logic to behave differently than 7 _1m1]ar to V':“I_"gs VHDL also provides order dependency through the use of
the source RTL. 4 signals a"fd variables. The signal assignments may be equated to Verilog's
3 non-blocking assignments, ie., they are order independent. The variable
-t assignments are order sensitive and correlate to Verilog’s blocking
551 Blocking versus Non-Blocking Assignments in Verilog 2- assignments.
It is important to use non-blocking statements when doing sequential i va“ahlﬂ1asslgl1ment§ are daf'-e using the *:=" operator, whereas the “<="
assignments like pipelining and modeling of several mutually exclusive data operator is used for signal assignments.
i

The following example illustrates the usage of the signal assignments within
th:e szquential process block. The resulting hardware conlains three registers
W{Ih signal “data” propagating from firstReg to secondReg and then to thfj'
thirdReg. The RTL simulation will also show the same result.

Non-blocking assignment is done using the “z=" operator, while the “=" 1._
operator is used for blocking assignments. | pmt_:ess{clk}
!.J begin
always @(posedge clk) i if (clk'event and clk = '1") then
begin - firstReg <= data:

secondReg <= firstReg;
thlrdReg o= semndﬁeg;
end if;
end process;

firstReg <= dala;

secondReg <= firstReg;

thirdReg <= secondReg;
end

A general recommendation is to only use signal assignments within

ti I rocesses and var -Iah].E assigum&nts withi ; 1
n th omb
processes, the c inational

In hardware, the register updates will occur in the reverse order as shown
above. The use of non-blocking assignments causes the assignments to occur
in the same manner as hardware i.e., thirdReg will get updated with the old
value of secondReg and the secondReg will get updated with the old value of
firstReg. If blocking assignments were used in the above example, the signal

