

Biological treatment processes of water and waste Lecture 6

WAT - E2180

Anna Mikola Professor of Practice D Sc (Tech)

Lecture outline

Biological growth

Kinetics

Advanced process design

BACTERIA GAME

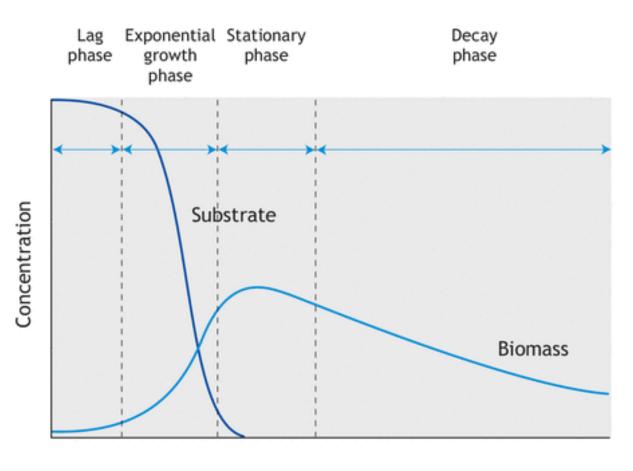
Dynamic nitrogen removal process

Storage processes

Storage polymers Applications

Biological phosphorus removal

Removal mechanism Existing process configurations **Anaerobic processes** Anaerobic digestion Fermentation



Biological processes - growth

Laitoksen nimi 03/22/2021

Cell growth

Time

Figure 2.16 Biomass growth in batch mode (adapted from Metcalf & Eddy, 2003)

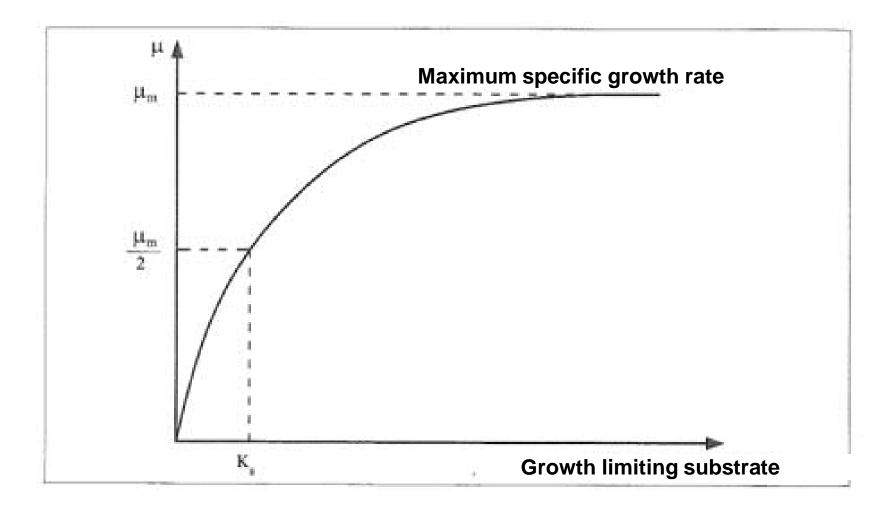
Microbial growth

Growth can be described with the equation:

$$r_{V,XB} = \mu_{max} f(S) X_B$$

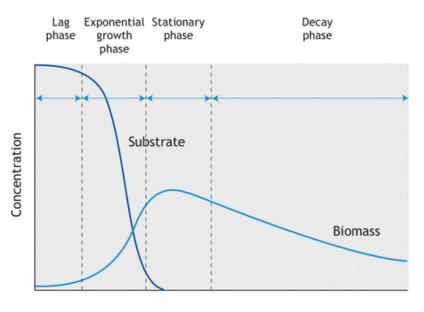
Where

r_{V,XB} = growth per unit of volume and time (e.g. kgCOD/m³d)


μ_{max} = max specific growth rate (1/h or 1/d)

f(S) = growth kinetic function (depending on substrate), typically Monod

X_B = biomass concentration (kgCOD/m³ or kgVSS/m³)



Monod's kinetics

Bacterial growth

Time

Figure 2.16 Biomass growth in batch mode (adapted from Metcalf & Eddy, 2003)

$$r_{V,XB} = \mu_{\max} \cdot \frac{S}{S + K_S} \cdot X_B$$
$$r_{V,S} = \frac{\mu_{\max}}{Y_{\max}} \cdot \frac{S}{S + K_S} \cdot X_B$$

The growth of biomass depends on the substrate consumption (with a yield) and on the decay rate b

$$r_g = Y r_s - b X$$

Substrate consumption

 $r_{V,S} = r_{V,B} / Y_{max}$

 $Y_{max} = maximum yield$ (kgCOD(B)/kgCOD(S) or kgVSS(B)/kgCOD(S) Yield shows how much of the consumed substrate is transformed into new biomass in the reaction. Note also Y_{obs} which is smaller than Y_{max}

Monod kinetics

Monod kinetics are typically used for microbial growth

$$r_{V,XB} = \mu_{\max} \cdot \frac{S}{S + K_S} \cdot X_B$$
$$r_{V,S} = \frac{\mu_{\max}}{Y_{\max}} \cdot \frac{S}{S + K_S} \cdot X_B$$

For biomass growth (g/m³d)

For substrate consumption (g/m³d)

 $\mu_{obs} = \mu_{max} S / (S + K_s) [1/d]$

Observed specific growth rate

Taking into account the growth conditions

Oxygen:

$$\mu_{obs} = \mu_{\max} \cdot \frac{S_{O2,2}}{S_{O2,2} + K_{S,O2}}$$

$$\mu_{obs} = \mu_{\max} \cdot \frac{S_2}{S_2 + K_s} \cdot \frac{S_{O2,2}}{S_{O2,2} + K_{S,O2}}$$

Temperature:

$$\mu_{\max(\mathcal{T})} = \mu_{\max(20^\circ C)} \cdot e^{K(\mathcal{T}-20)}$$

Typical values for stoichiometric and kinetic parameters

Table 2.9 Typical values of stoichiometric (f_{s}° , Y) and kinetic (q_{max} , μ_{max}) parameters for various bacterial groups, (adapted from Rittmann and McCarty 2001)

Electron donor		Electron acceptor	${f_S}^0$	Y	μ_{max}	K	
Microbial group e ⁻ donor							
Chemotrophic organotroph	ıs						
Aerobic heterotrophs	Sugar	O ₂	0.70	0.49 gVSS/gbCOD	13.2	27.0 g bCOD/gVSS.d	
Aerobic heterotrophs	No sugar	O ₂	0.60	0.42 gVSS/gbCOD	8.4	17.0 g bCOD/gVSS.d	
Denitrifiers	Organic	NO ₃ ⁻ , NO ₂ ⁻	0.50	0.25 gVSS/gbCOD	4.0	16.0 g bCOD/gVSS.d	
Fermenting organisms	Sugar	Organic	0.18	0.18 gVSS/gbCOD	1.2	10.0 g bCOD/gVSS.d	
Sulphate reducers	Acetate	SO4 ²⁻	0.08	0.057 gVSS/gbCOD	0.5	8.7 g bCOD/gVSS.d	
Methanogens (acetoclastic)	Acetate	Acetate	0.05	0.035 gVSS/gbCOD	0.3	8.4 g bCOD/gVSS.d	
Chemotrophic lithotrophs							
Nitrifiers : AOB	NH4	O ₂	0.14	0.34 gVSS/gNH ₄ -N	0.9	2.7 g NH ₄ -N /gVSS.d	
Nitrifiers :NOB	NO ₂ ⁻	O ₂	0.10	0.08 gVSS/gNO2-N	0.5	1.1 g NO2-N/gVSS.d	
Methanogens (hydrogenotrophic)	H ₂	CO_2	0.08	0.45 gVSS/gH_2	0.3	1.1 g H ₂ /gVSS.d	

 $k = \mu_{max}/Y = \text{specific } r_{max}$ (per unit biomass)

Denitrification rate

$$r_{\rm V,NO} = \left(\frac{1 - Y_{\rm H}}{2.86Y_{\rm H}}\right) \mu_{\rm max,H} \left(\frac{S_{\rm BOD}}{K_{\rm COD} + S_{\rm COD}}\right) \left(\frac{S_{\rm NO}}{K_{\rm NO} + S_{\rm NO}}\right) \eta_{\rm g} X_{\rm b,h}$$

where

 $r_{\rm V, NO}$ = reaction rate per unit volume nitrate- and nitrite-nitrogen,

 $Y_{\rm H}$ = biomass yield coefficient,

 $\mu_{max, H}$ = maximum specific growth rate of heterotrophs,

 S_{COD} = soluble material concentration organic substrate,

 K_{COD} = half-saturation coefficient organic substrate,

 $S_{\rm NO}$ = soluble material concentration nitrate- and nitrite-nitrogen,

$$K_{\rm NO}$$
 = half-saturation coefficient nitrate-nitrite,

 η_g = correction factor for μ_H under anoxic conditions, and

 $X_{b,h}$ = particulate material concentrations.

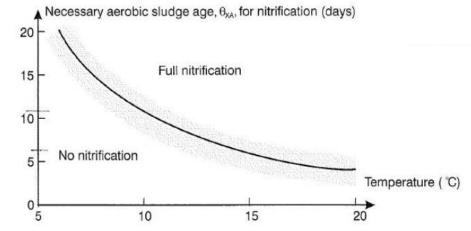
Design of biological processes

DEMO 1

Average daily flow rate	37 850 m3/d	
Influent water:		
BOD7	140 mg/l	
Ammonium-N	35 mg/l	
Suspended solids	90 mg/l	
Of which unbiodegradable	30 mg/l	
Effluent water:		
BOD7	10 mg/l	
Ammonium-N	0,5 mg/l	
Total N	10 mg/l	
Suspended solids	15 mg/l	
Temperature	12 C	
MLVSS/MLSS	0,8	
MLVSS	2,4 g/l	
Y (heterotrophs)	0,6 kg VSS/kg BOD	
b (12 C)	0,044 d-1	
Y (nitrifiers)	0,12 kg VSS/kg NH4-N	
bN (12 C)	0,06 d-1	

Dimension an activated sludge process where full nitrification and 70% denitrification is achieved.

Use the denitrification rate (12°C, raw WW) of 1,5 gN/kgVSSh


Assumption 1: No nitrate in the influent water

Assumption 2: No denitrification in the secondary clarifiers.

Laitoksen nimi

DEMO 1

- Dimensioning of nitrifying process:
- Choose SRT→ nitrification
- 12 ° C \rightarrow 10 d
- Calculate the needed biomass per day:

- Biomass XV =
$$\frac{YQ(So-Se)}{1+b\theta c}$$
 + $\frac{Y_nQ(S_{NH4}-Se_{NH4})}{1+b_n\theta c}$ =

2031,2 + 97,0 = 2128 kgVSS/d

- Biomass (VSS \rightarrow SS) = 2660 kgSS/d
- Inert particulate influent 1136 kgSS/d → Total sludge amount SS = 3796 kgSS/d, sludge concentration 3 g/l
- Reactor volume needed= (sludge amount x SRT) / X = 12653 m3

NOTE! This calculation is simplified → inert SS produced not considered

DEMO 1

The volume needed for denitrification is calculated based on the denitrification rate.

Total N 70 % \rightarrow to be denitrified 927 kg/d = 38,6 kgN/h = 38 600 gN/h

Denitrification rate (12C, raw WW) \rightarrow 1,5 gN/kgVSS/h MLVSS 2,4 g/l \rightarrow needed volume 10 722 m³

Removal in biological processes

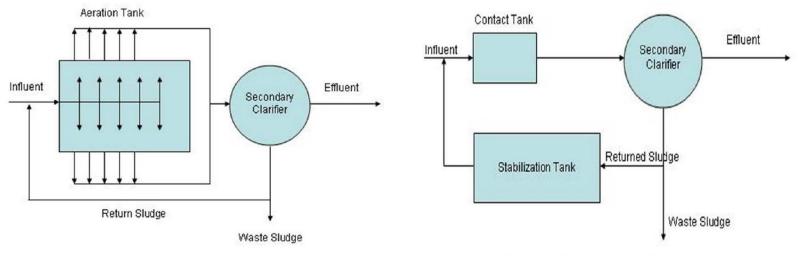
Removal	Conditions	When	
Organic matter	Aerobic, short SRT	Focus on removal	
Organic matter	Anaerobic, long HRT&SRT	for high strenght waters, focus on energy recovery	
Ammonium (nitrification)	Aerobic, long SRT	Well known process	
Total nitrogen Nitrification + denitrification	Aerobic + anoxic zones, Short/long SRT	Well known process	
Total nitrogen Short-cuts	Low DO (nitritation + denitritation) Deammonification	Focus on energy savings High strength waters	
Phosphorus	Aerobic + anaerobic zones	P reuse, sludge production, carbon source	
NOM, iron, manganese, organic micropollutants	Aerobic, mainly long SRT	Often cost effective solution	

Design approaches for biological processes

Sludge age (days) \rightarrow Sludge age selected on the basis of process goals (e.g. nitrification) \rightarrow Basin volume

Sludge loading (kgBOD/kgMLSSd) \rightarrow As above but does not take into account differences in sludge yield (e.g. process design when water is very typical)

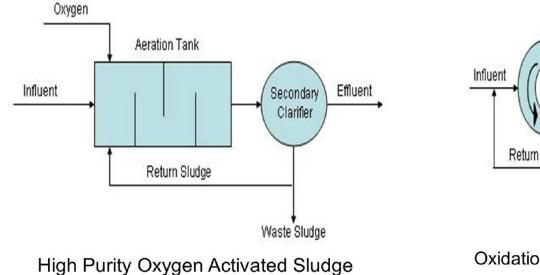
Volumetric loading (kgBOD/m³d) e.g. rough estimations for bugdeting

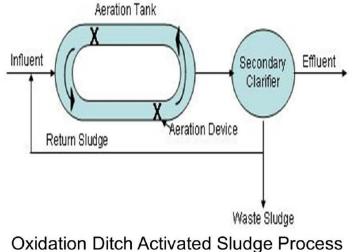

Surface loading (kgBOD/m²d or kgN/m²d) MBBR and biological filters

Reaction rate (gN/gMLSSh) e.g. anoxic zones

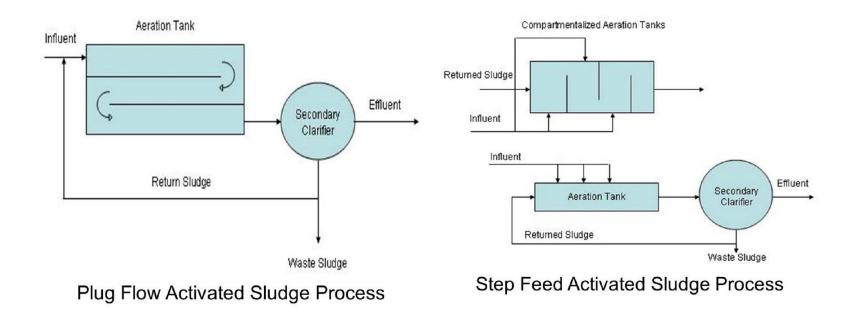
Hydraulic retention time (hours) e.g. anaerobic and anoxic zones

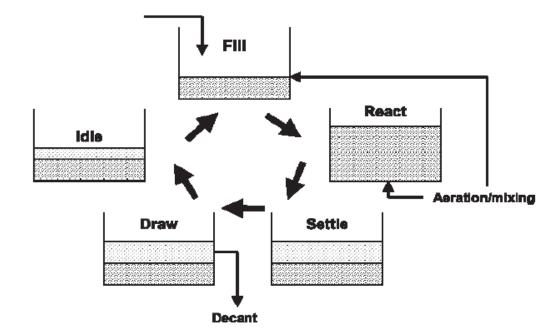
Important design aspects




Complete Mix Activated Sludge Process

Contact Stabilization Activated Sludge


Intensive or extended aeration



Process configurations

Process configuration

Sequencing batch reactor All reactions happen in the same volume Typically 2 or 3 parallel SBRs

Process type

Activated sludge Moving bed bioreactor (MBBR) Membrane bioreactor (MBR) Biological filters Aerobic granular sludge (AGS)

Selection depends on wastewater characteristics, climate conditions, energy aspects, effluent requirements, size etc.

Nitrogen and phosphorus removal

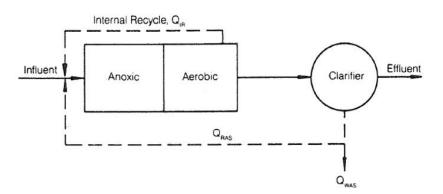


Figure 8.9 Modified Ludzack–Ettinger process for nitrogen removal (WAS = waste activated sludge).

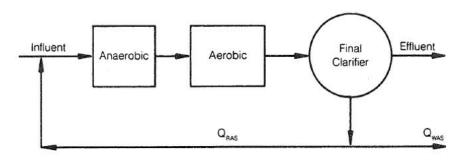


Figure 8.3 The A/O process (RAS = return activated sludge, WAS = waste activated sludge).

Alternative configurations

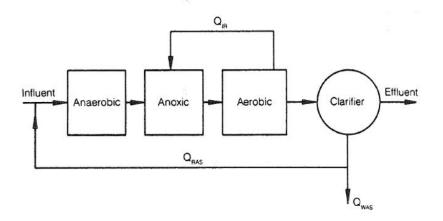


Figure 8.14 A²/O process for phosphorus removal (WAS = waste activated sludge).

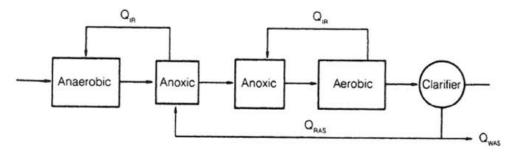
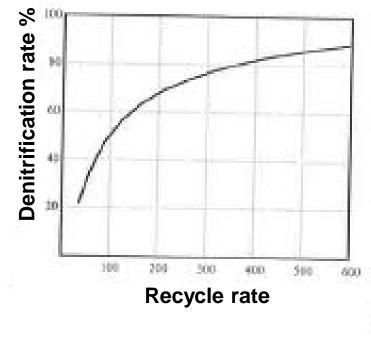


Figure 8.15 Modified University of Cape Town process for phosphorus and nitrogen removal (WAS = waste activated sludge).


How to calculate the recycle ratio of RAS?

Recycle ratio = 100X / ((1200/SVI) - X) Where X = MLSS (g/l)

And SVI = sludge volume index (ml/g)

Recycle must be sufficient for denitrification

Typical recycle ratio 100 - 200 %

Laitoksen nimi 03/25/2021 27

BACTERIA GAME: Advanced version 2 Dynamic nitrogen removal process ③

- First test the process with ND configuration
- Each player picks a type of microbe and places it in suitable conditions in the process

ZONE 1:

- Each player picks two wastewater constituent. This is the influent wastewater that enters the first zone.
- Try to form suitable sets for your microbe's reaction using influent wastewater and zone conditions.
- When a reaction occurs, select the correct end-products
- Check if possible reactions exist with

ZONE 2:

- Move the wastewater constituents and the endproducts that have not yet reacted to zone 2.
- Repeat the steps from zone 1.

RAS flow

- Move the wastewater constituents and the endproducts that have not yet reacted to zone 1 via RAS flow.
- Repeat the steps from above.
- GAME ENDS WHEN ALL THE REACTIONS HAVE OCCURRED. Laitoksen nimi 03/24/2021

BACTERIA GAME: Advanced version 2 Dynamic nitrogen removal process ©

- Now test the process with DN configuration
- Each player picks a type of microbe and places it in suitable conditions in the process

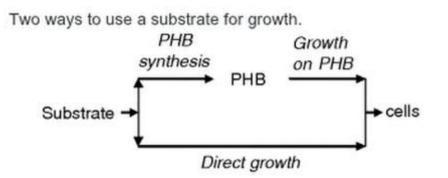
ZONE 1:

- Each player picks two wastewater constituent.
- Try to form suitable sets for your microbe's reaction using influent wastewater and zone conditions.
- When a reaction occurs, select the correct end-products
- Check if possible reactions exist with the end-products
 - Aalto Un School

- ZONE 2:
 - Move the wastewater constituents and the end-products that have not yet reacted to zone 2.
 - Repeat the steps from zone 1.

- RAS flow

- Move the wastewater constituents and the end-products that have not yet reacted to zone 1 via RAS flow.
- Repeat the steps from above.


- GAME ENDS WHEN ALL THE REACTIONS HAVE OCCURRED.

Storage processes

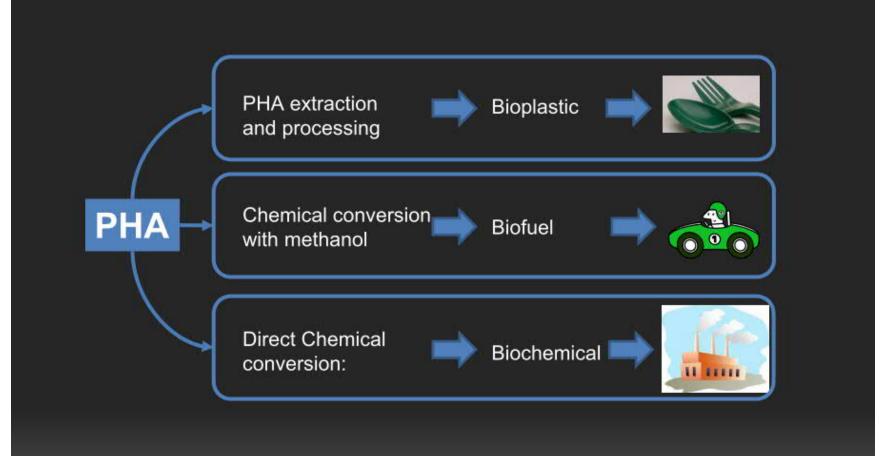
Role of storage processes in growth

- Substrate can be converted and stored within bacterial cells as energy storage.
- Bacterial growth can be based on direct growth on the substrate or on growth on these storage polymers.
- Growth on storage has a bit lower yield (energetically less efficient)
 4 - 10% less sludge production.
- Common storage polymers Polyhydroxyalkaonate PHA and polyhydroxybutyrate PHB
- Storage polymers are a benefit in bacterial competition.

PHA & PHB

PHA

- Up to 90% cell dry weight
- Similar characteristics to plastics
- Biodegradable
- Example: Mars, Attero Venlo (PHA from biowaste)


PHA&PHB production

Important things to consider

- Production yield
- Volumetric productivity
- PHA&PHB concentration
- PHA&PHB composition

PHB: example Mirel (USA) Caproates: animal feed,

22/03/2021

Company	Products	
Berlin Packaging Corp. (U.S.)	Zeneca/ICI Biopol	
Bioscience Ltd. (Finland)	Medical applications of PHAs	
Bioventures Alberta, Inc. (Canada)	PHA produced by recombinant Escherichia coli	
Metabolix, Inc. (U.S.)	PHB, P(HB : HV) (Mirel)	
Metabolix/ADM	Transgenic plant PHAs	
Monsanto (U.S.)	Transgenic plant PHAs	
Polyferm, Inc. (Canada)	PHAs from hemicellulose; use of Burkholderia cepacia on xylose	
Monsanto-Metabolix (U.S.)	Biopol from Cupriavidus necator	
Nodax Procter and Gamble (U.S.)	PHBHx, PHBO, PHBOd (Nodax)	
Tianan Biologic Material Co (China)	PHB and P(HB : HV) (Enmat)	
Tianjin GreenBio Materials Co., Ltd. (GreenBio) (China)	Sogreen	
Biocycle Copersucar (Brasil)	PHB and P(HB : HV) (Biocycle)	
Biomer (Germany)	PHB and P(HB : HV) (Biomer L)	
BIO-ON (Italy)	Minerv-PHA (from sugar beets)	
NatureWorks LLC (U.S.)	Ingeo biopolymer	
Micromidas	Constructed microbial population able to adapt to a variety of materials, including waste	

Table 15.1 Some Companies Involved in PHA Production.

How Mirel is Made

Biodegradable*

Mirel is biodegradable in natural soil and water environments, home and industrial composting facilities, where available.

Applications

Mirel can be processed on conventional equipment and used in everyday products. Biobased Starting with corn.

Corn Sugar

One of many products made from each kernel of corn, used as feedstock for Mirel.

Fermentation A patented process,

transforms the sugar into Mirel biopolymers.

Formulation

Mirel is compounded into resin pellets.

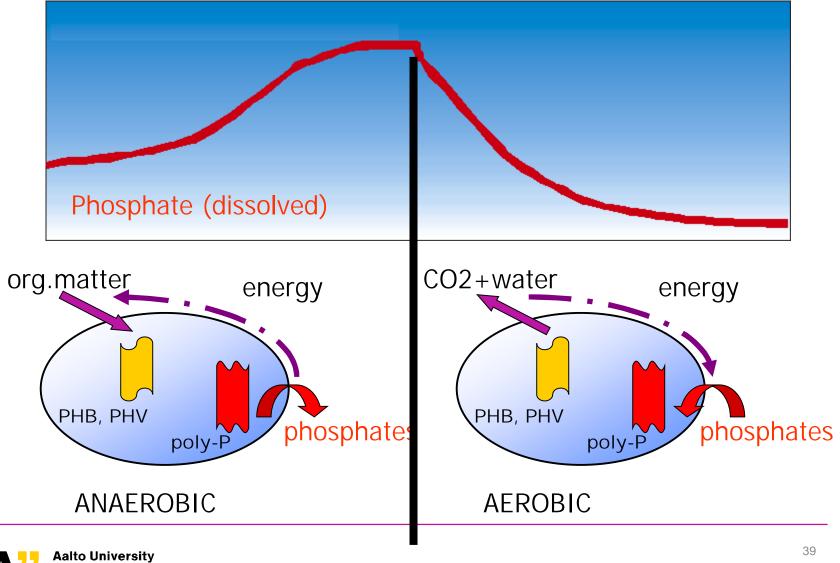
23 Metabolix

Proprietary

© 2012 Metabolix, Inc.

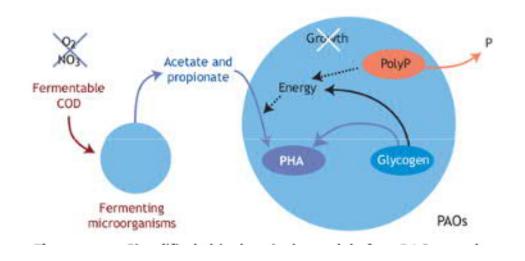
25/03/2021 36

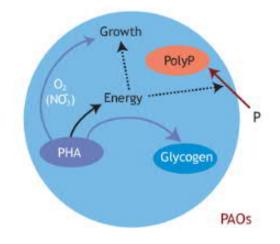
Biological phosphorus removal


Biological phosphorus removal

- Phenomenon was discovered by accident in India 1959
- Observed in full-scale plant in South Africa in the 70s also by accident
- Based on microbes capable of storing polyphosphates
- Require alternating anaerobic (not even nitrates) and aerobic conditions and carbon source in the anaerobic phase.
- PAOs phosphorus accumulating organisms
- Competition with GAOs (Glycogen accumulating organisms) especially in warm temperatures

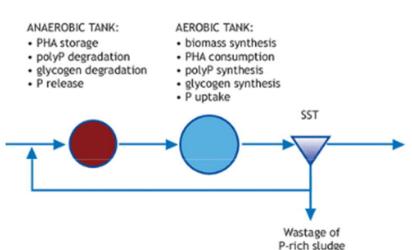
BioP


School of Engineering



ANAEROBIC CONDITIONS

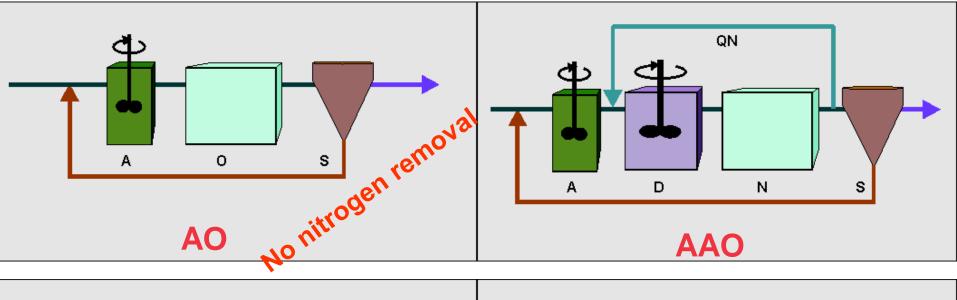
AEROBIC CONDITIONS

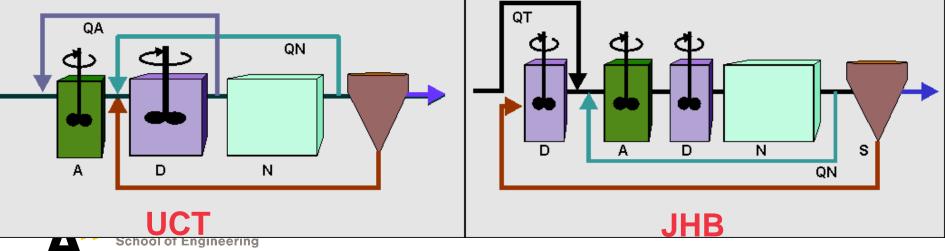


Aalto University School of Engineering

Principles of bioP

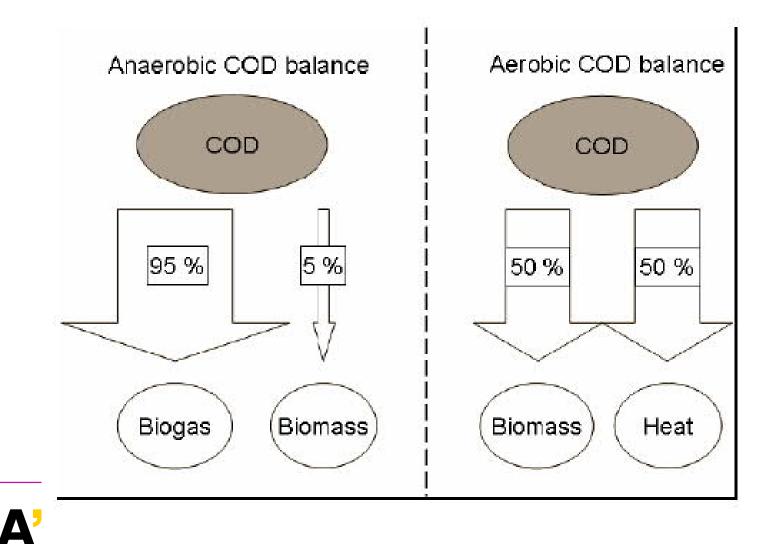
- Phosphorus accumulating organisms (PAOs) store organic matter as polyhydroxyalcanoates (PHA) in anaerobic conditions using energy from poly-P inside the cell
- In aerobic conditions PAOs store more poly-P than needed for the normal metabolism using stored PHA
- Phosphorus is removed with the sludge (3-8 % of P)


Important aspects in bioP processes


- Minimizing oxygen in the anaerobic zone
- Minimizing nitrates and nitrites in the anaerobic zone.
- Increase volatile fatty acids (VFA) concentration in the anaerobic zone. (VFA is taken up and forms PHA)

- Minimizing solids in the effluent (high P content)
- Maximizing phosphorus uptake = short SRT and good oxygen concentration pattern

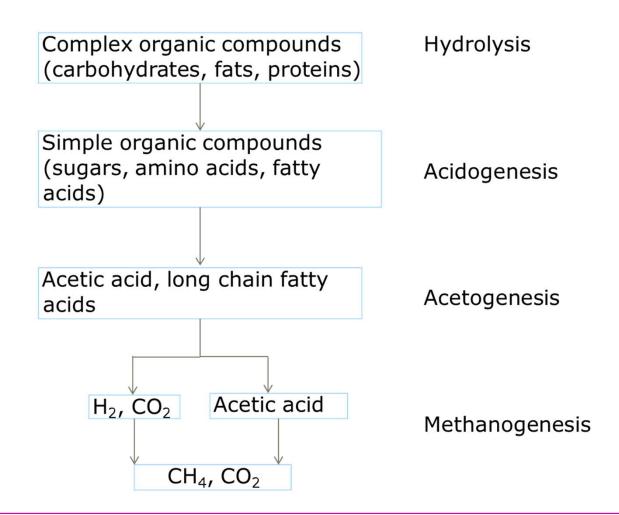
Biological P removal processes



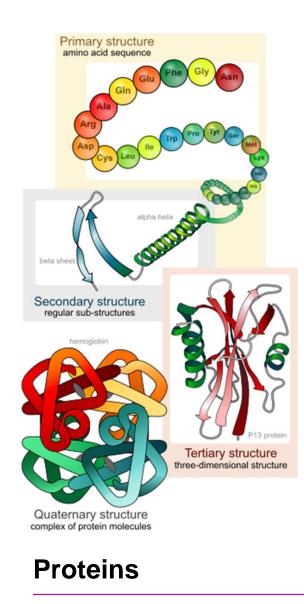
Anaerobic processes

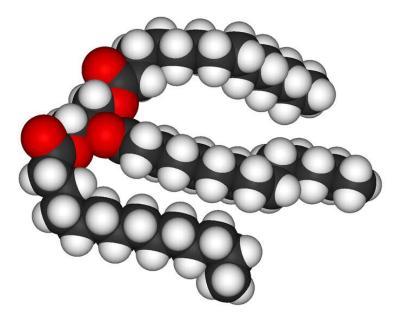
Why anaerobic treatment?

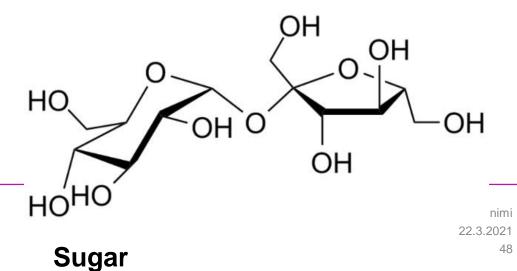
ו nimi 2021. 45

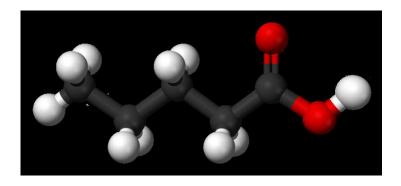

Pros and cons of anaerobic digestion

- + CO₂ as electron acceptor
- + no need for aeration
- + Low sludge yield
- + Produces methane, 90% can be used as energy (9000 kcal/m³)
- + high loading→ less space
- + Works with certain organic compounds that can not be degraded in aerobic conditions


- Slow process (HRT about 30 d)
- Sensitive to toxic substances
- Long start-up
- Requires high substrate concentrations


Anaerobic digestion

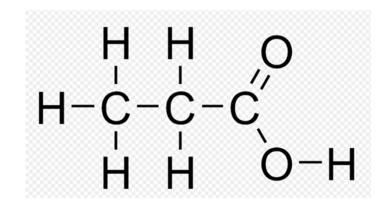



Fats (triglyseride molecule)

Hydrolysis

- First step of the anaerobic digestion
- Different groups of bacteria produce extracellular enzymes to cut the larger organic molecules into smaller ones
- Larger molecules = proteins, fats, carbohydrates
- Smaller molecules = small molecule sugars, amino acids, short chain fatty acids

Hydrolysis products, example valeric acid



Acidogenesis

- Second step of the anaerobic digestion
- Acidogenesis
- Bacteria degrades the organic molecules further to short-chain fatty acids and alcohols
- Ammonium, hydrogen and CO₂ also produced

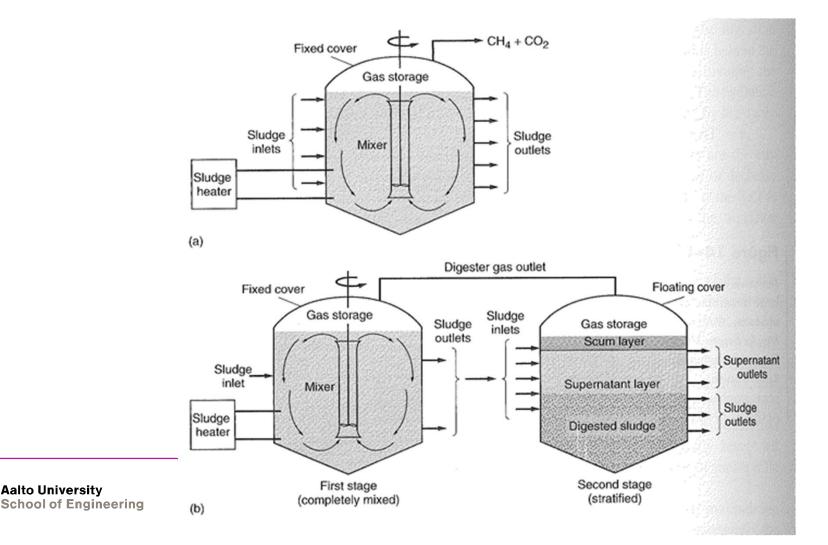
End product in this step, for example propanoic acid

Acetogenesis and methanogenesis

- Third step of the anaerobic digestion
- Acetogenic bacteria degrades the short chain fatty acids to acetic acid (and hydrogen and CO₂)

Last step of the anaerobic digestion Methanogenic bacteria use

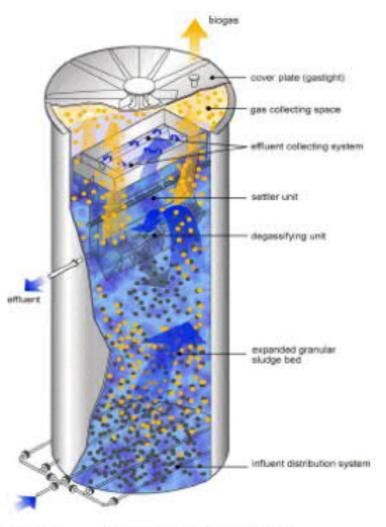
acetic acid, CO₂ and hydrogen to produce biogas (=methane)



Pre-fermentation

- In order to produce VFA = volatile fatty acids
- VFAs are enhancing denitrification and biological phosphorus removal
- Can be done with influent waste water, raw sludge, waste activated sludge or a industrial influent

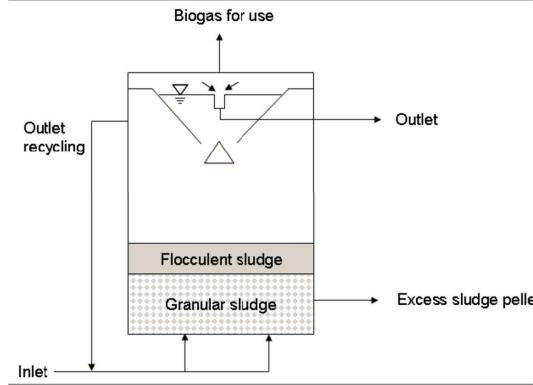
Anaerobic processes for sludge digestion (biogas plants)


Digestion processes

Mesophilic 33 – 37 °C Retention time about 21 days

Thermophilic 54 – 55 °C Retention time about 14 days Requires more energy

Anaerobic processes in wastewater treatment



Typical Biobed[®] EGSB plant at Lapin Kulta, Haparanda (Finland)

UASB reactor (Upflow anaerobic sludge blanket)

- Granular biomass is created in the reactor
- Biomass is kept in suspension by the gravity of the granules and the upflow of wastewater

Reading material

Biological wastewater treatment (Course book):

Chapters

2.1

- 2.2.7 2.2.8
- 2.3

2.4

7.1 – 7.4

