
CS-C2160 Theory of Computation

Lecture 4: Regular Expressions

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

2/32

Topics

Syntax and semantics of regular expressions

Regular expressions and finite automata

* Excursion: Regular expressions in programming languages

Material:

in Finnish: Sections 2.6–2.7 in Finnish lecture notes

in English: Section 1.3 in the Sipser book

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

3/32

Regular Expressions

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

4/32

Finite automata vs. regular expressions

M := .

.

+,- digit

digit

digitdigit

digitdigit

exp

q0 q1 q2 q3

q4

q5

q6

exp exp

digit

digitq7

↓ recognises L(M)

{.256,1.,3.14,2.3E−10, . . .}
↑ describes L(r)

r := (dd∗.d∗∪ .dd∗)(e(+∪−∪ ε)dd∗∪ ε)∪ (dd∗e(+∪−∪ ε)dd∗)

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

5/32

Applications

Regular expressions (and their extensions) are used in many places:

searching and modifying text files

lexical analysis in compilers (recognising keywords etc.)

property specification languages such as IEEE PSL

etc.

Example: Hiding student numbers with Python

from sys impor t s td in , s tdou t
impor t re
i d P a t t e r n = re . compile (r ’ (\ d { 5 } [A−Z]) | (\ d { 6 }) | (K \ d { 5 }) ’)
f o r l i n e i n s t d i n :

s tdou t . w r i t e (i d P a t t e r n . sub (’ xxxxxx ’ , l i n e))

Input:

Oiva :Opiskelija:12345X:5:2:4:9
F.I. :Nance :K12345:5:9:4:2
Raimo:Raketti :123456:7:7:7:9

−→ Output:

Oiva :Opiskelija:xxxxxx:5:2:4:9
F.I. :Nance :xxxxxx:5:9:4:2
Raimo:Raketti :xxxxxx:7:7:7:9

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

6/32

4.1 Syntax and semantics of regular expressions

We first define some elementary operations on languages.
Let A and B be languages over an alphabet Σ.

Union: A∪B = {x ∈ Σ∗ | x ∈ A or x ∈ B}
Concatenation: AB = {xy ∈ Σ∗ | x ∈ A and y ∈ B}
Powers:
{

A0 = {ε},
Ak = AAk−1 = {x1 . . .xk | xi ∈ A ∀i = 1, . . . ,k}, for k ≥ 1

Kleene closure (or "Kleene star"):

A∗ =
⋃

k≥0

Ak

= {x1 . . .xk | k ≥ 0, xi ∈ A ∀i = 1, . . . ,k}

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

7/32

Definition 4.1 (Syntax of regular expressions)
Regular expressions over an alphabet Σ are defined inductively by the
following rules:

1. /0 and ε are regular expressions over Σ.

2. a is a regular expression over Σ when a ∈ Σ.

3. If r and s are regular expressions over Σ, then also (r∪s), (rs),
and r∗ are regular expressions over Σ.

4. There are no other regular expressions over Σ.

Note

All the rules are purely syntactic. Thus, for instance ’ /0’ and ’∪’ are here
just symbols, without any meaning (yet).

The first two rules are the “base cases” while the third one is the induc-
tive (recursive) case.

The last case is usually implicitly assumed and thus omitted.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

8/32

Definition 4.2 (Semantics of regular expressions)

A regular expression r over Σ describes the language L(r) defined
inductively as follows:

L(/0) = /0
L(ε) = {ε}
L(a) = {a} when a ∈ Σ
L((r∪s)) = L(r)∪L(s)

L((rs)) = L(r)L(s)

L(r∗) = (L(r))∗

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

9/32

Example

Some regular expressions over the alphabet {a,b}:

r1 = ((ab)b), r2 = (ab)∗, r3 = (ab∗), r4 = (a(b∪ (bb)))∗

The languages described by the expressions are:

L(r1) = ({a}{b}){b}= {ab}{b}= {abb}
L(r2) = {ab}∗ = {ε,ab,abab,ababab, . . .}= {(ab)i | i≥ 0}
L(r3) = {a}({b})∗ = {a,ab,abb,abbb, . . .}= {abi | i≥ 0}
L(r4) = ({a}{b,bb})∗ = {ab,abb}∗

= {ε,ab,abb,abab,ababb, . . .}
= {x ∈ {a,b}∗ | if x 6= ε then it begins with an a and

each a in x is followed by 1 or 2 bs.}

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

10/32

Reducing the number of parentheses:
Precedence between operators:

∗ � · � ∪
Thus, instead of (a(b∪ (bb)))∗, we can write (a(b∪bb))∗. But
(ab∪bb)∗ would correspond to the different expression
((ab)∪ (bb))∗.
Associativity of union and concatenation operators:

L(((r∪s)∪t)) = L((r∪(s∪t)))

L(((rs)t)) = L((r(st)))

⇒ no parentheses needed for consecutive unions/concatenations

Example
The expressions of the previous Example in a simpler form:

r1 = abb, r2 = (ab)∗, r3 = ab∗, r4 = (a(b∪bb))∗.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

11/32

Example:

Unsigned floating point numerals in C:

number=(dd∗.d∗∪ .dd∗)(e(+∪−∪ε)dd∗∪ε)∪(dd∗e(+∪−∪ε)dd∗),

where d is an abbreviation for

d = (0∪1∪2∪3∪4∪5∪6∪7∪8∪9)

and e abbreviates
e = (E∪e).

One often also uses r+ as an abbreviation for rr∗.

Example:

(d+.d∗∪ .d+)(e(+∪−∪ ε)d+∪ ε)∪ (d+e(+∪−∪ ε)d+)

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

12/32

Definition 4.3 (Regular languages)
A language is regular if it can be described with a regular expression.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

13/32

Simplification rules for regular expressions

A regular language can usually be described with many different
regular expressions, e.g.,

Σ∗ = L((a∪b)∗)

= L((a∗b∗)∗)

Two regular expressions, r and s, are equivalent, denoted by
r = s, if L(r) = L(s).

Simplification of an expression ≈ finding the “simplest” equivalent
expression.

Testing whether two regular expressions are equivalent is a
nontrivial (but mechanically solvable) problem.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

14/32

Some simplification rules:

r∪ (s∪ t) = (r∪ s)∪ t

r(st) = (rs)t

r∪ s = s∪ r

r(s∪ t) = rs∪ rt

(r∪ s)t = rt∪ st

r∪ r = r

r∪ /0 = r

εr = r

/0r = /0
r∗ = ε∪ r∗r

r∗ = (ε∪ r)∗

In fact, any valid equivalence between regular expressions can be
derived from these equations and the rule:

if ε /∈ L(s) and r = rs∪ t, then r = ts∗

[A. Salomaa 1966]

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

15/32

If one wants to verify that two regular expressions are equivalent, it is
usually simplest to show that the languages described by them are
included in each other:

Let us write r ⊆ s for L(r)⊆ L(s).
Now r = s if and only if r ⊆ s and s⊆ r.

Example:

Let us verify that (a∗b∗)∗ = (a∪b)∗.

1. Clearly (a∗b∗)∗ ⊆ (a∪b)∗, because (a∪b)∗ describes all the
strings over {a,b}.

2. As (a∪b)⊆ a∗b∗, then (a∪b)∗ ⊆ (a∗b∗)∗ holds as well.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

16/32

4.2 Regular expressions and finite automata

Theorem 4.1
If a language can be described with a regular expression, then it can
be recognised by a finite automaton.

Proof
By using the inductive construction on the next slide, we can design,
for each regular expression r, a nondeterministic automaton Mr with
ε-transitions such that L(Mr) = L(r). The resulting automaton can
then be determinised if needed (cf. Lecture 3). In the construction, the
intermediate component automata always have a standard form with
unique and distinct initial and final states, and no transitions either

1. entering the initial state, or

2. exiting the final state.

This is important when putting the component automata together.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

17/32

ε

a

r = ∅:

r = ε:

r = a: (a ∈ Σ)

Ms

r = s ∪ t :

ε

ε

ε

ε

Mt

MtMs

r = st :

ε

Ms

r = s∗ :

ε ε

ε

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

18/32

Example:

By applying the construction of Lemma 4.2 to the expression r = (a(b∪
bb))∗, we get the following nondeterministic automaton:

ε

ε b

ε

ε

ε

ε

ε

b

b

ε a

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

19/32

The automaton on the previous slide contains quite a lot of redundancy.
If one masters the semantics of regular expressions, it is sometimes
easier to design corresponding automata directly.
For instance, for the expression r = (a(b∪ bb))∗ it is quite straightfor-
ward to design a simple nondeterministic automaton:

b

b

b

a

The same automaton can be obtained by removing the ε-transitions
from the systematically constructed automaton on the previous slide.
If desired, this automaton can then be further determinised and min-
imised using the methods from Lecture 3.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

20/32

Theorem 4.2
If a language can be recognised by a finite automaton, then it can be
described with a regular expression.

Proof
We need one more extension of finite automata, the generalised nonde-
terministic finite automata (abbreviated GNFA), which allow transitions
that are labelled with regular expressions.
Formalisation: Let REΣ be the set of regular expressions over Σ. A
GNFA is a tuple

M = (Q,Σ,δ,q0,F),

where the transition function δ is a finite mapping

δ : Q×REΣ→ P (Q)

(that is, δ(q,r) 6= /0 holds only for finitely many pairs (q,r) ∈ Q×REΣ).
Note: This definition is different from that in Sipser’s book (Definition
1.64) but serves the same purpose.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

21/32

The “leads directly”, or “leads in one step” relation is now defined

(q,w)
M̀
(q′,w′)

if q′ ∈ δ(q,r) for some r ∈ REΣ such that w = zw′ and z ∈ L(r). Other
definitions are as earlier.

Let us now prove: every language recognised by a GNFA can be de-
scribed with a regular expression.

Let M be a GNFA. A regular expression that describes the language
recognised by M can be constructed in three phases:

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

22/32

Phase I: If M has multiple final states, merge them as follows:

ε⇒

ε

ε

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

23/32

Phase II: Reduce M to an equivalent GNFA with at most two states,
by removing all non-initial and non-final states one by one, using the
following transformations:

Let q be any state in M that is not the initial or the final state. Consider
all the “transition paths” in the state diagram of M that go through q. Let
qi and qj be the immediate predecessor and successor states of q on
some such path. Remove q from the path qi→ qj by rule (i) below if q
has no transition to itself, and by rule (ii) if it has:

sr

qi q qj

(ii):

(i):

⇒
rt∗s

t

rs
qi q qj qi⇒ qj

qi qj
r s

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

24/32

At the same time, merge parallel transitions with the rule:

qi
r ∪ s

⇒

r

s

qi qj qj

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

25/32

Phase III: At the end of the reduction process in Phase II, the automaton
has at most two states. The corresponding regular expression is then
constructed as follows:

r4

(i):

⇒

⇒

r∗1r2(r3 ∪ r4r
∗
1r2)

∗

r∗

r

r1 r3r2
(ii):

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

26/32

Example:

(aa ∪ b)(ba)∗(bb ∪ a)
(ab ∪ (aa ∪ b)(ba)∗(bb ∪ a))∗

a a

bb

baab ab

baab

b

a

⇒

⇒ ⇒

⇒

a

b

aa

bb

aa ∪ b

bb ∪ a

(aa ∪ b)(ba)∗(bb ∪ a)

ab ∪ ⇒

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

27/32

* Excursion: Regular Expressions in Programming
Languages

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

28/32

* Regular expressions in programming languages

Manipulating text strings is important in many applications
(validating input in web forms, finding patterns in text and
replacing them with others in text editors, and so on).
Thus most (all recent?) programming languages include support
for regular expressions (or for their extensions):

I re library in Python (a starting point: HOWTO)
I regex library in the latest C++ version
I scala.util.matching.Regex class in Scala
I java.util.regex package in Java
I JavaScript (aka ECMAScript), see e.g. W3Schools
I and many others!

Also “sequential expressions” (SEREs) in the IEEE Property
Specification Language PSL (IEEE standard 1850).

A book on the topic: Jeffrey Friedl, Mastering Regular
Expressions

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

29/32

Example: Reading “Nodes:” lines in Perl

A snippet of a perl program:
sub getNodes {
my($ f) = $_ [0] ;
open (FILE , $ f) ;
wh i le ($ l i n e = <FILE >) {

i f ($ l i n e =~ / ^ Nodes : \W* ([0−9]+) /) {
$nodes = $1 ;

}
}
c lose (FILE) ;
$nodes ;

}

a data file:
Canrep updates : 1
Generators : 2
Max l e v e l : 3
| Aut | : 8
Nodes : 109294
Leaf nodes : 3
Bad nodes : 107682
To ta l t ime : 2.60 seconds

Here s =~/r/ tries to match a string s to regular expression r, symbol
^ matches the beginning of a string, \W means “whitespace”, [0-9] de-
notes any symbol in the set {0,1, ...,9}, and the substring that matches
the expression inside the parentheses is assigned to variable $1.

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

30/32

* Extensions to regular expressions: Case Python
Many languages support various extensions to “pure” regular
expressions. As an example, let us consider the re library of Python.

Fixed powers, such as (ab)5, can be expressed with the
repetition operator {m,n}, where m is the minimum and n the
maximum number of repetitions. For instance, (a|b){20,200}
describes (matches to) a string with 20–200 a and b symbols.
This could also be expressed with a (quite large) “pure” regular
expression.

By default, matching is greedy, meaning that only the longest
matching substrings are considered:
>>> impor t re
>>> f o r m i n re . f i n d i t e r (r ’ (a | b)+ ’ , ’ abbacbaabaa ’) : m. span ()
. . .
(0 , 4)
(5 , 11)

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

31/32

Example: A Scala program for finding Finnish social security numbers

val hetu = " " " (? : ^ | \ D) (\ d \ d) (\ d \ d) (\ d \ d) (\+ |− |A) (\ d { 3 }) ([0−9A−Y]) (? : $
| [^0−9A−Y]) " " " . r

val centuryMap = Map("+ "−>1800, "−"−>1900, "A"−>2000)
val checksumToLetter = " 0123456789ABCDEFHKLMNPQRSTUVWXY" . z ipWi th Index .

map(_ . swap) . toMap
for (l i n e <− i o . Source . s t d i n . getL ines) {

hetu . f i n d A l l M a t c h I n (l i n e) . foreach {
case hetu (day , month , year , century , id , check) => {

val enBir thDate = s " $month / $day / $ { centuryMap (century) +year . t o I n t
} "

val checksum = (day+month+year+ i d) . toLong % 31
val i s V a l i d = checksumToLetter (checksum . t o I n t) == check (0)
p r i n t l n (s " " " A${ i f (! i s V a l i d) " n i n " e lse " " } v a l i d hetu f o r

someone born on $enBir thDate " " ")
}

}
}

+ Scala Regex and Java Pattern

CS-C2160 Theory of Computation / Lecture 4

Aalto University / Dept. Computer Science

32/32

With some extensions, it is possible to express also non-regular
properties.
As an example, with “back-references” one can recognise the
language {wcw | w ∈ {a,b}∗} as follows:
>>> impor t re
>>> pa t t e rn = re . compile (r ’ ([ab] *) c \1 $ ’)
>>> f o r s i n [’ abacaba ’ , ’ c ’ , ’ abbcaba ’] :
. . . i f pa t t e rn . match (s) : p r i n t (s+ " i s i n the language ")
. . .
abacaba i s i n the language
c i s i n the language

The “variable” \1 on line 2 matches only the same substring that
matched with the expression in the parentheses earlier in the
expression.
This language is not regular! (We’ll see later why this is the case.)

Some voluntary brain teasers for winter evenings

Regular expression crosswords (the syntax is the fairly standard one
used in many programming languages, see e.g. this link)

