

Composting of Sludge and Organic Waste

WAT-E2180 - Biological Treatment of Water and Waste

- Temperature variation is a result of microbial activity. Endogenous process
- Optimum temperature for microbes is between 35 and 55 °C.
- High temperature kills pathogens (70 °C)

- Microbes metabolism require oxygen to grow and degrade organic matter.
- Oxygen is continuously consumed
- Oxygen content inside the mass cannot fall much below normal air oxygen level

- Initial moisture not below 60%
- Decreases steadily throughout the process
- Never below 50-40%

- Optimum pH range for compostable material is between 5.5 and 8.0.
- pH variation is the result of microbial activity
- At the end of the process pH is between 7.5-8

The Feedstock Characteristics

Physical characteristics

- The correct moisture (70-60 %) is essential for the microbial activity
- The proper density(600 700 kg/m³) enables sufficient air flow through the organic mass
- The right particle size guarantees enough surface area/volume for efficient microbial activity

The Feedstock Characteristics

Chemical characteristics

- Macro and micronutrients availability
- Optimal C/N ratio is between 25:1-30:1
- High C/N ratio diminishes biological activity
- Low C/N ratio leads to ammonia volatilization during the process which which can cause the release of bad odours

ICS			
	9		
		/	

The Composting Process Objectives

Hygienization

Complete degradation of organic matter (14 to 180 days)

According to EU directive 1 hour at 70 °C or 7 days at 60 °C

Viable Product

Organic fertilizer or soil amendment

How do we design a modern composting plant?

The Feedstock Characteristics

Substrate	C:N ratio	Moisture %
Liquid Manure	2-3	98
WWTP Sludge 20% TS	5	80
AnimalManure	10-25	85-95
Food waste	13-23	70
Fruit	35	65
Garden Waste	40-60	55
Straw	60-70	20
Sawdust	100-500	30-60
Cardboard	200-500	10
Wood Chips	250-350	30

The Pre-Treatment

- Removal of impurities (plastic, metals, etc.)
- Size reduction
- Blending of different feedstocks

The Amendment

- Addition of support material
- C:N ratio adjustment
- Moisture adjustment
- Homogeneous mixing
- Proper density

The Curing

- Cooling
- Refining of the end product
- Removal of small impurities

Aeration for organic matter decomposition

Stoichiometric oxygen demand

 $C_{10}H_{19}O_3N + 12.5O_2 \rightarrow 10CO_2 + 8H_2O + NH_3$

 $x = 12.5(32)/201 = 1.99 \text{ g O}_2/\text{g BVS substrate}$

1.99/0.23 = 8.65 g air/ g BVS substrate

8.65/1.2 = 7.2 l air/ g BVS substrate

Assumptions

- Negligible nitrification
- Complete biodegradation
- BVS fraction percentage
- Full aerobic conditions

₽ EAR

Aeration for Water Removal

Water to evaporate

 $W = [(1-S_S) / S_S] - [(1-V_S) / (1-V_P)] [(1-S_P) / S_P]$

Water content in air

 log_{10} PVS = a / T_a + b

PV = RHAIR (PVS)

```
w = (18 / 29) [ PV / (PAIR – PV)]
```

Air requirement

A = W / w

Assumptions

- Support material not accounted
- Conservative ash content
- Fixed pressure and temperature
- Full aerobic conditions

EAR

Aeration for Heat Removal

Heat estimation

Straight from stoichiometric oxygen demand $H_g = (g O_2/g BVS substrate) (cal/g O_2)$ Air requirement at To

 $H_{Ti} = A w_{Ti} K_{Ti}$

$$H_{wtot} = A (w_{tot}) K_w (To - Ti)$$

 $H_{To} = A K_w (To - Ti)$

Air for heat removal

$$A = H_g / [w_{Ti}K + (w_{tot})K_w (To - Ti) + K_w (To - Ti)]$$

Assumptions

- Steady state conditions
- Absence of heat loss

Aeration Benefit and Challenges

- Aeration rates
- Reactions balancing
- Ammonia volatilization
- Control strategies
- We do not see air!

Windrow/Forced aeration pile Composting

- Batch process
- Mechanical or forced aeration
- Simple air flow control
- Direct temperature control

- Simple operation
- Low investment
- Contamination risk
- Low end product quality

Tunnel Composting

- Intensive operation
- Large investment
- Long residence time
- Poor or absent mixing

- Batch process
- Mechanical or bottom aeration
- Air flow control
- Direct temperature control

In-vessel Composting

- Continuous process
- Grid aeration
- Total air flow control
- Feedback temperature control
- Feedback moisture control

- Demanding operation
- High investment
- Short residence time
- High end product quality

Organic matter flow in bioeconomy

End-product's features

MACRO NUTRIENTS AVAILABILITY

- Nutrients available in the proper form for crops
- Slow and natural release in the soil

WATER RETENTION CAPACITY

- Improved retention of water
- Better growth of crop in the long term

CARBON SEQUESTRATION

GRIFFIN

- Efficient route to balance the carbon cycle
- Indirect impact on CO₂ emissions

Compost & Biochar

Precision Farming

Organic Fertilizers

Thank you!

