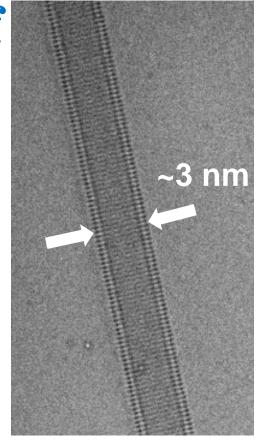
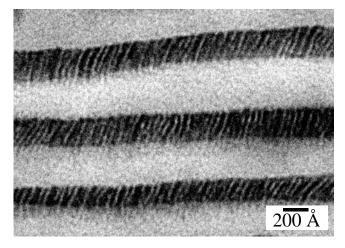
PHYS-E0525 Microscopy of Nanomaterials P (5 cr)

Prof. Janne Ruokolainen (nanotalo 107)

Email: Janne.Ruokolainen@aalto.fi

First lecture 26.1. 2021


Tuesday 12.15 - 14


Assistant: Fereshteh Sohrabi fereshteh.sohrabi@aalto.fi

Course overview:

The course gives basic knowledge of the microscopy of materials nanoscale structures - including soft and hard materials. Lectures will concentrate on transmission electron microscopy (TEM, STEM): high resolution imaging, electron diffraction and analytical microscopy by using elemental analyses (EDX, EELS), cryo-electron microscopy and 3D electron tomography. Additionally, scanning electron microscopy (SEM and FIB), atomic force microscopy (AFM) and methods to prepare samples are lectured..

Course Registration: WebOodi

Lectures:

Prof. Janne Ruokolainen, Dr. Hua Jiang, Dr. Jani Seitsonen, Dr. Ramzy Abdelaziz, Prof. Peter Liljeroth, Dr. Lide Yao

Ten	tative	Sch	edule
	ialive		Cuuic

- 26. 1. Introduction & Nanomicroscopy center (JR)
- 2. 2. SEM (Ramzy)
- 9. 2. TEM Basics 1 (JR)
- 16. 2. TEM Basics 2 and Cryo-TEM (JR)
- 23. 2. no lecture (exam period at Aalto)
- 2. 3. Advanced TEM 1 (Hua)
- 9. 3. Advanced TEM 2 (Hua)
- 16. 3. Advanced TEM 3 (Hua)
- 23. 3. AFM (Peter or Ville)
- 30. 3. 3D-TEM-Tomography (Jani)
- 6. 4. FIB and Sample preparation (Lide)

Summary:

Intro, Basic TEM, Cryo TEM ~ 3 lectures

Advanced TEM 3 lectures

(High resolution TEM and STEM,

diffraction, spectroscopy EDX, EELS)

AFM

FIB/sample preparation

SEM

Tomography

Additional Literature: (optional)

Book 1: Transmission electron microscopy

Basics I (David William and Barry Carter)

2nd edition

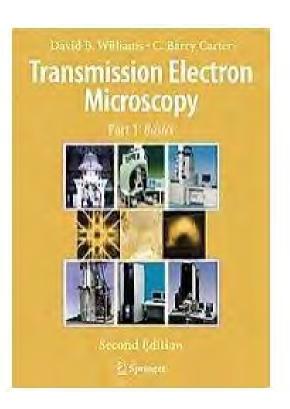
Book 2: G.H. Michler "Electron microscopy

of polymers" (TEM, SEM, AFM..)

Book 3: A practical Guide to Tramsmission Electron Microscopy (Zhiping Luo)

Additional Literature if you are interested to study more in this topic..

Book 1: Transmission electron microscopy Basics Part I (David William and Barry Carter) 2nd edition


This book has *more theory* and it also has lots of technical information about microscope (vacuum systems, electron sources, sample holders etc..) and it also has 3 other books for Advanced TEM (Part 2: Diffraction, Part 3: high resolution imaging and Part 4: Spectroscopy)

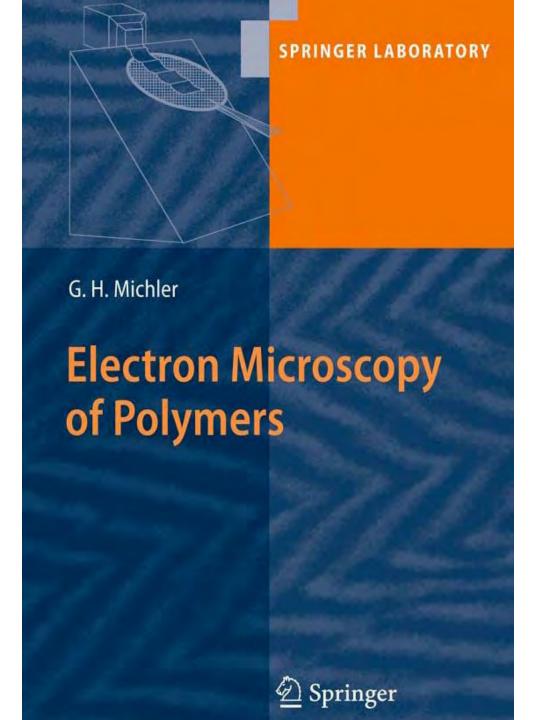
Book 2: G.H. Michler "Electron microscopy of polymers" (TEM, SEM, AFM..)
A bit easier book to study – more practical and has also SEM and AFM parts (First 250 pages are useful – rest are specific polymer applications..)

Book 3: A practical Guide to Transmission Electron Microscopy (Zhiping Luo)
This book is most practical especially those who want to learn how to operate
microscopes Chapter 1-3 and (partly chapter 5?) and chapters 7-9. (chapters 4, 5, and
6 are diffraction and perhaps more advanced level than this course..)

Transmission Electron Microscopy A Textbook for Materials Science David B. Williams, C. Barry Carter

Tl	e Transmission Electron Microscope
\mathbf{C}	apter Preview
1.	What Materials Should We Study in the TEM?
1	Why Use Electrons?
	1.2.A An Extremely Brief History
	1.2.B Microscopy and the Concept of Resolution
	1.2.C Interaction of Electrons with Matter
	1.2.D Depth of Field and Depth of focus
	1.2.E Diffraction
1.	Limitations of the TEM
	1.3.A Sampling
	1.3.B Interpreting Transmission Images
	1.3.C Electron Beam Damage and Safety
	1.3.D Specimen Preparation
1.	Different Kinds of TEMs
1.	Some Fundamental Properties of Electrons
1.	Microscopy on the Internet/World Wide Web
	1.6.A Microscopy and Analysis-Related Web Sites
	1.6.B Microscopy and Analysis Software
Cl	apter Summary

2	Scatte	ering and Diffraction	23
	Chapt 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12	ter Preview Why Are We Interested in Electron Scattering? Terminology of Scattering and Diffraction The Angle of Scattering The Interaction Cross Section and Its Differential 2.4.A Scattering from an Isolated Atom 2.4.B Scattering from the Specimen 2.4.C Some Numbers The Mean Free Path How We Use Scattering in the TEM Comparison to X-ray Diffraction Fraunhofer and Fresnel Diffraction Diffraction of Light from Slits and Holes Constructive Interference A Word About Angles Electron-Diffraction Patterns	23 23 25 26 27 27 28 28 28 29 30 30 31 33 34 34
	Chapt	ter Summary	36
3	Elasti	c Scattering	39
	Chapt 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Particles and Waves Mechanisms of Elastic Scattering Elastic Scattering from Isolated Atoms The Rutherford Cross Section Modifications to the Rutherford Cross Section Coherency of the Rutherford-Scattered Electrons The Atomic-Scattering Factor The Origin of $f(\theta)$ The Structure Factor $F(\theta)$ Simple Diffraction Concepts. 3.10.A Interference of Electron Waves; Creation of the Direct and Diffracted Beams 3.10.B Diffraction Equations	39 39 40 41 41 42 43 44 45 46 47
	Chapt	ter Summary	49


4	Ine	elastic Scattering and Beam Damage	53
	Ch	apter Preview	53
	4.1		53
	4.2		55
		4.2.A Characteristic X-rays	55
		4.2.B Bremsstrahlung X-rays	60
	4.3		60
		4.3.A Secondary Electrons	60
		4.3.B Auger Electrons	61
	4.4		62
	4.5		63
	4.6	24444	64
		4.6.A Electron Dose	65
		4.6.B Specimen Heating.	65
		4.6.C Beam Damage in Polymers	66
		4.6.D Beam Damage in Covalent and Ionic Crystals	66
		4.6.E Beam Damage in Metals	66
	-	4.6.F Sputtering	68
	Ch	apter Summary	68
5	Elec	tron Sources	73
	Cha	pter Preview	73
	5.1	The Physics of Different Electron Sources	73
		5.1.A Thermionic Emission	74
		5.1.B Field Emission	74
	5.2	The Characteristics of the Electron Beam	75
		5.2.A Brightness	75
		5.2.B Temporal Coherency and Energy Spread	76
		5.2.C Spatial Coherency and Source Size	77
		5.2.D Stability	77
	5.3	Electron Guns	77
		5.3.A Thermionic Guns	77
		5.3.B Field-Emission Guns (FEGs)	80
	5.4	Comparison of Guns	81
	5.5	Measuring Your Gun Characteristics	82
		5.5.A Beam Current	82
		5.5.B Convergence Angle	83
		5.5.C Calculating the Beam Diameter	83
		5.5.D Measuring the Beam Diameter	85
		5.5.E Energy Spread	85
		5.5.F Spatial Coherency	86
	5.6	What kV should You Use?	86
	Cha	pter Summary	87

6	Lens	es, Apertures, and Resolution		91
	Cha	pter Preview		91
	6.1	Why Learn About Lenses?		91
	6.2	Light Optics and Electron O	Optics	92
		6.2.A How to Draw a Ra	y Diagram	92
		6.2.B The Principal Optic	al Elements	94
		6.2.C The Lens Equation		94
		6.2.D Magnification, Den	nagnification, and Focus	95
	6.3			96
			S	96
			Lenses	97
			Through Magnetic Fields	99
			the Eucentric Plane	100
			n	101
	6.4			101
	6.5		ems	102
			n	103
			on	104
				106
	6.6		ron Lens (and Ultimately of the	100
				106
			ion (Diffraction-Limited	405
				107
			ution Due to Spherical	100
				108
		_	Resolution Due to Chromatic	100
			- G - iai C D l - ai	109
	67		efinitions of Resolution	109
	6.7		of Field	110
	Cha	pter Summary		111

7	How	to 'See' Electrons	115
	Chap 7.1 7.2 7.3	ter Preview Electron Detection and Display Viewing Screens Electron Detectors 7.3.A Semiconductor Detectors 7.3.B Scintillator-Photomultiplier Detectors/TV	115 115 116 117 117
		Cameras	118 120 121
	7.4 7.5	Which Detector Do We Use for which Signal?	122 122 122
	7.6 Chap	7.5.B Other Image-Recording Methods	124 124 125
8	Pump	s and Holders	127
	Chap 8.1 8.2 8.3	ter Preview The Vacuum Roughing Pumps High/Ultra High Vacuum Pumps 8.3.A Diffusion Pumps 8.3.B Turbomolecular Pumps 8.3.C Ion Pumps 8.3.D Cryogenic (Adsorption) Pumps	127 127 128 129 129 129 130 130
	8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 Chap	The Whole System Leak Detection Contamination: Hydrocarbons and Water Vapor Specimen Holders and Stages Side-Entry Holders Top-entry Holders Tilt and Rotate Holders In-Situ Holders Plasma Cleaners ter Summary	130 131 132 132 133 134 134 135 138 138

)	The	Instrum	ent	141
	Chapter Preview			141
	9.1		llumination System	142
		9.1.A	TEM Operation Using a Parallel Beam	142
		9.1.B	Convergent-Beam (S)TEM Mode	143
		9.1.C	The Condenser-Objective Lens	145
		9.1.D	Translating and Tilting the Beam	147
		9.1.E	Alignment of the C2 Aperture	147
		9.1.F	Condenser-Lens Defects	148
		9.1.G	Calibration	149
	9.2	The C	Objective Lens and Stage	150
	9.3	Form	ing DPs and Images: The TEM Imaging System	152
		9.3.A		152
		9.3.B	Bright-Field and Dark-Field Imaging	155
		9.3.C	Centered Dark-Field Operation	155
		9.3.D	Hollow-Cone Diffraction and Dark-Field Imaging	157
	9.4	Form	ing DPs and Images: The STEM Imaging System	158
		9.4.A	Bright-Field STEM Images	159
		9.4.B	Dark-Field STEM Images	161
		9.4.C	Annular Dark-Field Images	161
		9.4.D	Magnification in STEM	161
	9.5	Alignm	nent and Stigmation	161
		9.5.A	Lens Rotation Centers	161
		9.5.B	Correction of Astigmatism in the Imaging Lenses .	162
	9.6	Calibra	iting the Imaging System	164
		9.6.A	Magnification Calibration	164
		9.6.B	Camera-Length Calibration	165
		9.6.C	Rotation of the Image Relative to the DP	167
		9.6.D	Spatial Relationship Between Images and DPs	168
	9.7	Other (Calibrations	168
	Cha	pter Sun	nmary	169

0	Specimen Preparation	173
	Chapter Preview	173
	10.1 Safety	173
	10.2 Self-Supporting Disk or Use a Grid?	174
	10.3 Preparing a Self-Supporting Disk for Final Thinning	175
	10.3.A Forming a Thin Slice from the Bulk Sample	176
	10.3.B Cutting the Disk	176
	10.3.C Prethinning the Disk	177
	10.4 Final Thinning of the Disks	178
	10.4.A Electropolishing	178
	10.4.B Ion Milling	178
	10.5 Cross-Section Specimens	182
	10.6 Specimens on Grids/Washers	183
	10.6.A Electropolishing—The Window Method	
	for Metals and Alloys	183
	10.6.B Ultramicrotomy	183
	10.6.C Grinding and Crushing	184
	10.6.D Replication and Extraction	184
	10.6.E Cleaving and the SACT	186
	10.6.F The 90° Wedge	186
	10.6.G Lithography	187
	10.6.H Preferential Chemical Etching	187
	10.7 FIB	188
	10.8 Storing Specimens	189
	10.9 Some Rules	189
	Chapter Summary	191

Part I	Techniques	of Electron	Microscopy
--------	------------	-------------	------------

1	OV	ERVIEV	V OF TECHNIQUES	7
	Refe	erences.		14
2	TRA	ANSMIS	SSION ELECTRON MICROSCOPY:	
	FUN	NDAME	ENTALS OF METHODS AND INSTRUMENTATION	15
	2.1	A Brie	f History	15
	2.2	Funda	mentals of Electron Optics and Instrumentation	17
		2.2.1	Some Fundamental Properties of Electrons	17
		2.2.2	Electron Lenses	19
		2.2.3	Electron-Optical Aberrations and Resolution	22
		2.2.4	Vacuum System	26
	2.3	The In	strument	27
		2.3.1	Electron Gun	30
		2.3.2	Illumination System	33
		2.3.3	Objective Lens and Specimen Stage	35
		2.3.4	Image-Forming System	36
		2.3.5	Viewing Chamber and Image Acquisition	37
		2.3.6	Alignment and Operation of Transmission Electron	
			Microscopes	39
	2.4	Funda	mentals of Image Formation	40
		2.4.1	Scattering Mechanism and Contrast Formation	41
		2.4.2	Electron Diffraction and Diffraction Contrast	44
		2.4.3	Fundamentals of the Imaging Process	46
	Refe	erences.		50

3		NSMISSION ELECTRON MICROSCOPY: CONVENTIONAL	
		SPECIAL INVESTIGATIONS OF POLYMERS	53
		Conventional Investigations Utilising Mass-Thickness Contrast	53
		Electron Diffraction	55
	3.2.1	Selected Area Diffraction	55
	3.2.2	Structure Analysis	55
3.3	_	-Resolution Transmission Electron Microscopy	57
	3.3.1	Introduction	57
	3.3.2	Evaluation and Reduction of Radiation Damage	57
	3.3.3	Application of HRTEM	58
3.4		e Contrast Transmission Electron Microscopy	60
	3.4.1	Phase Contrast at Large Defocus Values	60
	3.4.2	Phase Contrast by Means of Phase Plates	60
3.5		ron Holography	62
	3.5.1	Introduction	62
	3.5.2	Image Plane Off-Axis Holography	62
_	3.5.3	Examples	64
3.6		Voltage Transmission Electron Microscopy	64
	3.6.1	Introduction	64
	3.6.2	A Dedicated Low-Voltage TEM and its Application	64
3.7	_	-Voltage Transmission Electron Microscopy	65
	3.7.1	Introduction	65
	3.7.2	Advantages and Applications of HVTEM	65
3.8		ning Transmission Electron Microscopy	66
	3.8.1	Introduction	66
	3.8.2	Similarities and Differences between STEM and TEM	67
	3.8.3	Application of Bright-Field and Dark-Field Modes	68
3.9		vtical Transmission Electron Microscopy	70
	3.9.1	Introduction	70
	3.9.2	EELS Investigations	72
	3.9.3	Electron Spectroscopic Imaging	75
3.10		ron Tomography	78
	3.10.1		78
	3.10.2	1 , 8 8	79
	3.10.3		80
	3.10.4		81
Refe	rences		81

4	SC	ANNIN	G ELECTRON MICROSCOPY (SEM)	87
	4.1	A Brie	ef History of SEM	87
	4.2	Funda	amentals of Electron Optics and Signal Generation	88
		4.2.1	Principle of SEM	88
		4.2.2	The Lateral Resolution Power of SEM	89
		4.2.3	Comparison of Various Cathode Types	92
		4.2.4	Depth of Focus	92
		4.2.5	Interaction of Primary Electrons with Sample	92
	4.3		nstrumentation of SEM	95
		4.3.1	The Column	95
		4.3.2	Specimen Chamber and Goniometer	97
		4.3.3	Detectors	98
		4.3.4	Signal Display and Magnification	99
	4.4	Contras	st Formation and Charging Effects	100
		4.4.1	Secondary Electron Contrast	100
		4.4.2	Contrast of Backscattered Electrons (Solid State Detector) .	103
		4.4.3	Charging Effect	103
	4.5	X-Ray I	Microanalysis	105
		4.5.1	Physical Fundamentals of the Generation of X-Rays	105
		4.5.2	X-Ray Microanalysis Techniques	107
		4.5.3	Detector for EDX Analysis	108
		4.5.4	Quantitative EDX Analysis	111
		4.5.5	X-Ray Mapping	112
		4.5.6	Wavelength Dispersive X-Ray Microanalysis (WDX)	112
	4.6	Enviror	nmental Scanning Electron Microscope (ESEM™)	116
		4.6.1	Low-Vacuum SEM and ESEM™	116
		4.6.2	Avoiding Charging	116
		4.6.3	The Wet Mode	117
		4.6.4	The Gaseous Secondary Electron Detector (GSED)	119
	Refer	ences		120

5	ATO	OMIC FORCE MICROSCOPY (AFM)
	5.1	Introduction
	5.2	Methodical and Instrumental Fundamentals
	5.3	Modes of Operation
		5.3.1 Contact Mode
		5.3.2 Force Modulation Mode
		5.3.3 Dynamic Operational Modes
		5.3.4 Tapping Mode
	5.4	Typical and Special AFM Applications
	Refe	erences
6		SITU MICROSCOPY
	6.1	Overview
	6.2	Micromechanical In Situ Tests
		6.2.1 Technical Equipment
		6.2.2 In Situ Microscopy in (E)SEM
		6.2.3 In Situ Microscopy in (HV)TEM
	6.3	In Situ Microscopy in AFM
	Refe	erences
_		CE PRO CECCENIC AND DATACE ANALYSIS
7		AGE PROCESSING AND IMAGE ANALYSIS
	7.1	Overview
	7.2	Image Processing
	7.3	Image Analysis
	7.4	Fourier Transformation
	7.5	Stereoscopic Imaging
	Refe	erences

Part II Preparation Techniques

8			S ASSOCIATED WITH THE ELECTRON MICROSCOPY	175
			ERS	
	8.1 8.2		ew	
			tion Sensitivity of Polymers	
	8.3	Low C	ontrast of Polymers	. 177
	8.4		ds of Investigating the Morphologies of Polymers	
		8.4.1	Powders, Particles, Fibres	
		8.4.2	Bulk Polymers	
	8.5		ds for Studying Micromechanical Processes	
	Refe	rences.		. 183
9			TON OF SURFACES	
	9.1		iew	
	9.2	Surfac	es in Their Natural Form	. 185
	9.3	Smoot	h and Etched Surfaces	. 186
		9.3.1	Chemical Etching	. 187
		9.3.2	Physical Etching	. 191
	9.4	Fractu	re Surfaces	. 192
	9.5	Investi	gation of Surfaces	. 195
	Refe	rences.	·	. 196
10	PRE	PARAT	ION OF THIN SECTIONS:	
	(CR	YO)ULT	TRAMICROTOMY AND (CRYO)MICROTOMY	. 199
	10.1	Overvi	ew	. 199
	10.2		mentation	
		10.2.1	Microtomes	
		10.2.2	Ultramicrotomes	. 200
		10.2.3	Cryomicrotomes and Cryoultramicrotomes	
		10.2.4	Knives	
		10.2.5	Modern Trends	
	10.3		ng with a Microtome and an Ultramicrotome	
	10.4		nen Preparation	
	10.4	10.4.1	Embedding	
		10.4.1	Specimen Trimming	
		10.4.2	Fixation and Staining.	
	10.5		nin Sectioning	
	10.5	10.5.1	Sectioning Parameters	
		10.5.2	Wet and Dry Sectioning Techniques	
		10.5.3	Room Temperature Ultramicrotomy	
		10.5.4	Cryoultramicrotomy	
		10.5.5	Collecting Sections on Grids	
	10.6		ns, Errors and Solutions	
		10.6.1	Overview	
		10.6.2	Typical Errors and Possible Solutions	212
	Refer	ences		217

Part II in this book is mainly soft materials sample preparation – i.e. quite useful for many of you

11	SPE	CIAL PE	REPARATION TECHNIQUES	219
	11.1	Prepara	ation of Polymer Films from Solutions	219
		11.1.1	Introduction	
		11.1.2	Solution Behaviour of Polymers	220
		11.1.3	Spin-Coating	220
		11.1.4	Dip-Coating	
		11.1.5	Solution Casting	
		11.1.6	Examples and Problems	
	11.2	Prepara	ation Using the Focussed Ion Beam Technique	
		11.2.1	Introduction	
		11.2.2	Principle	228
		11.2.3	Examples	
	Refe	rences		
12	PRE	PARAT:	ION FOR (IN SITU) DEFORMATION TESTS	231
	12.1	Overvi	ew 2	231
	12.2	Specim	en Preparation	234
	Refe	rences		240
13			ENHANCEMENT	
	13.1		ew	
	13.2		ning (Fixation)	
		13.2.1	Physical Hardening (Fixation)	
		13.2.2	Chemical Fixation	
	13.3	Chemic	cal Staining Procedures	
		13.3.1	Media Used to Perform Chemical Staining of Polymers 2	243
		13.3.2	Chemical Staining of Compact Specimens	
			Before Sectioning	246
		13.3.3	Chemical Staining of Thin Sections	248
	13.4	Enhanc	cement of Contrast Through Physical Effects	248
		13.4.1	Contrast Enhancement by y - or Electron Irradiation 2	248
		13.4.2	Straining-Induced Contrast Enhancement	254
	13.5	Probler	ns and Artefacts2	256
	Refe	rences		259

Part III Main Groups of Polymers

14	STR	UCTURAL HIERARCHY OF POLYMERS	263
	14.1	Overview	263
	14.2	Macromolecular Structures	263
		14.2.1 Constitution	265
		14.2.2 Configuration	265
		14.2.3 Conformation	265
		14.2.4 Macromolecule Size	
	14.3	Supramolecular Structures	
	14.4	•	
	14.5	Basic Relationships Between Macromolecular Parameters	
	11.0	and (Micro)mechanical Properties	273
	Refe	rences	
	11010		
15	AM	ORPHOUS POLYMERS	277
	15.1	Overview	277
	15.2	Morphology	277
	15.3	Micromechanical Behaviour	281
	15.4	Additional Examples of Amorphous Polymers	287
	Refe	rences	293
16		IICRYSTALLINE POLYMERS	
	16.1	Overview	
	16.2	Morphology	
		16.2.1 Structural Hierarchy in Semicrystalline Polymers	
		16.2.2 Methods of Morphological Analysis	299
	16.3	Micromechanical Behaviour	310
		16.3.1 Brittle Behaviour	310
		16.3.2 Ductile Behaviour	313
		16.3.3 High-Strength Fibres and Parts	
	16.4	Additional Examples of Semicrystalline Polymers	
		rences	
17		YMER BLENDS	
	17.1	Overview	
	17.2	Morphology	
	17.3	Micromechanical Behaviour	338
	17.4	Examples	
		17.4.1 Blends of Amorphous Polymers	341
		17.4.2 Blends of Amorphous and Semicrystalline Polymers	343
		17.4.3 Blends of Semicrystalline Polymers	
	Refe	rences	

Part III in this book is special applications for polymers – i.e. not the topic of this course..

Table of Contents XIX

18	HIGH-IMPACT RUBBER-MODIFIED POLYMERS	
	18.2 Morphology	
	18.3 Micromechanical Processes	
	18.4 Additional Toughening Mechanisms	
	References	
	References	U
19	BLOCK COPOLYMERS	
	19.1 Overview	
	19.2 Morphology	
	19.2.1 Block Copolymer Nanostructures via Self-Assembly	
	19.2.2 Examples of Tailored Block Copolymer Morphology 37	
	19.3 Deformation Mechanisms in Block Copolymers	
	19.4 Special Cases of Self-Assembly and Applications	
	References	1
20	RUBBERS AND ELASTOMERS	12
20	20.1 Overview	
	20.1 Overview	
	20.3 Micromechanical Deformation Behaviour	
	References	
	References40	_
21	POLYMER COMPOSITES40	5
	21.1 Overview	
	21.2 Particle-Reinforced Polymer Composites	
	21.3 Fibre-Reinforced Polymer Composites	4
	References	7
22	POLYMER NANOCOMPOSITES	9
	22.1 Overview	
	22.2 Examples of Different Classes of Nanocomposites	
	22.2.1 Polymer Nanocomposites Based on Zero-Dimensional	_
	Filler Particles (POSS)	2
	22.2.2 Polymer Nanocomposites Based on One-Dimensional	
	Filler Particles (MWCNT)	4
	22.2.3 Polymer Nanocomposites Based on Two-Dimensional	
	Filler Particles (MMT)	5
	22.2.4 Polymer Nanocomposites Based on Three-Dimensional	
	Filler Particles (SiO ₂)	7
	References	8
22	DIOMATERIALC (2)	0
23	BIOMATERIALS	
	23.1 Overview	9
	23.2 Electron Microscopy of Polymeric Biomaterials:	1
	Specific Problems and Solutions	-1

	23.3	Exampl	es	432
		23.3.1	Natural Biomaterials: Bone	432
		23.3.2	UHMWPE in Orthopaedics	433
		23.3.3	Acrylic Bone Cements	434
		23.3.4	Bioactive Composites for Bone Replacement	435
		23.3.5	Dental Composites	
		23.3.6	Sutures, Scaffolds and Meshes	437
		23.3.7	Ureter Stents	439
		23.3.8	Silicone-Based Tracheal Stents and Voice Prostheses	439
	Refe	rences		443
24			ROCESSING FORMS	
			ew	
	24.2		yered Films	
		24.2.1	Introduction	
		24.2.2	Morphology	446
		24.2.3	Micromechanical Deformation Mechanisms	
	24.3	Hot-Co	ompacted Self-Reinforced Polymers	
		24.3.1	Overview	451
		24.3.2	Morphology	452
	24.4	Nanofil	ores by Electrospinning	455
		24.4.1	Overview	455
		24.4.2	Morphology	456
		24.4.3	Micromechanical Deformation Mechanism	458
	24.5	Microfo	ormed Materials	460
		24.5.1	Overview	460
		24.5.2	Several Examples	460
	Refe	rences		462
HI	RIFCT	INDEX	7	465

CONTENT

Book 3: A Practical Guide to Transmission Electron Microscopy: Fundamentals And A Practical Guide to Transmission Electron Microscopy, Volume II

Chapter 1	Introduction1
	1.1 Microscope Resolution2
	1.2 Interactions of Electrons with Specimen4
	1.3 Comparison of TEM with Other Microscopy
	Techniques6
	References11
Chapter 2	Sample Preparation13
	2.1 Material Samples14
	2.1.1 TEM Grids15
	2.1.2 Ion Milling20
	2.1.3 Electropolishing26
	2.1.4 Focused Ion Beam30
	2.1.5 Microtomy31
	2.2 Biological Samples36
	2.2.1 Particulate Samples37
	2.2.2 Cells and Tissue Samples39
	References
Chapter 3	Instrumentation and Operation45
	3.1 Construction
	3.1.1 Electron Gun
	3.1.2 Electromagnetic Lens
	3.1.3 Condenser Lenses and Condenser
	Apertures52
	3.1.4 Objective Lens and Objective Aperture55
	3.1.5 Intermediate Lens and Diffraction
	Aperture57

	3.1.6 Projector Lens
	3.1.7 Viewing Screen and Camera59
	3.2 Instrument Imperfections, Alignments, Corrections,
	and Calibrations60
	3.2.1 Beam Shift and Beam Tilt60
	3.2.2 Spherical Aberration61
	3.2.3 Chromatic Aberration
	3.2.4 Depth of Field and Depth of Focus
	3.2.5 Specimen Height
	3.2.6 Astigmatism
	3.2.7 Aperture Alignment
	3.2.8 Magnification Calibration
	3.2.9 Camera Length Calibration71
	3.2.10 Magnetic Rotation Calibration
	3.3 TEM Operating Procedures
	3.3.1 Startup
	3.3.2 Specimen Loading and Unloading
	3.3.3 Alignments
	3.3.4 Data Recording
	3.3.5 Finishing
	References
Chapter 4	Electron Diffraction I
	4.1 Formation of Electron Diffraction
	4.2 Reciprocal Space
	4.3 Indexing of Electron Diffraction Patterns
	4.3.1 Indexing of Powder Patterns
	4.3.2 Indexing of Single-Crystal Diffraction
	Patterns90
	4.3.3 Indexing of Compound Patterns: Twins 92
	4.3.4 Indexing of Compound Patterns: Multiple
	Phases
	4.3.5 Indexing of Compound Patterns: Double
	Diffraction
	4.4 Experimental Procedures
	4.5 Simulation of Diffraction Patterns

			7.2.4 Image Processing	45
	References		References	48
Chapter 5	Imaging I109	Chapter 8	Elemental Analyses	51
1	5.1 Imaging Contrast		8.1 X-ray Energy-Dispersive Spectroscopy	52
			8.1.1 Formation of Characteristic X-Rays	
	5.2 Imaging with Mass-Thickness Contrast110		8.1.2 EDS Detector	
	5.3 Imaging with Diffraction Contrast111		8.1.3 EDS Artifacts	
	5.3.1 Formation of Diffraction Contrast111		8.1.4 Effects of Specimen Thickness, Tilt, and	
	5.3.2 Central Dark-Field Imaging114		Space Location	
	5.3.3 Two-Beam Condition115		8.1.5 Experimental Procedures	
			8.1.6 EDS Applications	
	5.3.4 Bragg-Diffracted Beam Intensity117		8.2 Electron Energy-Loss Spectroscopy	
	5.3.5 Thickness Fringes		8.2.2 EELS Qualitative and Quantitative	
	5.3.6 Bend Contours122		Analyses	75
	5.3.7 Weak-Beam Dark-Field Imaging122		8.2.3 Energy-Filtered TEM	
	5.3.8 Planar Defects125		8.2.4 EFTEM Experimentation and	
	5.3.9 Dislocations		Applications	81
			References	87
	References	Chapter 9	Specific Applications	
			9.1 Quantitative Microscopy	
			9.1.1 Quantification of Size Homogeneity	92
			9.1.2 Quantification of Directional	12.5
AndAD	nactical Cuide to Thangmission Fleetner Microscom		Homogeneity	
	ractical Guide to Transmission Electron Microscopy,		9.1.3 Dispersion Quantification	99
Volume I	H		9.1.4 Electron Diffraction Pattern Processing and Refinement	103
			9.2 In situ Microscopy	
Chapter 7	Imaging II21		9.2.1 In situ Heating	
	7.1 STEM Imaging21		9.2.2 In situ Cooling	
	7.1.1 Formation of STEM Images and Optics21		9.2.3 In situ Irradiation	
			9.3 Cryo-EM	117
	7.1.2 STEM Experimental Procedures24		9.4 Low-Dose Imaging	122
	7.1.3 STEM Applications24		0.5 Floatnon Tonnonnaku	12
	7.2 High-Resolution Transmission		9.5 Electron Tomography	
	Electron Microscopy28		9.5.1 Experimental Procedures	
	7.2.1 Principles of HRTEM28		9.5.2 Object Shapes	
			9.5.4 Nanoparticle Superlattices	
	7.2.2 Experimental Operations37		9.5.4 Nanoparticle Superlattices	

PHYS-E0526 Microscopy of Nanomaterials, laboratory course P (5 cr)

Assistant: Shandilay Shruti and other teachers: Dr. Jani Seitsonen (TEM & Tomography), Dr. Hua Jiang (HR-TEM), Dr. Ramzy Abdelaziz (SEM), Dr. Lide Yao (FIB), DR. Ville Liljeström (AFM)

As practical exercises nanostructured materials are studied with various microscopy methods. Course includes practical microscopy exercises by using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Focused ion beam (FIB).

Number of students participating to the course will be limited. (max. ~18) Based on applications... nmc-contact-sci@aalto.fi Deadline 16. 2. 2020

Basic exercises – Demos: (4? persons per group):

- 1) High resolution TEM (Jeol 2200FS Cs-corrected TEM)
- 2) 3D tomography data collection (Jeol 3200FSC liquid helium cryo TEM or Jeol2800) + Tomography data processing (Computer room)

Small group exercises: (Select 2) (2? persons per group)

- 1) basic-TEM imaging
- 2) SEM imaging or FIB -SEM processing/imaging
- 3) AFM

Independent Small group exercises (without supervision.. 2? person per group)

(2 exercises)

- 1) TEM imaging
- 2) SEM imaging
- 3) ...

To apply for the Laboratory Course - Send the following information by email: nmc-contact-sci@aalto.fi deadline 16. 2. 2020

1. You are a *		
graduate student		
exchange student		
Ph.D student		
post doc/other		
2. Your primary affiliation is *		
Aalto University		
 University of Helsinki 		
○ VTT		
Other		
3. Do you belong to a research gr	oup? If yes, who is your supervis	or/instructor?
Research Group		
Supervisor/Instructor		
4. Write with your own words you	ur primary motivation to participa	ate on the laboratory course. *
you our more you	primary insuration to participa	
5 What is a town and do not a long to	i	
5. What instrument do you plan t	o use in your research?	
☐ AFM		
☐ SEM		
□ TEM		
HRTEM		
Cryo-TEM		
TEM tomography		
□ XRAY		
6. Contact Information		
Firstname *		
Lastname *		
Email *		
Chudant Number (if you have one)		

Exam for lecture course PHYS-E0525 Microscopy of Nanomaterials... We have multiple choice questions from TEM, SEM, FIB, AFM etc.. + normal questions – where you write short answers

TEM Questions

1. What is STEM?

- Scanning transmission electron microscopy
- Standard transmission electron microscopy
- Scanning and transmission electron microscopy
- Suitable transmission electron microscopy
- Scanning tunneling electron microscopy

2. Bright field TEM is best described as?

- o Microscopy where the electron beam is well aligned
- The exclusion of the scattered electron beam while the beam is directed onto the sample
- Any imaging that must be undertaken in a well lit room
- The exclusion of the central beam electrons by tilting the beam, displacing the objective aperture or introducing the beam stop
- Microscopy where the filament has not broken

3. How can chromatic aberrations be minimized in a TEM?

- Use an electron gun with high energy spread and a thin specimen
- o Use an electron gun with low energy spread and a thick specimen
- o Use an electron gun with high energy spread and a thick specimen
- o Use an electron gun with medium energy spread and a thick specimen
- Use an electron gun with low energy spread and a thin specimen

Nanomicroscopy center

Prof. Janne Ruokolainen (Director Jani Seitsonen 1. 1. 2021 →)
Aalto University, Otanano

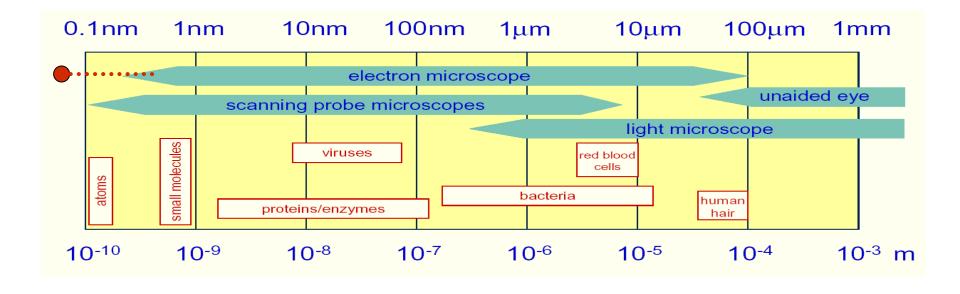
Nanomicroscopy Center?

Introduction

The new Nanomicroscopy Center is large microscopy clusters (even compared to other European centers). The center is now housing various microscopes able to characterize hard materials down to atomic resolution, and soft materials including biomaterials down to molecular resolution.

- Started in operation 2008 →
- Center area 1220 m² / 740 m²
- Center for various different *high resolution microscopy* techniques (currently >10 different high-resolution microscopes: 5 TEM's, 3 SEM's, AFM's, 3 STM's.. + New FIB-SEM 2019
- Instrument investments (until now..) >10 M€

Key Instruments:

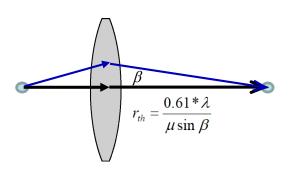

- First lens *aberration corrected* transmission electron microscope in Finland with approximately 1 Å resolution (*JEOL 2200FS*)
- First *Liquid helium cryo*-transmission electron microscope in Finland (operating at -255 °C or -187 °C) (*JEOL 3200FSC*)

Equipment and their new values, and purchase years

• •	•	•
Transmission electron microscopes (TEM)	Value	Year
1) 120kV TEM Tecnai 12	350 k€	2004
2) Double Cs corrected sub-Ångstrom 200kV (S)TEM, EDX, EELS	>2000 k€	2009
3) Liquid Helium 300kV cryo-TEM, EELS	>1500 k€	2009
4) 200kV FEG (S)TEM, EDX	>1000 k€	2016
5) 200kV FEG TEM (moved from Department of Materials Science and Engineering 2016)		
Scanning electron microscopes (SEM)		
1) JEOL 7500F FEG-SEM + EDX	400 k€	2008
2) Zeiss Sigma FEG-SEM	200 k€	2011
3) Zeiss E-SEM	150 k€	2011
4) dual beam FIB-SEM	~1000 k€	2019
Scanning probe microscopy (AFM, STM)		
1) Veeco Dimension 5000 AFM	300 k€	2008
2) RHK UHV-750 variable temperature STM (UHV-STM)	500 k€	2005 - 2009
3) Createc LT-STM low-temperature STM	460 k€	2012
4) cryo UHV-STM	580 k€	2012
X-ray Scattering		
1) Small Angle X-ray Scattering (SAXS)	550 k€	2006 - 2008
2) Wide and Medium Angle X-ray Scattering (WAXS/MAXS)	450 k€	2008 - 2016
3) 2D-microfocus XRD	500 k€	2016
4) New-SAXS small angle X-ray setup	500 k€	2020
sample preparation equipment etc.		
Cryo vitrification (3), ultra microtoming (2), ion-milling, polishing, plasma cleaner.		
TEM holders, cross section polisher,,	1000 k€	2009 -

Total: >12 M€

Microscopy Resolution – Different Microscopes



Nanoparticles, carbon nanotubes Lipids, polymer-amphiphile, liquid crystals Block copolymers Polymer blends, colloids... 0.1 nm – 1 – 5 nm 10 – 100 nm 50 nm – 10 μm

Electron microscope resolution:

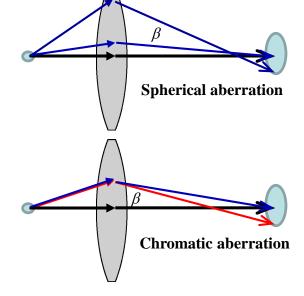
In ideal case:

$$r_{th} = \frac{0.61 * \lambda}{\mu \sin \beta} \approx \frac{0.61 \lambda}{\beta}$$

Light microscope wavelenght ~ 400 - 600 nm Electron wavelenght $300 \text{ kV} \sim 0.002 \text{ nm} \text{ !!!}$

$$r_{sph} = C_s \beta^3$$

$$r_{chr} = C_c \frac{\Delta E}{E_0} \beta$$



300 kV, Cs = 4.1 mm, Cc = 3.4 mm

→point resolution ~2.6 Å

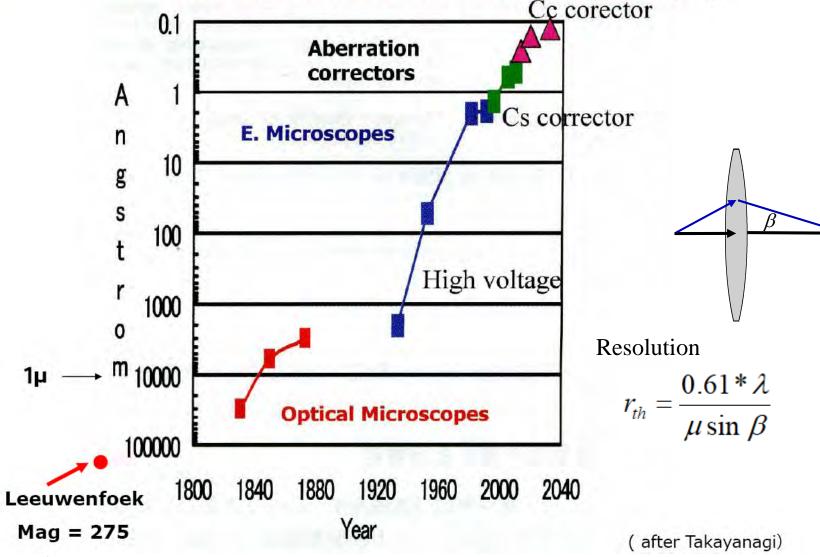
Jeol 2200FS Cs = 1.0 mm Cc = 1.4 mm, 200kV Point resolution 2.3 Å (without Cs correctors)

Jeol 2800 200kV Cs = 0.7mm Point resolution 2.0 Å

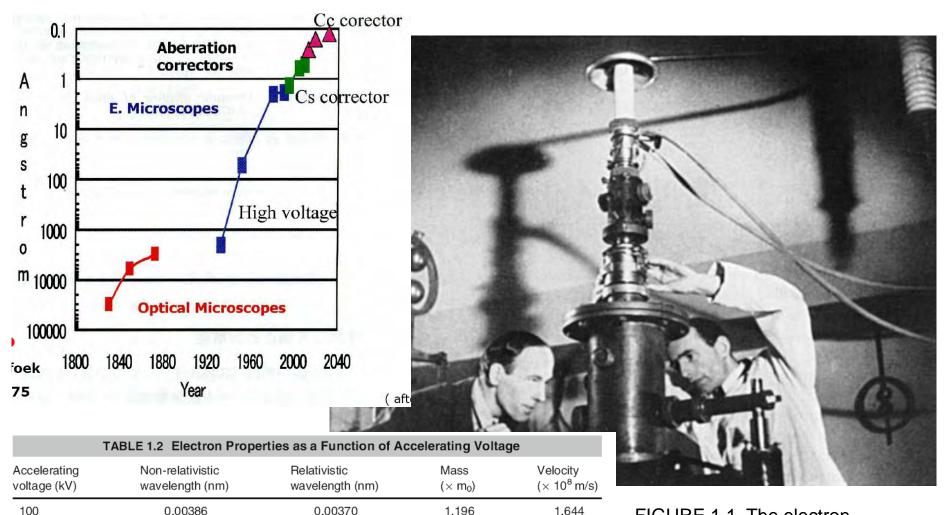
$$r_{total} = \sqrt{(r_{th})^2 + (r_{sph})^2 + (r_{chr})^2 + \dots}$$

If spherical aberration could be corrected $Cs \sim 0 \rightarrow \text{resolution} < 1 \text{ Å}$

If also chromatic aberration could be corrected or minimized \rightarrow resolution < 0.5 Å


Spherical aberration in **Hubble Space Telescope**

Analysis of the flawed images showed that the cause of the problem was that the primary mirror had been ground to the wrong shape. Although it was probably the most precisely figured mirror ever made, with variations from the prescribed curve of only 10 nanometers, it was too flat at the edges by about 2200 nanometers (mirror diameter 2.4 meters..). This difference was catastrophic, introducing severe spherical aberration a flaw in which light reflecting off the edge of a mirror focuses on a different point from the light reflecting off its center.


Progress of microscopes since 18 century

We stand now at a nanoworld of Q4 A (40pm)

Year 1676

Ernst Ruska and Max Knoll builtvthe first electron microscope in 1931 (Nobel Prize to Ruska in 1986)

1.235

1.391

1.587

1.783

2.957

1.759

2.086

2.330

2.484

2.823

0.00352

0.00273

0.00223

0.00193

0.00122

120

200

300

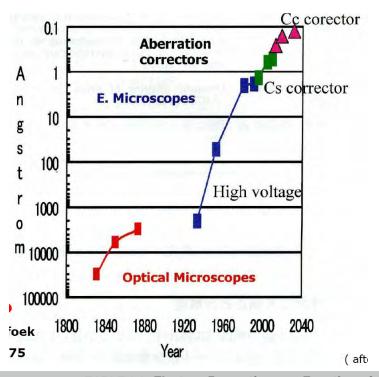
400

1000

0.00335

0.00251

0.00197


0.00164

0.00087

FIGURE 1.1. The electron microscope built by Ruska (in the lab coat) and Knoll, in Berlin in the early 1930s.

High voltage TEM (typically 400 kV -3 MV)

In early years the resolution was increased by using higher voltage TEM - since the wavelenght is smaller and therefore resolution is potentially better..

	ZIEGO.
	6441135
	MATERIAL STATES
е	
	Velocity

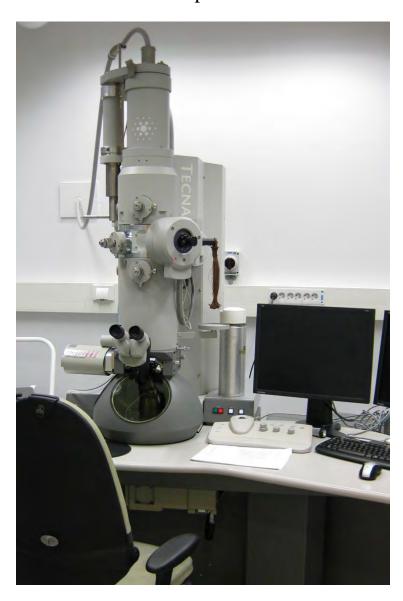
TABLE 1.2 Electron Properties as a Function of Accelerating Voltage				
Accelerating voltage (kV)	Non-relativistic wavelength (nm)	Relativistic wavelength (nm)	$\begin{array}{c} \text{Mass} \\ (\times m_0) \end{array}$	Velocity (× 10 ⁸ m/s)
100	0.00386	0.00370	1.196	1.644
120	0.00352	0.00335	1.235	1.759
200	0.00273	0.00251	1.391	2.086
300	0.00223	0.00197	1.587	2.330
400	0.00193	0.00164	1.783	2.484
1000	0.00122	0.00087	2.957	2.823

$$r_{th} = \frac{0.61 * \lambda}{\mu \sin \beta} \approx \frac{0.61 \lambda}{\beta}$$
 (in TEM β

(in TEM β is small)

Nowadays these high voltage TEM's are mostly used for material radiation damage research and some special applications where thick samples are required for imaging (high voltage electrons can penetrate thicker samples .. i.e even some micrometer thick samples .. Normal TEM's require typically <100 nm or even < 10 nm samples for high resolution work

Hitachi 3.5MeV (S)TEM

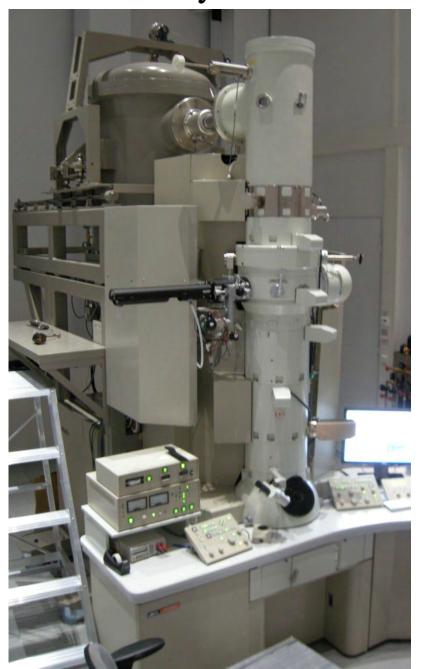


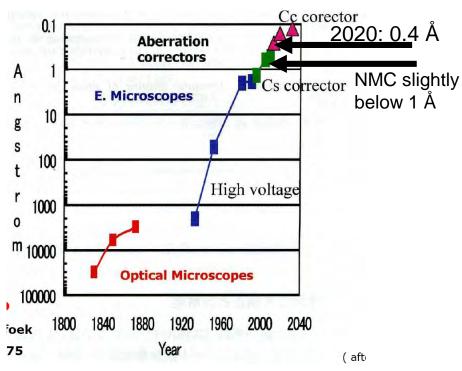
Microscopes are quite big - Notice the operator standing there..

Base F

In NMC we have 5 TEM's

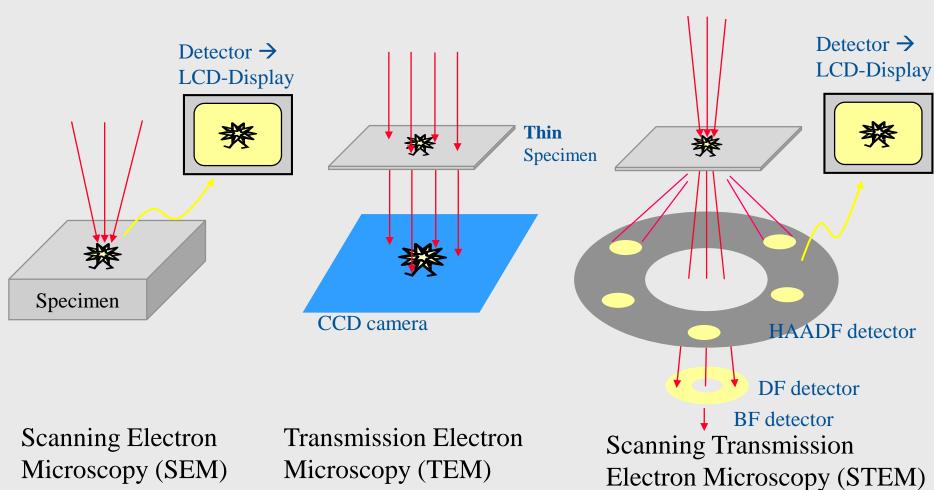
In this picture the oldest TEM's 120 kV TEM and 200 kV TEM are shown


FEI Tecnai T12 Installation 2003


FEI Tecnai F20 Installation 1999? (Material science laboratory (Chem) and 2016 → moved to NMC)

NMC: new 200 kV TEM and 300 kV Cryo-TEM

NMC highest resolution Double Cs-corrected (S)TEM



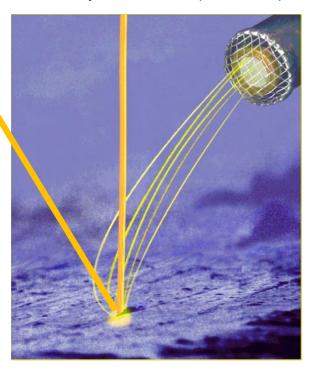
Installation 2009: TEM and STEM resolution slightly below 1 Å

Now best resolution for commercial microscopes is 0.4 Å

Brief introduction to the electron microscopy

Best resolution typically ~ 1 nm

Microscopy (TEM)


resolution ~ 2 Å (Cs corrected $\sim 0.5 - 1 \text{ Å}$)

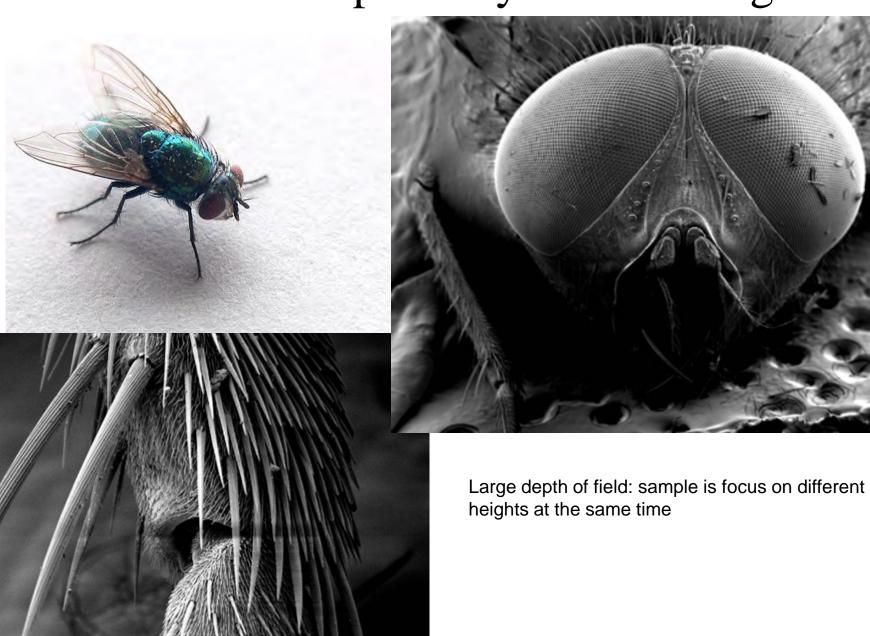
resolution typically 1.3 Å (Cs corrected ~ 0.5 - 1 Å or even better)

Scanning Electron Microscopy (SEM)

Back scattering electron detector (high energy electrons)

Primary e-beam (1-30kV)

Secondary electron detector (low energy electrons)


The scanning electron microscope (SEM) uses a focused beam of high-energy electrons (typically 1kV to 30 kV) to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample morphology (texture), chemical composition, and crystalline structure and orientation of the materials. Electron beam is scanned across the surface point by point and each point signal is collected, and 2-dimensional image is generated.

Scanning Electron Microscopy (SEM)

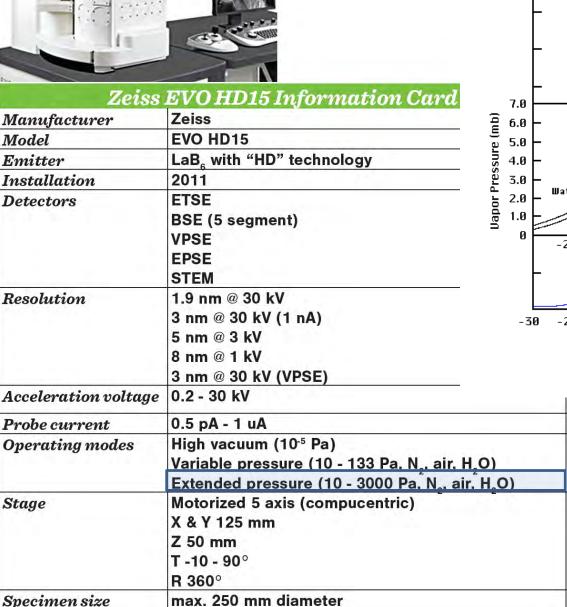
Surface technique:

- Relatively high resolution –
 Best case even <1nm (0.4 nm)
- Large depth of field (Large sample focus range)
- Low and high magnifications
- Large samples
- Possibility to microanalysis (EDX)
- Relatively easy sample preparation
 (normally thin metal coating needed gold/palladium, platinum, carbon, etc.)
- Samples in vacuum (same as TEM)
- Limited to surface studies (except if STEM option is available but then very thin samples needed... since voltage is max. 30 kV)

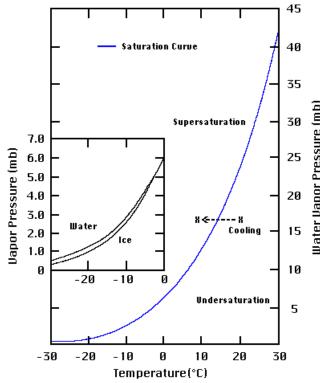
SEM examples: Fly head and leg

Nanomicroscopy center has 3 SEM's

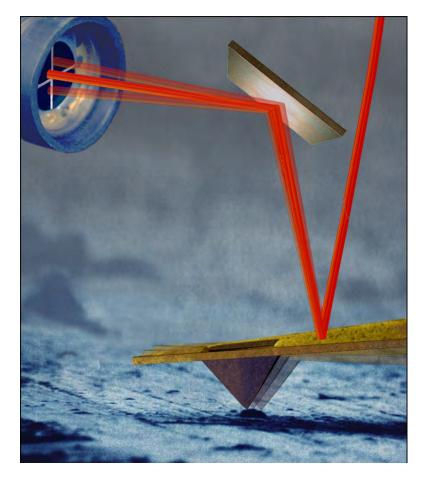
1.) This SEM has been the primary training and research SEM at NMC since 2008.


	JEOL JEOL		
	SM-7500FA Information Card		
Manufacturer	JEOL		
Model	JSM-7500F (later upgraded to JSM-7500FA)		
Emitter	Cold FEG		
Installation	2008		
Detectors	In-column SE ETSE BSE (2 segment) EDX (JEOL)		
Resolution	0.6 nm @ 30 kV 1.4 nm @ 1 kV		
Acceleration voltage	0.1 - 30 kV		
Probe current			
Operating modes	High vacuum (10 ⁻⁵ Pa)		
Stage	Motorized 5 axis (compucentric) X & Y 50 mm Z 25 mm T -5 - 70° R 360°		
Specimen size	max. 100 mm diameter max. 10 mm height		

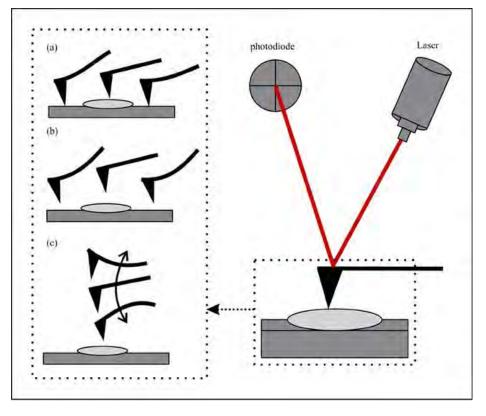
This SEM is going to be the primary training SEM for Nanomicroscopy Center SEM users.

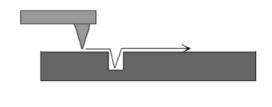

2.)

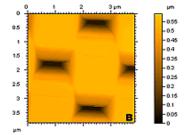
Jaga		ZEISS	
Zeiss	Sigma VP Information Co	urd	
Manufacturer	Zeiss		
Model	Σigma VP		
Emitter	Schottky FEG		
Installation	2011		
Detectors	In-column SE ETSE BSE (5 segment) VPSE STEM		
Resolution	1.3 nm @ 20 kV 2.8 nm @ 1 kV 2.5 nm @ 30 kV (VPSE)	_	
Acceleration voltage	0.1 - 30 kV		
Probe current	4 pA - 20 nA		
Operating modes	High vacuum (10 ⁻⁵ Pa)		
	Variable pressure (2 - 133 Pa, N ₂)	1	
Stage	Motorized 5 axis (compucentric) X & Y 125 mm Z 50 mm T -10 - 90° R 360°		
Specimen size	max. 250 mm diameter max. 145 mm height		


3.)

max. 145 mm height

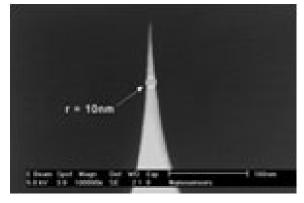


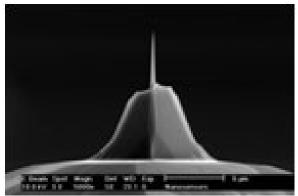

Scanning probe microscopy (SPM) historically called AFM)



In AFM we use sharp tip to scan the sample surface to obtain information about surface topography and other properties (chemical, mechanical hardness, electrical etc.)

- a) Contact mode
- b) Non-contact mode
- c) Tapping mode (tip is oscillating on surface)





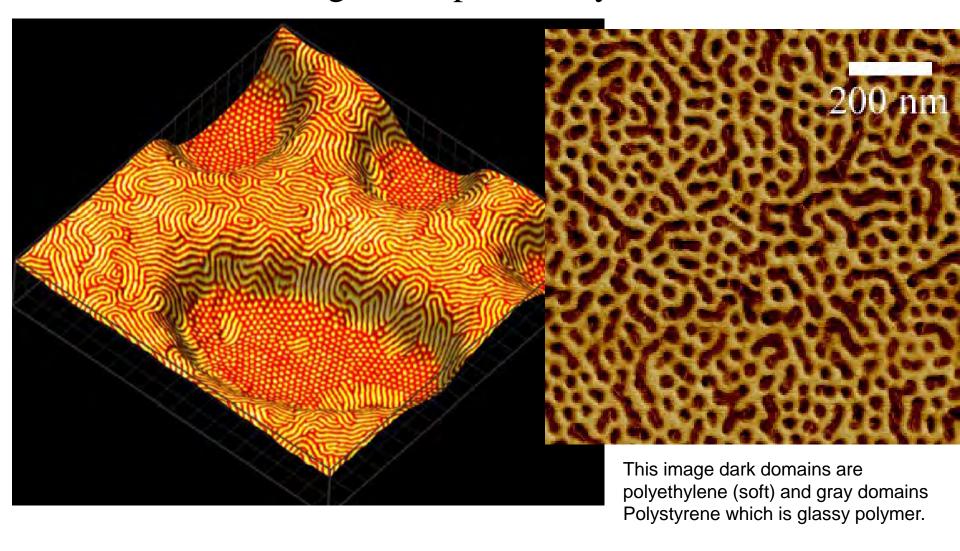
Examples AFM probes

Standard Tip radius typically 8-10 nm (cost 10 -20 euros per each)

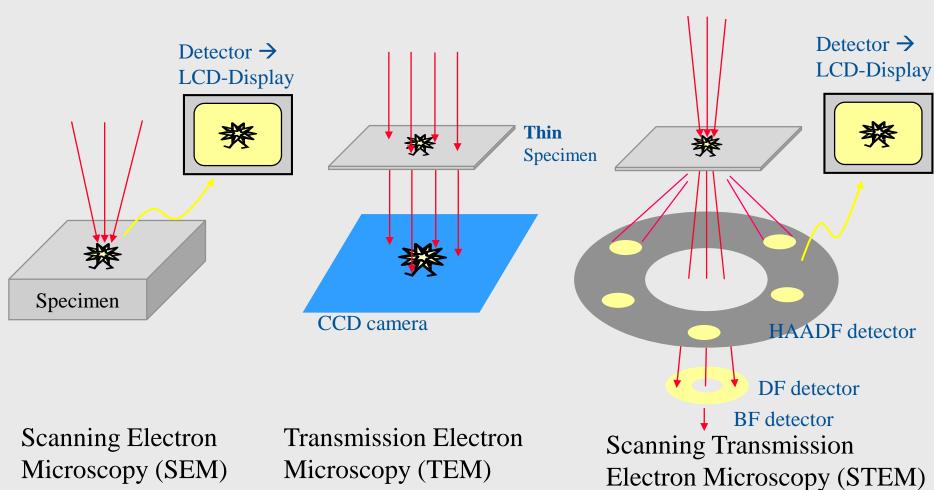
Super sharp tips: Tip radius is typically 1nm (~100 €)

High aspect ratio tips: The length of the high aspect portion of the tip is larger than 1.5 µm

NMC instruments:


AFM: Veeco Dimension 5000 SPM (installed 1/2008)

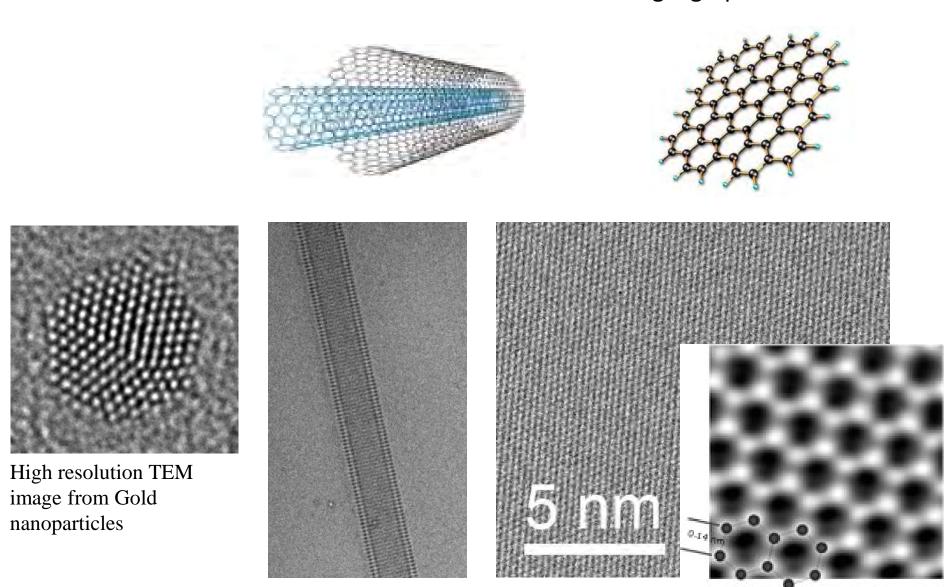
- Originally designed for semiconductor imaging.
- Capable of loading samples up to 350 mm in diameter.
- Large scanning area ~90 x 90 μm.
- Automatic measurement for up to 100 preselected areas.
- High pixel-density image capture 5120 x
 5120 points.


High resolution, easy to use, large samples..

AFM image examples - Polymer films:

Topography (height) and composition imaging (soft and hard domains) – in tapping mode imaging one can get at the same time the surface topographical information and contrast due to mechanical properties (example hard of soft domains)

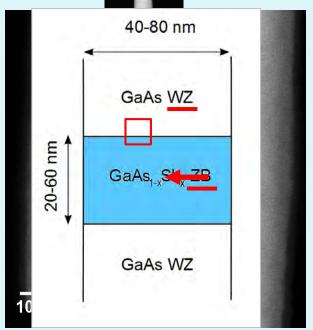
Brief introduction to the electron microscopy

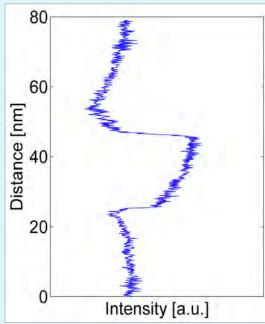


Best Practical resolution ~ 1 nm

Microscopy (TEM)

resolution ~ 2 Å (Cs corrected $\sim 0.5 - 1 \text{ Å}$)

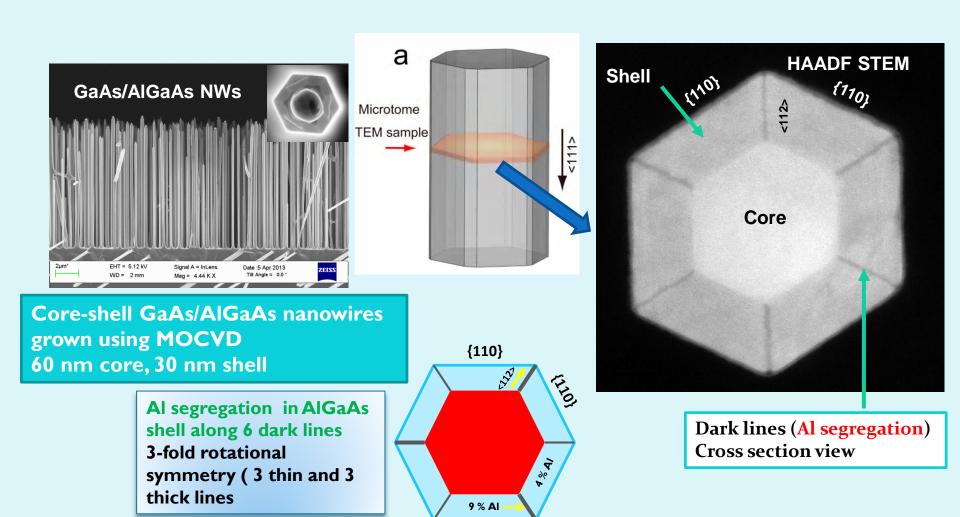

resolution typically 1.3 Å (Cs corrected ~ 0.5 - 1 Å or even better) Nowadays it is possible to obtain atomic resolution images even from low atomic number materials such as Carbon nanotubes and single graphene sheets..



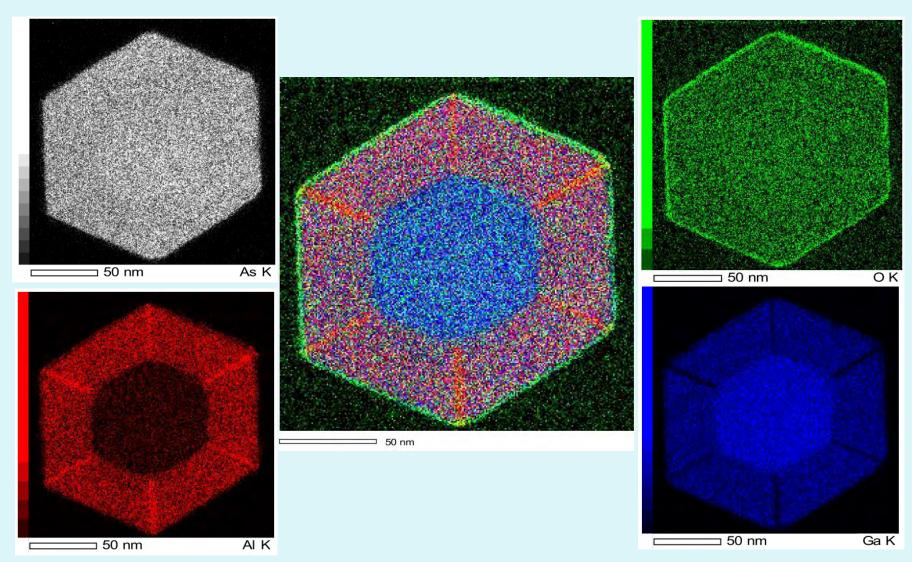
Another examples: Heterostructured GaAs nanowires


- GaAs nanowires (NWs)
- Molecular beam epitaxial (MBE) growth
- Pure GaAs NWs: Wurtzite (WZ) structure (纤锌矿结构, 六方相)
- Partially alloyed with Sb:
 GaAs_{1-x}Sb_x insert : Zinc bl

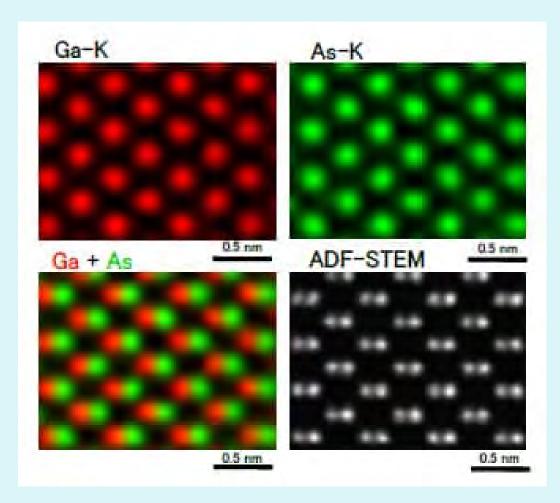
ZB) structure (闪锌矿结构,立方相)



Sample: Hanne Kauko, NTUT


TEM characterization of III-V nanowires (HAADF STEM)

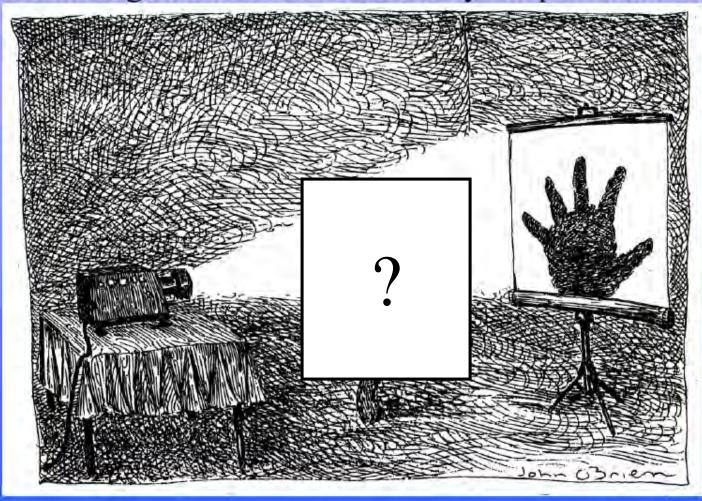
Dhaka et al., Nano Letters, 2013, 13 (8), pp 3581-3588


Elemental Mapping of cross-sectional GaAs nanowires

by analysing the X-ray signals generated in the sample – atomic composition can be analysed (EDX-spectroscopy)

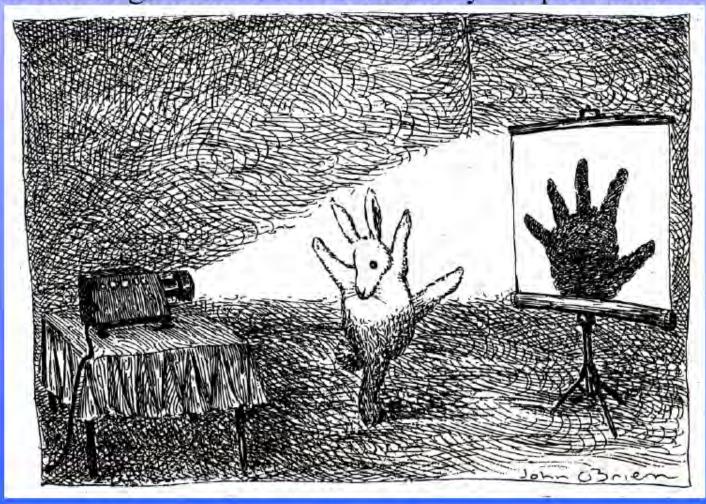
Sample: Veer Dhaka, Aalto U.

Atomic resolution elemental analysis is also possible with modern high resolution microscopes..


Atomic-level-resolution EDX elemental map of a gallium arsenide monocrystal <011>

3D tomography – Why important?

(Jani Seitsonen will give lecture on this topic later in the spring)


TEM image is projection from $3D \rightarrow 2D$

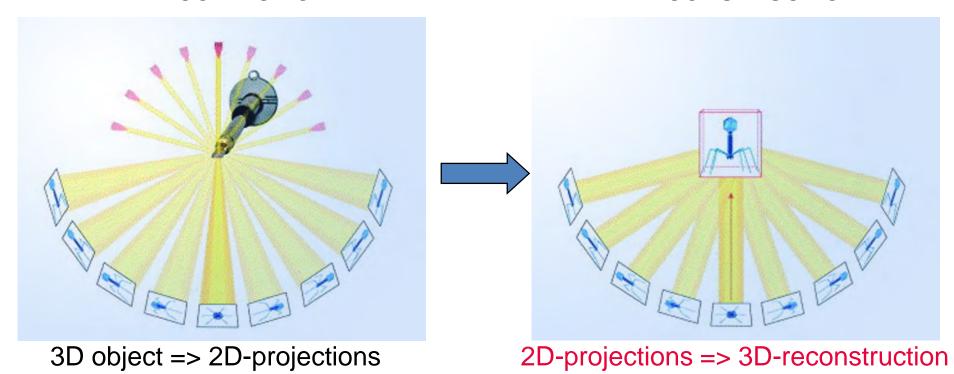
 Micrograph represents a projection image of the specimen. So features at different depths in the structure are all superimposed.
 Hence cannot generate a 3D structure by simple visual inspection.

TEM image is projection from $3D \rightarrow 2D$

 Micrograph represents a projection image of the specimen. So features at different depths in the structure are all superimposed.
 Hence cannot generate a 3D structure by simple visual inspection.

Another example of projection from 3D \rightarrow 2D

Another example of projection from $3D \rightarrow 2D$

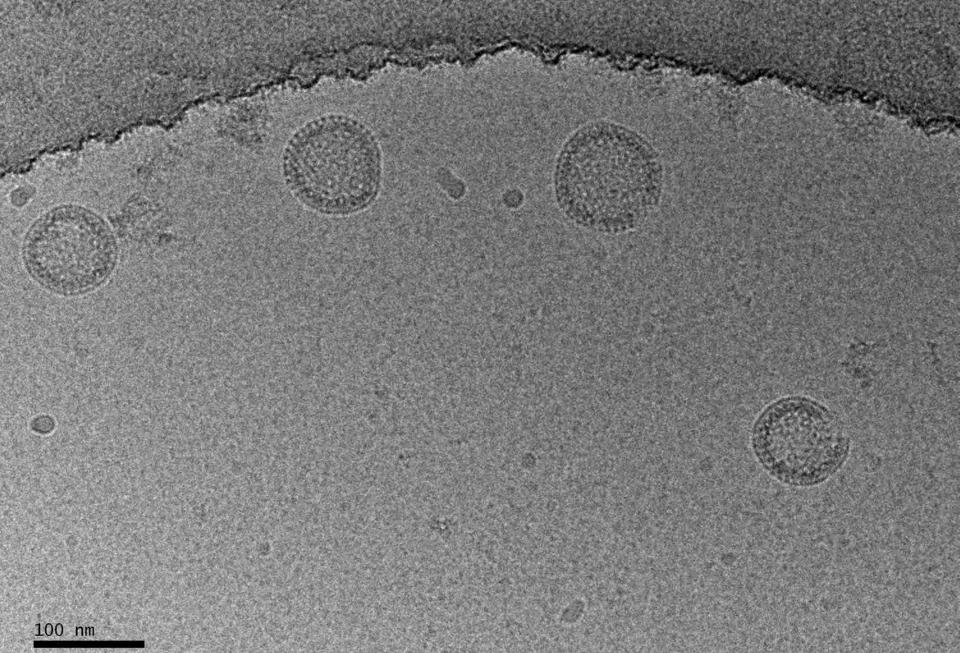


When 2D-projections are not enough: TOMOGRAPHY (or single particle reconstruction)

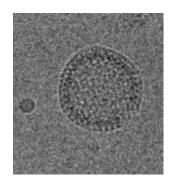
Principle of electron tomography:

DATA COLLECTION

RECONSTRUCTION


Cryo-Tomography

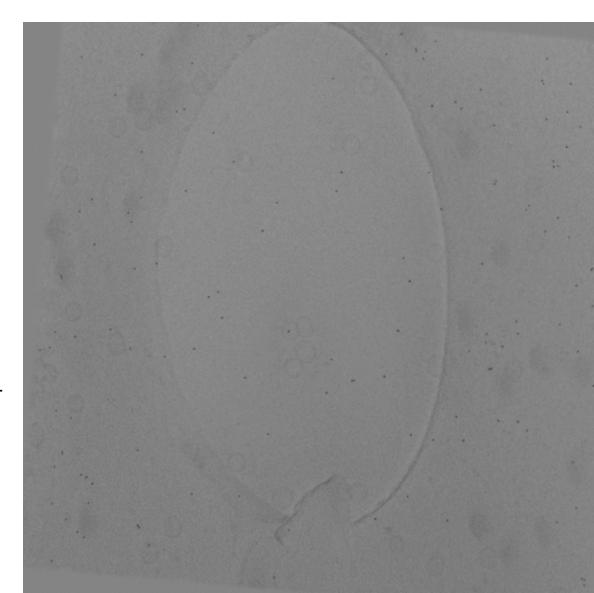
Case study: Cryo-EM structure of M-PMV VLPs

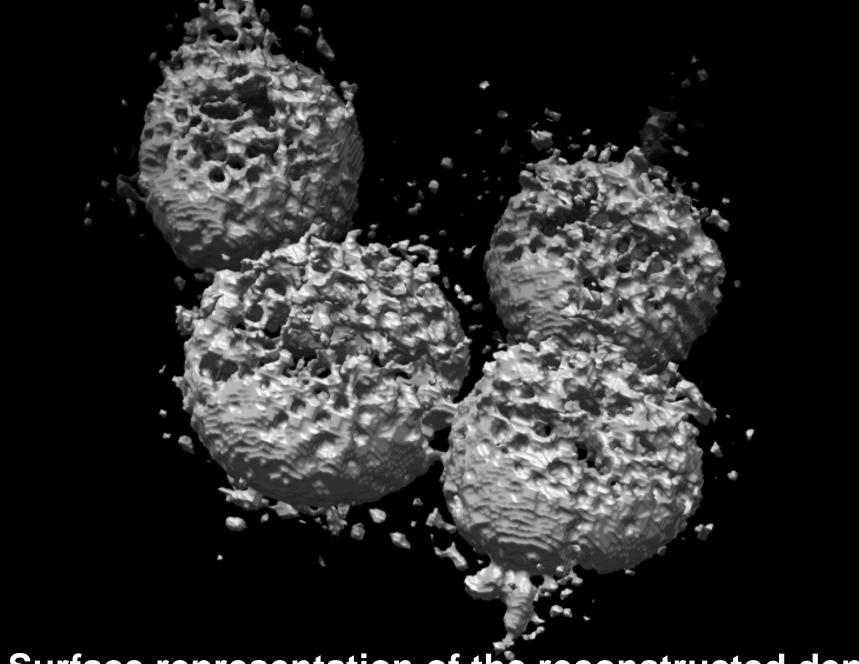

Sample: *in vitro* assembled Virus-Like Particles of Mason-Pfizer Monkey Virus

(Pasi Laurinmäki, Institute of Biotechnology University of Helsinki)

Normal TEM image is a projection from 3D specimen

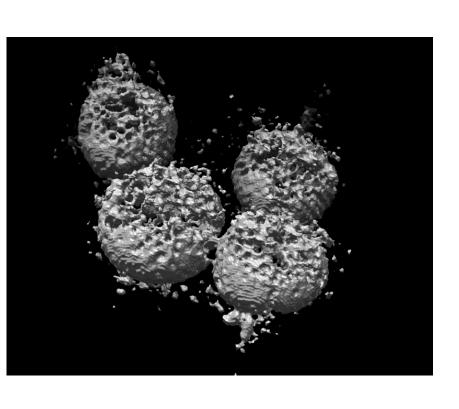
3D cryo-EM: aligned tomographic tilt series

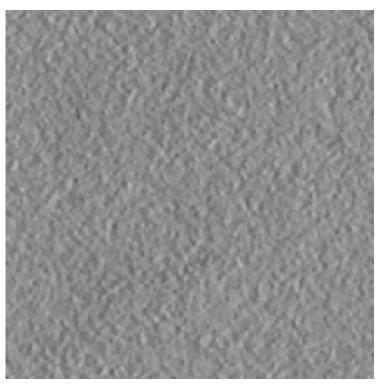


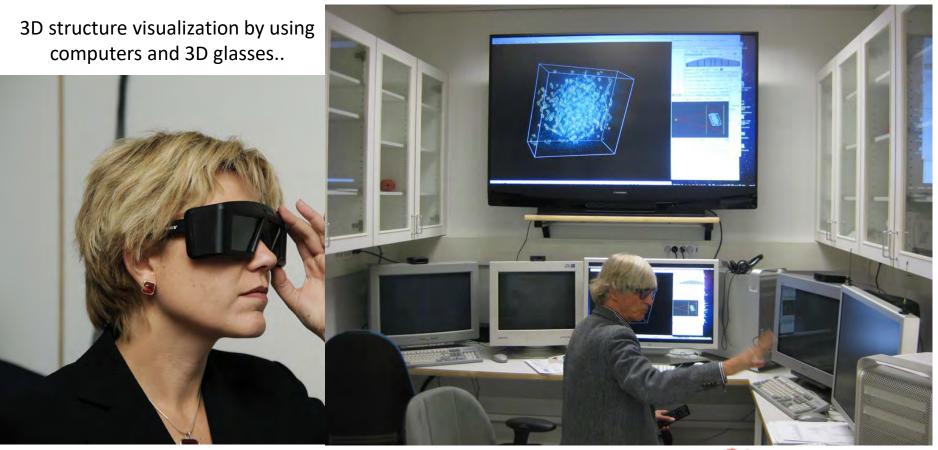

Low-dose series of *in vitro* assembled proCANC M-PMV particles

Diameter of the large round hole is about 2um

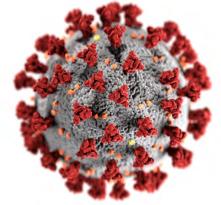
Dense dots are 10nm gold particles used as markers to align the images


Then we just take images from -70 to + 70 degree tilt and do 3D recontruction





Surface representation of the reconstructed density


Serial sections through the reconstructed density

Using similar 3D imaging methods also the structure of the **SARS-CoV-2** virus was resolved (single particle reconstruction)

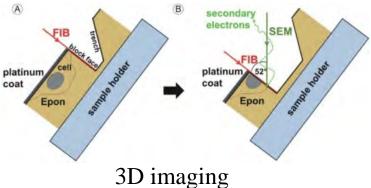
Sample preparation for TEM: THIN SPECIMENS

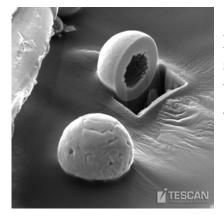
A major limitation of the TEM is we need thin specimens.

Methods to prepare thin specimens exist for almost all materials, and we talk about them specific lecture. But as a general rule, the thinning processes that we use do affect the specimens, changing both their structure and chemistry. So you need to be aware of the drawbacks of specimen preparation and learn to recognize the artifacts introduced by standard preparation methods.

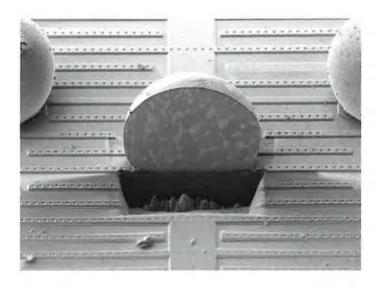
Ultramicrotoming, ion milling, Focused ion beam, cryo sample preparation etc..

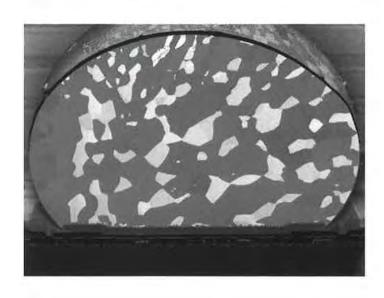




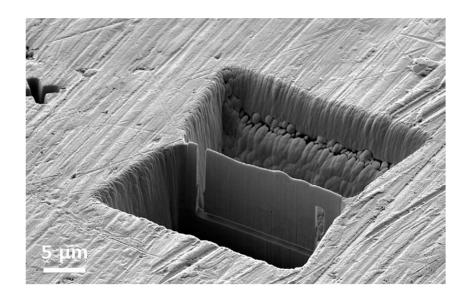

Planar Surface Preparation for SEM Cross Section Viewing

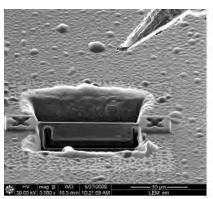
New Dual beam focused ion beam system in Nanomicrosopycenter (installation finnished by June 2019): Main applications TEM sample preparation, cross-section imaging and 3D imaging



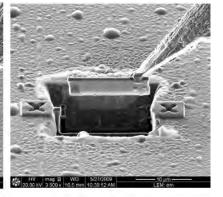


Here is the example of crosssection imagin: FIB column is used to cut the cross-section and SEM column for imaging


Example: FIB cross-section imaging from soldering tin particles






TEM sample preparation using Focused ion beam..

FIB is very usefull for hard materials thin cross-section sample preparation – after final polishing << 100 nm meter thick sample can be done

