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The extended real line is a set R̄ = R ∪ {−∞} ∪ {∞}, where R denotes
the set of real numbers and −∞ and ∞ are two distinct elements not in R.
We also denote R̄ = [−∞,∞].

1 Order

We define a relation ≤ on R̄ by saying that x ≤ y if either x = −∞, y =∞,
or x, y ∈ (−∞,∞) and x ≤ y in the usual ordering on the real line. We
denote x < y whenever x ≤ y and x 6= y. Then (R̄,≤) is a totally ordered
set, and a complete lattice in the sense that inf(A), sup(A) ∈ R̄ for every
nonempty A ⊂ R̄. We denote intervals with endpoints a, b ∈ R̄ by (a, b),
(a, b], [a, b), and [a, b] as usual.

2 Topology

Sets of the form (a, b) = {x : a < x < b} are called open intervals in R̄. Sets
of the form [−∞, a) = {x : x < a} and (a,+∞) = {x : x > a} open rays in R̄.
A set A ⊂ R̄ is called open if it can be expressed as a union of open intervals
and open rays in R̄. The collection of all open sets is denoted T (R̄), and
called the topology of R̄. Hence the open sets of R̄ are the sets in T (R̄), and
the closed sets of R are the complements of the sets in T (R̄). The collection
of open intervals and open rays forms a basis of the topology. Examples of
open sets are the intervals (−∞, 0), [−∞, 0), [−∞,∞), [−∞,∞]. Examples
of closed sets include the singleton sets {a} with a ∈ R̄ and the sets [−∞, 0]
and [−∞,∞]. This type of topology can be defined for any totally ordered
space — in general such topologies are called order topologies.
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2.1 Mapping to the unit interval

Define a function logit : [0, 1] → [−∞,+∞] by

logit(x) =


−∞, x = 0,

log x
1−x , x ∈ (0, 1),

∞, x = 1.

Then one can verify that logit is an increasing bijection having an increasing
continuous inverse expit : [−∞,+∞]→ [0, 1] defined by

expit(x) =


0, x = −∞,

1
1+e−x , x ∈ (−∞,∞),

1, x =∞.

Remark 2.1. The function expit is known with many names, such as (stan-
dard) logistic function and logistic sigmoid function.

Lemma 2.2. The logit and the expit functions are continuous.

Proof. We will show that the preimage logit−1(A) = {x : logit(x) ∈ A} is
open for any open set A in R̄. Assume that A is open in R̄. Then we may
express A as a union A = ∪i∈IBi in which each Bi is either an open interval
or an open ray in R̄. Then

logit−1(A) =
⋃
i∈I

logit−1(Bi). (2.1)

A little contemplation confirms that preimages of open intervals and open
rays by the logit function can be expressed as

logit−1((a, b)) = (expit(a), expit(b)),

logit−1([−∞, a)) = [0, expit(a)),

logit−1((a,+∞]) = (expit(a), 1].

Because all intervals on the right side above are open subsets of [0, 1], and
because unions of open sets are open, we conclude with the help of (2.1) that
logit−1(A) is open.

The proof that expit : R̄ → [0, 1] is continuous can be done in a similar
way, after noting that every open set in [0, 1] be expressed as a union of
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intervals of the form (a, b), [0, a), and (a, 1], and observing that preimages of
such intervals by the expit function can be written as

expit−1((a, b)) = (logit(a), logit(b)),

expit−1([0, a)) = [−∞, logit(a)),

expit−1((a, 1]) = (logit(a),+∞].

Remark 2.3. Lemma 2.2 shows that logit serves as a homeomorphism and
an order isomorphism between [0, 1] and [−∞,+∞], and hence these sets
share the same topological and order-theoretic properties. Especially, we find
that [−∞,+∞] is a compact and connected topological space. We can also
express the topology of the extended real line as T (R̄) = expit−1(T ([0, 1])) =
logit(T ([0, 1]).

Remark 2.4. Instead of the function logit, one may extend the function tan
from its natural domain (−π

2
, π
2
) to a function [−π

2
, π
2
] → [−∞,+∞] which

then yields a homeomorphism between [−π
2
, π
2
] and R̄ with inverse arctan, as

in [Kytölä 2020, Probability Theory].

3 Borel sets

We define the Borel sigma-algebra of R̄ by B(R̄) = σ(T (R̄)), the smallest
sigma-algebra containing the open sets of R̄.

Lemma 3.1. I(R̄) = {[−∞, x] : x ∈ R̄} is a π-system on R̄ which generates
the Borel sigma-algebra B(R̄).

Proof. The fact that I(R̄) is a π-system follows immediately by noting that
[−∞, x]∩ [−∞, y] = [−∞, x∧ y] for all x, y. To finish the proof, it suffices to
verify that I(R̄) ⊂ σ(T (R̄)) and T (R̄) ⊂ σ(I(R̄)), because these imply that
σ(I(R̄)) = σ(T (R̄)). The first inclusion is easy to verify because every set of
the form [−∞, x] = (x,∞]c is a complement of an open ray in R̄. To verify
the second inclusion, we proceed in three steps.

(i) First we observe that (a, b] ∈ σ(I(R̄)) for all a, b ∈ R̄, because (a, b] =
[−∞, b] ∩ [−∞, a]c.

(ii) By applying (i), we see that (a, b) ∈ σ(I(R̄)) for all a, b ∈ R̄, because

(a, b) =

{
∪n∈N(a, b− 1

n
], b < +∞,

∪n∈N(a, n], b = +∞.
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(iii) By applying (ii), we see that [a, b) ∈ σ(I(R̄)) for all a, b ∈ R̄, because

[a, b) = [−∞, b) ∩ [−∞, a)c

=
(

[−∞,−∞] ∪ (−∞, b)
)
∩
(

[−∞,−∞] ∪ (−∞, a)
)c
.

The claim T (R̄) ⊂ σ(I(R̄)) follows from the above observations, because
every open set in T (R̄) can be expressed as a countable union of intervals of
the form (a, b) and [−∞, a) and (a,+∞] with a, b ∈ R̄.

3.1 Random variables

An R̄-valued random variable defined on (Ω,F ,P) is a function X : Ω → R̄
which is F/B(R̄)-measurable in the sense that X−1(B) ∈ F for all B ∈ B(R̄).
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