Sulphur Reactions and Corrosion

WAT-E2180 Biological Treatment of Water and Waste

Maria Valtari March 30, 2021

Contents

- Corrosion in sewer network and wastewater treatment
- Microbially induced corrosion
 - Biogenic sulphur corrosion
 - Other

Corrosion in sewage systems

- Corrosion in sewers, pumping stations and wastewater treatment plants
 - Pipelines
 - Machinery
 - Basins and other structures
- Corrosion of concrete and steel structures in liquid or vapor phase
- Corrosion a huge issue!

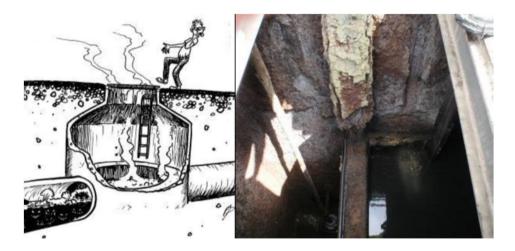
Causes of corrosion

- Wastewater Quality
 - Municipal/industrial wastewater
 - In general highly corrosive
- Structure of sewer systems and wastewater treatment plants
- Ventilation
- Exceptional situations
 - Abnormal wastewater discharges
 - Process disturbances
- Climate, weather

Causes of corrosion

- Physical causes
 - Temperature and humidity
 - Wastewater flow
 - Grit and other particles in wastewater

Chemical causes

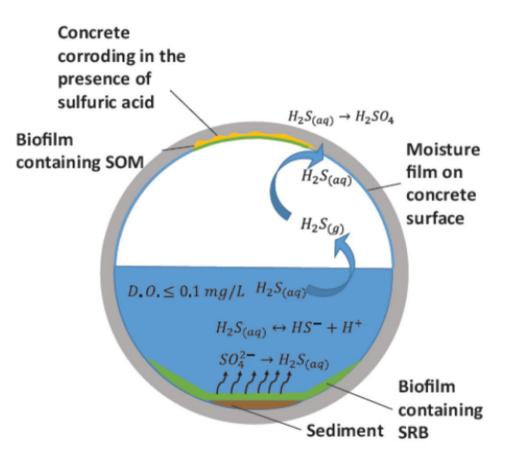

- pH, alkalinity
- Cl
- NH₄, Mg₂
- SO₄
- O₂, CO₂

Hydrogen sulphide corrosion

- Sulphate (SO₄²⁻) in wastewater maybe the most important cause of corrosion
- Reduction and oxidation by microbes to hydrogen sulphide (H₂S) and sulphuric acid (H₂SO₄)

Cesca & Crosby, 2015

- Corrosion
 Typically in sewage network, influent channels and
 - pretreatment units


Biogenic sulphur reactions

Anaerobic sulphate reducing bacteria (SRB) form hydrogen sulphide in biofilm below water level

Aerobic sulphur oxidizing bacteria (SOB) form sulphuric acid from stripped hydrogen sulphide in biofilm above water level

2
 ${}^{H}2^{S} + {}^{O}2 \Leftrightarrow {}^{2}S + {}^{2}H_{2}^{O}$
 ${}^{2}S + {}^{3}O_{2} + {}^{2}H_{2}^{O} \Leftrightarrow {}^{H}2^{SO}_{4}$

House, M. W., and Weiss, W.J. (2014). "Review of Microbially Induced Corrosion and Comments on Needs Related to Testing Procedures." 4th International Conference on the Durability of Concrete Structures, 24–26 July 2014, Purdue University, IN.

Variety of microbes involved

TABLE 1. Microorganisms Involved in Microbiologically Influenced Corrosion (MIC)				
Genus or Species	рH	Temp. (°C)	Materials affected	Bioactivity
Desulfovibrio desulfuricans	4-8	10-40	Iron/steel, SS; alum., zinc, copper alloys	<u>Anaerobic</u> —Reduces sulfates to sulfide ions and hydrogen sulfide; promotes sulfide formation
Desulfotomaculum ni- grificans (Clostridium)	6-8	10-40 (some 45-75)	Iron/steel, SS	<u>Anaerobic</u> —Reduces sulfate ions to sulfide and hydrogen sulfide (spore former)
Desulfomonas	5-9	10-40	Iron/steel	$\underline{\text{Anaerobic}}\text{Reduces sulfate ions to sulfide and H}_2\text{S}$
Thiobacillus thiooxidans	1-8	10-40	Iron/steel, copper alloys, concrete	<u>Aerobic</u> –Oxidizes sulfur & sulfides to sulfuric acid; harms protective coatings
Thiobacillus ferrooxidans	1-7	10-40	Iron/steel	<u>Aerobic</u> –Oxidizes ferrous (Fe ²⁺) ions to ferric (Fe ³⁺)
Gallionella	7-10	20-40	Iron/steel, SS	<u>Aerobic</u> –Oxidizes Fe^{2+} to Fe^{3+} & manganous (Mn ²⁺) to manganic (Mn ³⁺) ions; promotes tubercle growth
Sphaerotilus	7-10	20-40	Iron/steel, SS	<u>Aerobic</u> —Oxidizes Fe^{2+} to Fe^{3+} and Mn^{2+} to Mn^{3+} ; promotes tubercle growth.
S. natans pseudomonas	4-9	20-40	Iron/steel, aluminum, SS	<u>Aerobic</u> –Some strains reduce Fe ³⁺ to Fe ²⁺

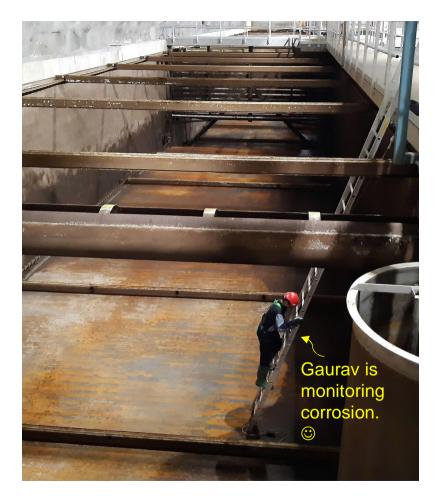
Source: Metals Handbook, 9th ed., vol. 13. Materials Park, OH, USA: American Society of Metals, 1987, p. 118.

Increased sulphur corrosion rate

- High sulphate (SO₄²⁻) concentration in wastewater
 - Typically ~10-20 mg/l
 - Limits for discharges to the sewage network, e.g. 400 mg/l
- Long hydraulic retention times
 - Long sewer transfer lines
- High hydrogen sulphide (H₂S) concentrations in vapor phase
 - Stripping from water phase
 - Poor ventilation
- Temperature
 - Enhanced microbial activity in higher temperatures

Examples on microbiological activity contributing to corrosion in WWTPs

- Activated sludge process
 - Formation of hydrogen sulphide during process disturbances (low DO, varying influent load)
- Nitrification
 - Lowering alkalinity/pH
 - Higher NH₄ during process disturbances
- Denitrification
 - Lower alkalinity/pH during process disturbances
- Anaerobic digestion
 - Low pH during process disturbances/starting phase


Prevention of corrosion

- Moderation of corrosive environment
 - Control of (industrial) wastewater quality; pH, SO₄
 - Chemicals
- Choice of structures
 - Sewer network
 - Ventilation
- Choice of materials
 - Concrete type (exposure class)
 - Quality of metal structures
 - Coating
- Regular monitoring

Monitoring corrosion


- Wastewater quality analyses
- Air quality analyses
- Sewer camera inspection
- Inspection of basins etc. during regular maintenance work
- Material tests
- Corrosion tests
 - Exposure of samples to corrosive environment

Further reading

A practical guide to the basics of wastewater related corrosion: Bennett, D. C. & Nixon, R. A. 2016. *Corrosion and materials fundamentals for engineers in wastewater treatment plants & collection systems*. Third edition. Houston, TX: NACE International.

Thank you! Questions?

Contact: maria.valtari@aalto.fi

