

# Biological treatment processes of water and waste Lecture 4

### WAT - E2180

Anna Mikola Professor of Practice D Sc (Tech)

#### **Lecture outline**

#### **Biological process applications**

- Suspended growth
  - Activated sludge
  - Sludge age
  - Design of the process
- DEMO exercise: Activated sludge process design

#### Removal of organic matter Nitrogen conversions

- Nitrification
- Denitrification
- Short-cut processes

## Advanced BACTERIA GAME – Nitrogen removal simulation

• N2O



# Activated sludge process



Laitoksen nimi 4.3.2021



#### **Activated sludge process**

- Aeration basin oxygen is provided for the microorganisms
- Source of oxygen usually air
- Mixing with aeration or mixers
- Settling basin separates the sludge from the water

- Return activated sludge (RAS) recycles most of the sludge back to the aeration basin
  - Waste activated sludge (WAS) determines the sludge retention time of the process



#### Sludge retention time SRT or sludge age

## The most important parameter in the biological process



When removed from the reactor!



- $\theta_c = V X/Q_w X_r$  $\theta_c = Sludge age d(SRT, MCRT)$
- V = Reactor volume m<sup>3</sup>
- X = MLSS in the reactor kg/m<sup>3</sup>
- $Q_w = WAS$  flow rate m<sup>3</sup>/d
- $X_r = IMLSS$  in RAS kg/m<sup>3</sup>



### Sludge age

- Sludge age determines the reactor volume and sludge concentration
- It determines also the biological performance
  - Short (1-5 days) only COD removal
  - Intermediate (10-15 days) COD removal + nutrient removal
  - Long (>20 days) COD + nutrient removal, enhanced micropollutant removal



Aalto University School of Engineering Laitoksen nimi 4.3.2021

#### Important parameters of activated sludge

#### - In bioreactor:

- Sludge concentration (MLSS) g/I = X (or MLVSS!!)
- Sludge age (SRT)
- Volumetric loading = BOD-load / reactor volume (kgBOD/m<sup>3</sup>d)
- Sludge loading = F/M = BOD-load / V · X (kgBOD/kgMLSSd)
- Sludge yield (kgSS/kgBOD)
- Hydraulic retention time
- In settling
  - Sludge volume index SVI
  - Surface loading = flow rate / surface area (m/h)
  - Sludge surface loading (SSL) = flow rate  $\cdot$  X / surface (kgSS/m<sup>2</sup>d)
  - Sludge volumetric loading =  $SVI/1000 \cdot SSL (m^3/m^2h)$



#### **Dimensioning of activated sludge process**

- First decide which sludge age is needed
  - Short SRT< 5d → only COD removal
  - Long SRT > 10d  $\rightarrow$  nitrification

Steps:

- $\rightarrow$  Select the sludge age, take into account the temperature effect
- $\rightarrow$  The biomass produced is calculated with the following:
- $\rightarrow$  Y<sub>OBS</sub> = Y / 1+b $\theta_c$  (or this is known from experience)
- → XV =  $\theta_c Q Y_{OBS} (S_0 S_e)$  → select the MLSS and calculate the volume.

(Y is the yield and b is the decay rate)

- Often used also: dimensioning based on volumetric loading or sludge loading; use of safety factors
- COD removal: 0,5 1 kgBOD/kgMLSSd, nitrification 0,04 0,1 kgBOD/kgMLSSd (or < 0,3 kgBOD/m3)</li>



#### DEMO EXERCISE: LOHJA PITKÄNIEMI WWTP

The plant has two bioreactors in two lines, together 3600 m<sup>3</sup>. Two thirds are anoxic. Settling surface area is 1150 m<sup>2</sup>. Influent flow rate is 8090 m<sup>3</sup>/d and the BOD concentration in the influent is 305 mg/l. Sludge concentration MLSS is 7 g/l. Calculate the hydraulic retention time, volumetric loading and sludge loading in aeration. Do you think nitrification is occuring in the process?

Waste activated sludge WAS is removed directly from the aeration basin. Flow rate is 300 m<sup>3</sup>/d. Calculate the sludge age. Based on the sludge are what could you say about nitrification now? Hydraulic retention time = 3600 / 8090 d = 0,44 d = 10,7 h.

Volumetric loading =  $8090 \times 305 / 3600$ gBOD<sub>7</sub> /m<sup>3</sup> d = 685 gBOD<sub>7</sub> / m<sup>3</sup> d = 0,69kg BOD<sub>7</sub> / m<sup>3</sup> d

Sludge loading = 8090 \* 305 / (3600 \* 7) gBOD<sub>7</sub> / kg MLSS d = 98 gBOD<sub>7</sub> / kg MLSS d = 0,098 kgBOD<sub>7</sub> / kg MLSS d.

Based on the volumetric loading, nitrification is not occuring. Based on the sludge loading nitrification might occur.

SRT (when WAS is removed from the reactor) = reactor volume / WAS flow rate (m3/d) = 3600 / 300 = 12 d.

Looks promising but aerobic SRT is important for nitrification, so in this case nitrification is not working efficiently.



## Activated sludge process

- Based on microbiological activity in aerobic conditions
- Heterotrophic microbes degrade the organic matter to  $CO_2$  and  $H_2O$
- Nutrient are assimilated during the biomass growth
  - BOD<sub>7,ATU</sub>:Nkok:Pkok = 100:5:1
  - => nutrient removal (N,P) ~20-30 %
- Autotrophic microbes are oxidazing NH<sub>4</sub>
- Nitrogen removal: Denitrifying bacteria + anoxic zone
- BioP: PAOs + anaerobic zone

## Nitrogen conversions



Laitoksen nimi 4.3.2021 12

#### **Global nitrogen cycle**



Aalto University School of Enginee

# Alternative redox pathways in nitrogen conversions





Laitoksen nimi 03/04/2021 14

#### Nitrogen cycle in wastewater treatment





#### **Assimilation**

#### Nitrogen: Assimilation, anabolic substrate



## Nitrogen removal



#### **Nitrification**

# Nitrification in two steps 1. 2 NH4<sup>+</sup> + 3 O<sub>2</sub> → 2 NO2<sup>-</sup> + 2 H2O + 4 H<sup>+</sup> (nitritation) 2. 2 NO2<sup>-</sup> + O2 → 2 NO3<sup>-</sup> (nitratation)





04/03/2021

#### **Denitrification**

#### • Denitrification in four steps

Denitrification generally proceeds through some combination of the following intermediate forms:

 $NO3^- \rightarrow NO2^- \rightarrow NO + N2O \rightarrow N2 (g)$ 

The complete denitrification process can be expressed as a redox reaction:

 $2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$ 





04/03/2021

# Alkalinity in nitrification and denitrification

- Nitrification consumes the alkalinity of the wastewater
- theoretically 1 g of NH<sub>4</sub>+-N converted requires 7.14 g of alkalinity as CaCO<sub>3</sub>
- Hydrogen ions produced in nitritation are consumed in the denitrification reaction.
- 3.57 g of alkalinity as CaCO<sub>3</sub> is generated per 1 g of reduced NO<sub>3</sub><sup>-</sup>-N

## Nitrification and denitrification

- SRT long SRT short SRT increases the rate
- Oxygen high, min 2 mg/l no oxygen or very low
- Organicmatterno need (autotrophic)needs a carbon source
- BOD load low load high load
- Alkalinity consumes produces

## Process options – N removal



#### **Sequenced reactors**

### **Comparison of different configurations**

#### ND processes

- more energy
- carbon source addition
- more lime
- removal up to 95%
- easier to control
- more expensive

#### **DN** processes

- some of the aeration compensated
- no carbon addition
- less lime
- removal depends on C/N-ratio and nitrate recycle - max. 70 -80% (typically 65%) without carbon addition



## Conventional (N removal 1.0)



# Dimensioning of the process for nitrification

- The limiting process
- Temperature
- DO
- pH
- Toxic substances







#### Dimensioning of the anoxic volume (denitrification)

- Wastewater quality
  - Carbon to nitrogen ratio
  - Toxic substances
  - Readily biodegradable
    organic matter
- Retention time minimum 0,5
   2 h
- To be checked based on the carbon source

| Carbon source         | Denitrification rate g N / kgVSSh |       |       |  |  |  |  |  |
|-----------------------|-----------------------------------|-------|-------|--|--|--|--|--|
|                       | 7 °C                              | 14 °C | 20 °C |  |  |  |  |  |
| Raw WW                | 0,6                               | 1,5   | 3     |  |  |  |  |  |
| Primary settled<br>WW | 0,6                               | 1,5   | 3     |  |  |  |  |  |
| Pre-fermented<br>WW   | 1-2                               | 2-5   | 5-10  |  |  |  |  |  |
| Acetic acid           | 2                                 | 5     | 10    |  |  |  |  |  |
| Methanol              | 2                                 | 5     | 10    |  |  |  |  |  |







Laitoksen nimi 03/17/2021 27

# Short-cut nitrogen removal



Laitoksen nimi 4.3.2021 28



<sup>4/03/2021</sup> 



#### **Deammonification reaction**

**Catabolic reaction:**  $NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O (\Delta G^\circ = -357 \text{ kJ/mol})$ 

Anabolic reaction:  $0.26 \text{ NO}_2^- + 0.066 \text{ HCO}_3^- \rightarrow 0.26 \text{ NO}_3^- + 0.066 \text{ CH}_2 \text{ O}_{0.5} \text{ N}_{0.15}$ 

- The combination of partial nitritation and anammox is referred to as deammonification.
- Due to the anabolic reaction, AMX growth is always associated with NO<sub>3</sub><sup>-</sup> production, which is stoichiometrically 11 % of ammonium converted.



21

#### **Conventional nitrification + denitrification versus deammonification**



#### Nitrification + denitrification

Deammonification



Laitoksen nimi 03/04/2021 32

## Anammox bacteria

- Low Growth Rate
  - approx. 10 day doubling time at 30°C
  - <10 day has been reported (Park et. al 5.3 8.9 days)
  - SRT (>30 days)
- Sensitive to;
  - Nitrite
    - Toxic- irreversible loss of activity based on concentration & exposure time
    - NH<sub>4</sub><sup>+</sup>: NO<sub>2</sub><sup>-</sup> ratio 1 : 1.32
  - DO reversible inhibition
  - Free ammonia (<10 -15 mg/l)</li>
  - Temperature >30°C preferred
  - pH (neutral range)





Source: AECOM 2012

#### **Deammonication processes**

OLAND (Oxygen Limited Autotrophic Nitrification Denitrification)

#### CANON Completely Autotrophoic Nitrogen removal Over Nitrite

DEMON® Suspended growth SBR

AnitaMOX® Attached growth MBBR

ANAMMOX® (Paques) Upflow granulation process





# BACTERIA GAME – Nitrogen removal

- Groups of 2 3 in breakout rooms
- Go to your group's platform in Miro
- Move the carbon sources and electron donors and acceptors in the game in order to create beneficial conditions for each bacteria
- You can use the table in the previous slide



Laitoksen nimi 17.3.2021 35 Match microorganisms and their beneficial Organic Organic conditions by moving the elements. matter matter Electron donors CO2 CO2 Organic matter Organic matter CO2 Ammonium Ammonium NH4+ NH4+ Electron acceptors Nitrite NO2-Oxygen O2 Anammex bacteria Nerito oxiditing bacteria (NOE) Oxygen 02 Oxygen O2 Nitrate NO3-Nitrite Nitrite NO2-NO2-Organotrophic denitrilying Ammonia oxidizing bacteria bacteria (ACB) Astribic hoternitreelt



Laitoksen nimi 03/17/2021

Carbon sources

# Microorganismsin water and wastewater treatment

Table 2.3 Trophic classification of microorganisms (adapted from Rittmann and McCarty, 2001; Metcalf & Eddy, 2003)

|                |                                   | Energy source                                                                 |                                                             |                                                                  | Carbon source <sup>1</sup> |
|----------------|-----------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------|
| Electron donor |                                   |                                                                               | Electron accepto                                            | Typical products <sup>2</sup>                                    |                            |
| Trophic group  | Microbial group                   | Type of e donor                                                               |                                                             |                                                                  |                            |
| Chemotroph     |                                   |                                                                               |                                                             |                                                                  |                            |
| Organotroph    | Aerobic heterotrophs              | Organic                                                                       | O <sub>2</sub>                                              | $CO_2, H_2O$                                                     | Organic                    |
|                | Denitrifiers                      | Organic                                                                       | NO3 <sup>-</sup> , NO2 <sup>-</sup>                         | N <sub>2</sub> , CO <sub>2</sub> , H <sub>2</sub> O              | Organic                    |
|                | Fermenting organisms              | Organic                                                                       | Organic                                                     | Organic:VFAs3                                                    | Organic                    |
|                | Iron reducers                     | Organic                                                                       | Fe (III)                                                    | Fe (II)                                                          | Organic                    |
|                | Sulfate reducers                  | Acetate                                                                       | SO4 <sup>2-</sup>                                           | $H_2S$                                                           | Acetate                    |
|                | Methanogens (acetoclastic)        | Acetate                                                                       | acetate                                                     | CH <sub>4</sub>                                                  | Acetate                    |
| Lithotroph     | Nitrifiers: AOB <sup>4</sup>      | NH4 <sup>+</sup>                                                              | O <sub>2</sub>                                              | NO <sub>2</sub> <sup>-</sup>                                     | $CO_2$                     |
|                | Nitrifiers: NOB <sup>5</sup>      | NO <sub>2</sub>                                                               | O <sub>2</sub>                                              | NO <sub>3</sub>                                                  | $CO_2$                     |
|                | Anammox <sup>6</sup> bacteria     | NH4 <sup>+</sup>                                                              | NO <sub>2</sub> <sup>-</sup>                                | $N_2$                                                            | $CO_2$                     |
|                | Denitrifiers                      | H <sub>2</sub>                                                                | NO <sub>3</sub> <sup>-</sup> , NO <sub>2</sub> <sup>-</sup> | N <sub>2</sub> , H <sub>2</sub> O                                | $CO_2$                     |
|                | Denitrifiers                      | S                                                                             | NO3, NO2                                                    | N <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> ,H <sub>2</sub> O | $CO_2$                     |
|                | Iron oxidizers                    | Fe (II)                                                                       | O <sub>2</sub>                                              | Fe (III)                                                         | $CO_2$                     |
|                | Sulphate reducers                 | H <sub>2</sub>                                                                | $SO_4^{2-}$                                                 | H <sub>2</sub> S, H <sub>2</sub> O                               | $CO_2$                     |
|                | Sulphate oxidizers                | H <sub>2</sub> S, S <sup>0</sup> ,S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> | O <sub>2</sub>                                              | SO4 <sup>2-</sup>                                                | $CO_2$                     |
|                | Aerobic hydrogenotrophs           | H <sub>2</sub>                                                                | O <sub>2</sub>                                              | H <sub>2</sub> O                                                 | $CO_2$                     |
|                | Methanogens<br>(hydrogenotrophic) | H <sub>2</sub>                                                                | CO <sub>2</sub>                                             | CH <sub>4</sub>                                                  | CO <sub>2</sub>            |
| Phototroph     |                                   |                                                                               |                                                             |                                                                  |                            |
|                | Algae, plants                     | H <sub>2</sub> O                                                              | CO <sub>2</sub>                                             | O <sub>2</sub>                                                   | $CO_2$                     |
|                | Photosynthetic bacteria           | $H_2S$                                                                        | $CO_2$                                                      | S (0)                                                            | $CO_2$                     |

<sup>1</sup> Carbon source: organic for heterotrophs and inorganic (CO<sub>2</sub>) for autotrophs; mixotrophs can use both. <sup>2</sup> Typical products: CO<sub>2</sub> and H<sub>2</sub>O are products of catalysis (energy generation) by many micro-organisms. <sup>3</sup> VFAs: volatile fatty acids (typically acetate, propionate, butyrate). <sup>4</sup> AOB: ammonia oxidizing bacteria. <sup>5</sup> NOB: nitrite oxidizing bacteria. <sup>6</sup> Anammox: anaerobic ammonia oxidizing bacteria.

mi 21

37





Laitoksen nimi 03/17/2021 38

# Gaseous emissions during nitrogen conversions



04/03/2021

#### N<sub>2</sub>O emissions globally and in Finland



#### **Role in ozone depletion**

### Laughing gas is biggest threat to ozone layer

f 💙 🔿 🕲 🔂 🛅 🔂 24

EARTH 27 August 2009

By Lisa Grossman



Science for Environment Policy

Nitrous oxide is now top ozone-layer damaging emission

According to new research, emissions of anthropogenic nitrous oxide (N<sub>2</sub>O) are now causing more damage to the ozone layer than those of any controlled ozone depleting substance and this is projected to remain the case for the rest of this century. The study suggests that limiting N<sub>2</sub>O emissions could help both the recovery of the ozone layer and tackle climate change.



stratosphere where most of it breaks down to nitrogen and oxygen. - Remaining N<sub>2</sub>O destroys ozone and makes the ozone

N<sub>2</sub>O rises up into the

layer thinner everywhere.

- N<sub>2</sub>O is now the dominant ozone-depleting substance
- N<sub>2</sub>O emissions increase by 0,25% every year



#### **Group discussion**

Search for information about the  $CO_2$  goals of your home town / town of your origin. Discuss and compare the goals in groups. (10 minutes)



Laitoksen nimi 03/04/2021 42

#### Why is N<sub>2</sub>O relevant for cities?

Wastewater treatment emissions are becoming more dominant Can't be solved by switching into renewables



HSY's greenhouse gas emissions in 2010-2016 and that of similar operations in 2009.

|                               | 1990   | 1995   | 2000   | 2005   | 2008   | 2009   | 2010   | 2011   | 2012   | 2013   | 2014   | 2015   | 2016   | 2017   |
|-------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Total energy                  | 53.6   | 55.3   | 53.7   | 53.7   | 54.5   | 52.6   | 60.2   | 52.7   | 47.6   | 48.1   | 44.3   | 40.6   | 43.4   | 41.0   |
| Fuel combustion               | 53.4   | 55.2   | 53.6   | 53.6   | 54.3   | 52.5   | 60.1   | 52.6   | 47.4   | 48.0   | 44.2   | 40.5   | 43.2   | 40.8   |
| CO <sub>2</sub>               | 52.5   | 54.3   | 52.8   | 52.7   | 53.5   | 51.7   | 59.1   | 51.7   | 46.6   | 47.2   | 43.4   | 39.7   | 42.4   | 40.0   |
| CH4                           | 0.37   | 0.33   | 0.28   | 0.26   | 0.27   | 0.27   | 0.30   | 0.26   | 0.27   | 0.26   | 0.26   | 0.24   | 0.26   | 0.26   |
| N <sub>2</sub> O              | 0.54   | 0.58   | 0.59   | 0.59   | 0.60   | 0.56   | 0.65   | 0.61   | 0.58   | 0.58   | 0.56   | 0.54   | 0.57   | 0.56   |
| Fugitive emissions from fuels | 0.12   | 0.17   | 0.12   | 0.14   | 0.15   | 0.13   | 0.14   | 0.13   | 0.14   | 0.12   | 0.12   | 0.15   | 0.14   | 0.18   |
| CO <sub>2</sub>               | 0.11   | 0.07   | 0.06   | 0.07   | 0.10   | 0.07   | 0.10   | 0.09   | 0.10   | 0.08   | 0.08   | 0.11   | 0.10   | 0.15   |
| CH4                           | 0.01   | 0.09   | 0.06   | 0.07   | 0.05   | 0.05   | 0.04   | 0.04   | 0.04   | 0.04   | 0.03   | 0.04   | 0.03   | 0.03   |
| N <sub>2</sub> O              | 0.0007 | 0.0004 | 0.0004 | 0.0005 | 0.0007 | 0.0005 | 0.0006 | 0.0007 | 0.0009 | 0.0009 | 0.0007 | 0.0007 | 0.0011 | 0.0016 |

Table 3.1-2 Emissions from the energy sector by subcategory and gas (Mt CO<sub>2</sub> eq.)



#### Why is N<sub>2</sub>O relevant for wastewater treatment?

kg (CO2)/d

Produced in the biological nitrogen removal

Often the most significant greenhouse gas emitted in wastewater treatment



Aalto University School of Engineering

### Pathways of N<sub>2</sub>O production

#### Nitrification

 $NH_3 + O_2 + 2H^+ + 2e^- \rightarrow NH_2OH + H_2O$ 

 $NH_2OH + H_2O \rightarrow NO_2^- + 5H^+ + 4e^-$ 

 $NO_2$ -+ $H_2O \rightarrow NO_3$ -+2H++2e-

#### Two pathways related to nitrifiers: Hydroxylamine pathway and nitrifier denitrification





#### **Denitrification**



#### Hydroxylamine oxidation



Strong correlation to ammonium concentration Increase in ammonium leads to accumulation of intermediate components



Department of Built Environment 28.5.2019

#### **Nitrifier denitrification**



Strong correlation to low DO and/or to high nitrite concentrations A way for microbes to avoid high toxic nitrite concentrations



Department of Built Environment 28.5.2019



Production related to DO in the anoxic zones, COD limitation and low pH Nos is more sensible and suffering from the competition



Department of Built Environment 28.5.2019 48

#### Short-cut nitrogen removal processes

- Short-cut nitrogen removal processes have been developed mainly to decrease the energy consumption (and CO<sub>2</sub> footprint)
- Nitritation + denitritation and deammonification by anammox bacteria
- **Reported N<sub>2</sub>O emissions vary** between 0 - 15% of the nitrogen load





Department of Built Environment 28.5.2019

# Production of N<sub>2</sub>O in the wastewater treatment



#### **Reading material**

Biological wastewater treatment (Course book): Chapters 4.2-4.3 4.11 Nitrogen removal 5.1 6.1 6.3-6.6 Activated sludge process from the other course book (Environmental Biotechnology) Pages 213-222

