Order, topology, and sigma-algebras on the extended real line

Lasse Leskelä

January 27, 2021

The extended real line is a set $\mathbb{R} = \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$, where \mathbb{R} denotes the set of real numbers and $-\infty$ and ∞ are two distinct elements not in \mathbb{R} . We also denote $\overline{\mathbb{R}} = [-\infty, \infty]$.

1 Order

We define a relation \leq on \mathbb{R} by saying that $x \leq y$ if either $x = -\infty$, $y = \infty$, or $x, y \in (-\infty, \infty)$ and $x \leq y$ in the usual ordering on the real line. We denote x < y whenever $x \leq y$ and $x \neq y$. Then $(\overline{\mathbb{R}}, \leq)$ is a totally ordered set, and a complete lattice in the sense that $\inf(A), \sup(A) \in \overline{\mathbb{R}}$ for every nonempty $A \subset \overline{\mathbb{R}}$. We denote intervals with endpoints $a, b \in \overline{\mathbb{R}}$ by (a, b), (a, b], [a, b), and [a, b] as usual.

2 Topology

Sets of the form $(a, b) = \{x : a < x < b\}$ are called *open intervals* in \mathbb{R} . Sets of the form $[-\infty, a) = \{x : x < a\}$ and $(a, +\infty) = \{x : x > a\}$ open rays in \mathbb{R} . A set $A \subset \mathbb{R}$ is called *open* if it can be expressed as a union of open intervals and open rays in \mathbb{R} . The collection of all open sets is denoted $\mathcal{T}(\mathbb{R})$, and called the *topology* of \mathbb{R} . Hence the open sets of \mathbb{R} are the sets in $\mathcal{T}(\mathbb{R})$, and the closed sets of \mathbb{R} are the complements of the sets in $\mathcal{T}(\mathbb{R})$. The collection of open intervals and open rays forms a basis of the topology. Examples of open sets are the intervals $(-\infty, 0), [-\infty, 0), [-\infty, \infty), [-\infty, \infty]$. Examples of closed sets include the singleton sets $\{a\}$ with $a \in \mathbb{R}$ and the sets $[-\infty, 0]$ and $[-\infty, \infty]$. This type of topology can be defined for any totally ordered space — in general such topologies are called *order topologies*.

2.1 Mapping to the unit interval

Define a function logit : $[0,1] \rightarrow [-\infty,+\infty]$ by

$$logit(x) = \begin{cases} -\infty, & x = 0, \\ log \frac{x}{1-x}, & x \in (0, 1), \\ \infty, & x = 1. \end{cases}$$

Then one can verify that logit is an increasing bijection having an increasing continuous inverse expit: $[-\infty, +\infty] \rightarrow [0, 1]$ defined by

$$\operatorname{expit}(x) = \begin{cases} 0, & x = -\infty, \\ \frac{1}{1+e^{-x}}, & x \in (-\infty, \infty), \\ 1, & x = \infty. \end{cases}$$

Remark 2.1. The function expit is known with many names, such as (standard) logistic function and logistic sigmoid function.

Lemma 2.2. The logit and the expit functions are continuous.

Proof. We will show that the preimage $\operatorname{logit}^{-1}(A) = \{x : \operatorname{logit}(x) \in A\}$ is open for any open set A in $\overline{\mathbb{R}}$. Assume that A is open in $\overline{\mathbb{R}}$. Then we may express A as a union $A = \bigcup_{i \in I} B_i$ in which each B_i is either an open interval or an open ray in $\overline{\mathbb{R}}$. Then

$$\operatorname{logit}^{-1}(A) = \bigcup_{i \in I} \operatorname{logit}^{-1}(B_i).$$
(2.1)

A little contemplation confirms that preimages of open intervals and open rays by the logit function can be expressed as

$$\log it^{-1}((a, b)) = (\exp it(a), \exp it(b)),$$

$$\log it^{-1}([-\infty, a)) = [0, \exp it(a)),$$

$$\log it^{-1}((a, +\infty)) = (\exp it(a), 1].$$

Because all intervals on the right side above are open subsets of [0, 1], and because unions of open sets are open, we conclude with the help of (2.1) that $\text{logit}^{-1}(A)$ is open.

The proof that expit : $\mathbb{R} \to [0, 1]$ is continuous can be done in a similar way, after noting that every open set in [0, 1] be expressed as a union of

intervals of the form (a, b), [0, a), and (a, 1], and observing that preimages of such intervals by the expit function can be written as

$$expit^{-1}((a, b)) = (logit(a), logit(b)),$$

$$expit^{-1}([0, a)) = [-\infty, logit(a)),$$

$$expit^{-1}((a, 1]) = (logit(a), +\infty].$$

Remark 2.3. Lemma 2.2 shows that logit serves as a homeomorphism and an order isomorphism between [0,1] and $[-\infty, +\infty]$, and hence these sets share the same topological and order-theoretic properties. Especially, we find that $[-\infty, +\infty]$ is a compact and connected topological space. We can also express the topology of the extended real line as $\mathcal{T}(\mathbb{R}) = \exp i t^{-1}(\mathcal{T}([0,1])) = logit(\mathcal{T}([0,1])).$

Remark 2.4. Instead of the function logit, one may extend the function tan from its natural domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to a function $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \left[-\infty, +\infty\right]$ which then yields a homeomorphism between $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and \mathbb{R} with inverse arctan, as in [Kytölä 2020, Probability Theory].

3 Borel sets

We define the Borel sigma-algebra of \mathbb{R} by $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{T}(\mathbb{R}))$, the smallest sigma-algebra containing the open sets of \mathbb{R} .

Lemma 3.1. $\mathcal{I}(\bar{\mathbb{R}}) = \{ [-\infty, x] : x \in \bar{\mathbb{R}} \}$ is a π -system on $\bar{\mathbb{R}}$ which generates the Borel sigma-algebra $\mathcal{B}(\bar{\mathbb{R}})$.

Proof. The fact that $\mathcal{I}(\mathbb{R})$ is a π -system follows immediately by noting that $[-\infty, x] \cap [-\infty, y] = [-\infty, x \wedge y]$ for all x, y. To finish the proof, it suffices to verify that $\mathcal{I}(\bar{\mathbb{R}}) \subset \sigma(\mathcal{T}(\bar{\mathbb{R}}))$ and $\mathcal{T}(\bar{\mathbb{R}}) \subset \sigma(\mathcal{I}(\bar{\mathbb{R}}))$, because these imply that $\sigma(\mathcal{I}(\bar{\mathbb{R}})) = \sigma(\mathcal{T}(\bar{\mathbb{R}}))$. The first inclusion is easy to verify because every set of the form $[-\infty, x] = (x, \infty]^c$ is a complement of an open ray in $\bar{\mathbb{R}}$. To verify the second inclusion, we proceed in three steps.

- (i) First we observe that $(a, b] \in \sigma(\mathcal{I}(\mathbb{R}))$ for all $a, b \in \mathbb{R}$, because $(a, b] = [-\infty, b] \cap [-\infty, a]^c$.
- (ii) By applying (i), we see that $(a, b) \in \sigma(\mathcal{I}(\mathbb{R}))$ for all $a, b \in \mathbb{R}$, because

$$(a,b) = \begin{cases} \bigcup_{n \in \mathbb{N}} (a, b - \frac{1}{n}], & b < +\infty, \\ \bigcup_{n \in \mathbb{N}} (a, n], & b = +\infty. \end{cases}$$

(iii) By applying (ii), we see that $[a, b) \in \sigma(\mathcal{I}(\overline{\mathbb{R}}))$ for all $a, b \in \overline{\mathbb{R}}$, because

$$[a,b) = [-\infty,b) \cap [-\infty,a)^c = \left([-\infty,-\infty] \cup (-\infty,b) \right) \cap \left([-\infty,-\infty] \cup (-\infty,a) \right)^c.$$

The claim $\mathcal{T}(\bar{\mathbb{R}}) \subset \sigma(\mathcal{I}(\bar{\mathbb{R}}))$ follows from the above observations, because every open set in $\mathcal{T}(\bar{\mathbb{R}})$ can be expressed as a countable union of intervals of the form (a, b) and $[-\infty, a)$ and $(a, +\infty]$ with $a, b \in \bar{\mathbb{R}}$. \Box

3.1 Random variables

An \mathbb{R} -valued random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$ is a function $X : \Omega \to \mathbb{R}$ which is $\mathcal{F}/\mathcal{B}(\mathbb{R})$ -measurable in the sense that $X^{-1}(B) \in \mathcal{F}$ for all $B \in \mathcal{B}(\mathbb{R})$.