
OWL Web Ontology Language
An Introduction
CS-E4410 Semantic Web, 10.2.2021
Eero Hyvönen
Aalto University, Department of Computer Science
University of Helsinki, HELDIG-centre
Semantic Computing Research Group (SeCo), http://seco.cs.aalto.fi
eero.hyvonen@aalto.fi

http://seco.cs.aalto.fi/
mailto:eero.hyvonen@aalto.fi

Department of
Computer Science

Learning objective

• Learn Web Ontology Language OWL

2

Basic Notions

Axioms: statements/propositions
• Logical assertions about the domain of discourse (real world)

- E.g., “every eagle is a bird”, “A chair has three or four legs”

• Axioms are assumed to be always true (tautologies)
Ontology
• An ontology is a set of axioms + data assertions (e.g., “Bob is an eagle”)
Consistency (inconsistency)
• There is (is not) a state of affairs that satisfies statements

3

Department of
Computer Science

Main Components of an OWL Ontology

• Classes Concepts (e.g. bird, eagle)
- Class definitions = “constructors”

• Properties Classes are defined using properties
- Object properties (link individuals, e.g., married)
- Datatype properties (describe data values, e.g., name, age, date)
- Annotation properties (document ontology for human users)

• Individuals (e.g. Bob)

4

Department of
Computer Science

Examples on the Next Slides are Taken from This
OWL 2 Primer

5

https://www.w3.org/TR/owl2-primer/

Department of
Computer Science

OWL Syntaxes

• RDF(S)-based syntaxes
• Specific OWL/XML schema
• More user-friendly notations

- Functional-style syntax (for specifications)
- Manchester syntax (for non-logicians)

6

Classes, hierarchies, individuals (1)

• Classes and individuals

• Subclass relations

• Class equivalence and
disjointness

- Necessary and
sufficient conditions

• Individual equivalence
and disjointness

7

Classes, hierarchies, individuals (2)
Enumerations
• Defining a class by its members

Complex classes
• Union

• Intersection

• Complement
- Jack is a person

but not a parent
8

Quantification

Class constructors based on quantified property values

• Universal restrictions
All children of a happy person are happy
(may have no children, too)

• Existential restrictions
A parent has at least one child

•
Using several conditions

9

Property Cardinality Restrictions

• Max cardinality
John has at most 4 children

• Min cardinality
John has at least 2 children

• Exact cardinality
John has 3 children

10

More Property Restrictions

• Value restrictions

• Self restrictions

11

Property Types
Object properties
• Relate individuals to other individuals
• :rents rdf:type owl:ObjectProperty ;

rdfs:domain :Person ;
rdfs:range :Apartment ;
rdfs:subPropertyOf :livesIn .

Datatype properties
• Relate individuals to literals of certain datatypes
• E.g., :age, :name of an individual of class Person
Annotation properties
• For labeling, commenting, etc. for human consumption
• No logical meaning for the machine!

12

Property Characteristics (1)

• Inverse properties

• Symmetric and
asymmetric properties

• Disjointness

• Reflexive (self-relating) and
irreflexive properties

13

Property characteristics (2)

• Transitive properties
- :isPartOf

• Functional properties
- :hasNumberOfRooms

• Inverse-functional properties
- :hasSocialSecurityID

• Subproperty relations and
property chains

• Keys
- Identify uniquely individuals

by values of key properties
14

Department of
Computer Science

Individual Facts for
Populating an Ontoogy
Class and property assertions
• As in RDF
Negative assertions
• Asserting that a relation does not hold
Identity assertions
• owl:sameAs, owl:differentFrom, owl:allDifferent

15

Setting Property Values

• Object property values

- Domain/range restrictions

• Datatype properties

16

Examples: OWL syntaxes
https://www.w3.org/TR/owl2-primer/

17

You can see and learn different
syntaxes on the Primer!

https://www.w3.org/TR/owl2-primer/

18

OWL Syntax Converter
http://www.ldf.fi/service/owl-converter/

19

Select format here

http://www.ldf.fi/service/owl-converter/

Department of
Computer Science

20

21

Ontology Document Parts

Like RDF documents
• Namespace declarations
• Name (IRI) of the ontology
• Ontology-level metadata (versioning, comments, etc.)
• Importing other OWL documents
• Definition of classes
• Definition of properties
• Definition of individuals
See a full example in: https://www.w3.org/TR/owl2-primer/

22

https://www.w3.org/TR/owl2-primer/

Example OWL ontology from OWL 2 Primer
Prefix(:=<http://example.com/owl/families/>)
Prefix(otherOnt:=<http://example.org/otherOntologies/families/>)
Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
Ontology(<http://example.com/owl/families>
Import(<http://example.org/otherOntologies/families.owl>)

Declaration(NamedIndividual(:John))
Declaration(NamedIndividual(:Mary))
Declaration(NamedIndividual(:Jim))
Declaration(NamedIndividual(:James))
Declaration(NamedIndividual(:Jack))
Declaration(NamedIndividual(:Bill))
Declaration(NamedIndividual(:Susan))
Declaration(Class(:Person))
AnnotationAssertion(rdfs:comment :Person "Represents the set of all people.")
Declaration(Class(:Woman))
Declaration(Class(:Parent))
Declaration(Class(:Father))
Declaration(Class(:Mother))
Declaration(Class(:SocialRole))
Declaration(Class(:Man))
Declaration(Class(:Teenager))
Declaration(Class(:ChildlessPerson))
Declaration(Class(:Human))
Declaration(Class(:Female))
Declaration(Class(:HappyPerson))
Declaration(Class(:JohnsChildren))
Declaration(Class(:NarcisticPerson))
Declaration(Class(:MyBirthdayGuests))
Declaration(Class(:Dead))
Declaration(Class(:Orphan))
Declaration(Class(:Adult))
Declaration(Class(:YoungChild))

Declaration(ObjectProperty(:hasWife))
Declaration(ObjectProperty(:hasChild))
Declaration(ObjectProperty(:hasDaughter))
Declaration(ObjectProperty(:loves))
Declaration(ObjectProperty(:hasSpouse))
Declaration(ObjectProperty(:hasGrandparent))
Declaration(ObjectProperty(:hasParent))
Declaration(ObjectProperty(:hasBrother))
Declaration(ObjectProperty(:hasUncle))
Declaration(ObjectProperty(:hasSon))
Declaration(ObjectProperty(:hasAncestor))
Declaration(ObjectProperty(:hasHusband))
Declaration(DataProperty(:hasAge))
Declaration(DataProperty(:hasSSN))
Declaration(Datatype(:personAge))
Declaration(Datatype(:majorAge))
Declaration(Datatype(:toddlerAge))

SubObjectPropertyOf(:hasWife :hasSpouse)
SubObjectPropertyOf(

ObjectPropertyChain(:hasParent :hasParent)
:hasGrandparent

)
SubObjectPropertyOf(

ObjectPropertyChain(:hasFather :hasBrother)
:hasUncle

)
SubObjectPropertyOf(

:hasFather
:hasParent

)

23

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/#Appendix:_The_Complete_Sample_Ontology

EquivalentObjectProperties(:hasChild otherOnt:child)
InverseObjectProperties(:hasParent :hasChild)
EquivalentDataProperties(:hasAge otherOnt:age)
DisjointObjectProperties(:hasSon :hasDaughter)
ObjectPropertyDomain(:hasWife :Man)
ObjectPropertyRange(:hasWife :Woman)
DataPropertyDomain(:hasAge :Person)
DataPropertyRange(:hasAge xsd:nonNegativeInteger)

SymmetricObjectProperty(:hasSpouse)
AsymmetricObjectProperty(:hasChild)
DisjointObjectProperties(:hasParent :hasSpouse)
ReflexiveObjectProperty(:hasRelative)
IrreflexiveObjectProperty(:parentOf)
FunctionalObjectProperty(:hasHusband)
InverseFunctionalObjectProperty(:hasHusband)
TransitiveObjectProperty(:hasAncestor)
FunctionalDataProperty(:hasAge)

SubClassOf(:Woman :Person)
SubClassOf(:Mother :Woman)
SubClassOf(

:Grandfather
ObjectIntersectionOf(:Man :Parent)

)
SubClassOf(

:Teenager
DataSomeValuesFrom(:hasAge

DatatypeRestriction(xsd:integer
xsd:minExclusive "12"^^xsd:integer
xsd:maxInclusive "19"^^xsd:integer

)
)

)

SubClassOf(
Annotation(rdfs:comment "States that every man is a person.")
:Man
:Person

)
SubClassOf(

:Father
ObjectIntersectionOf(:Man :Parent)

)
SubClassOf(

:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf(
ObjectSomeValuesFrom(

ObjectInverseOf(:hasParent)
owl:Thing

)
)

)
)
SubClassOf(

ObjectIntersectionOf(
ObjectOneOf(:Mary :Bill :Meg)
:Female

)
ObjectIntersectionOf(

:Parent
ObjectMaxCardinality(1 :hasChild)
ObjectAllValuesFrom(:hasChild :Female)

)
)

24

EquivalentClasses(:Person :Human)
EquivalentClasses(

:Mother
ObjectIntersectionOf(:Woman :Parent)

)
EquivalentClasses(

:Parent
ObjectUnionOf(:Mother :Father)

)
EquivalentClasses(

:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf(:Parent)

)
)
EquivalentClasses(

:Parent
ObjectSomeValuesFrom(:hasChild :Person)

)
EquivalentClasses(

:HappyPerson
ObjectIntersectionOf(

ObjectAllValuesFrom(:hasChild :HappyPerson)
ObjectSomeValuesFrom(:hasChild :HappyPerson)

)
)
EquivalentClasses(

:JohnsChildren
ObjectHasValue(:hasParent :John)

)
EquivalentClasses(

:NarcisticPerson
ObjectHasSelf(:loves)

)

ObjectPropertyAssertion(:hasWife :John :Mary)
NegativeObjectPropertyAssertion(:hasWife :Bill :Mary)
NegativeObjectPropertyAssertion(

:hasDaughter
:Bill
:Susan

)
DataPropertyAssertion(:hasAge :John "51"^^xsd:integer)
NegativeDataPropertyAssertion(:hasAge :Jack "53"^^xsd:integer)

SameIndividual(:John :Jack)
SameIndividual(:John otherOnt:JohnBrown)
SameIndividual(:Mary otherOnt:MaryBrown)
DifferentIndividuals(:John :Bill)

)

EquivalentClasses(
:MyBirthdayGuests
ObjectOneOf(:Bill :John :Mary)

)

ClassAssertion(:Person :Mary)
ClassAssertion(:Woman :Mary)
ClassAssertion(

ObjectIntersectionOf(
:Person
ObjectComplementOf(:Parent)

)
:Jack

)
ClassAssertion(

ObjectMaxCardinality(4 :hasChild :Parent)
:John

)
ClassAssertion(

ObjectMinCardinality(2 :hasChild :Parent)
:John

)
25

ClassAssertion(
ObjectExactCardinality(3 :hasChild :Parent)
:John

)
ClassAssertion(

ObjectExactCardinality(5 :hasChild)
:John

)
ClassAssertion(:Father :John)
ClassAssertion(:SocialRole :Father)
ObjectPropertyAssertion(:hasWife :John :Mary)
NegativeObjectPropertyAssertion(:hasWife :Bill :Mary)
NegativeObjectPropertyAssertion(

:hasDaughter
:Bill
:Susan

)
DataPropertyAssertion(:hasAge :John "51"^^xsd:integer)
NegativeDataPropertyAssertion(:hasAge :Jack "53"^^xsd:integer)

SameIndividual(:John :Jack)
SameIndividual(:John otherOnt:JohnBrown)
SameIndividual(:Mary otherOnt:MaryBrown)
DifferentIndividuals(:John :Bill)

)

26

Example ontology in Protégé editor
PluginsOWL constructs

27

http://protege.stanford.edu/

…and in TopBraid Composer
• Commercial product with a free edition option
• SPIN rules for reasoning, e.g., OWL RL support available
• Includes possibility for SPARQL querying

28

http://www.topquadrant.com/downloads/topbraid-composer-install/

Department of
Computer Science

Two Logical Assumptions of OWL

Closed World Assumption (CWA)

Closed-world assumption: what is not known to be true is false
• Assumes that everything is known, and data not stated is assumed to be false
• Very powerful and often useful assumption

- In use in, e.g., databases

• The notion of defaults leads to nonmonotonic logics

OWL adopts the open-world assumption:
• CWA is not made
• On the huge and only partially knowable WWW, this is a correct assumption
• Lots of additional assertions may be needed for closing data

- For stating what facts are not true in addition to what is true

30

Unique Names Assumption (UNA)

• Typical database applications assume that individuals with
same/different names are indeed same/different individuals

• OWL follows the usual logical paradigm where this is not the case
- Plausible on the WWW where multiple IDs exist

• One may want to indicate portions of the ontology for which the
assumption does or does not hold

- In many cases UNA is useful
- Lots of additional assertions may then be needed for stating what objects are

different and what are the same

31

Department of
Computer Science

OWL Profiles:
Trade-off between Expressive Power and
Efficient Reasoning

Compatibility of OWL with RDF(S):
OWL Full
OWL 2 Full
• All OWL features added on top of RDF(S)

- Allows, e.g., redefining the meaning of RDF(S) and OWL primitives

• Advantages
- Fully upward compatible with RDF

• Any RDF document is an OWL 2 Full document
• Any RDF(S) conclusion is an OWL 2 Full conclusion

- RDF-based semantics

• Disadvantages
- Undecidable, as RDFS already has some very powerful modeling primitives
- Complete and efficient reasoning not possible

33

Compatibility of OWL 2 with RDF(S):
OWL DL
OWL 2 DL (Description Logic)
• Restricted form of OWL Full for which decidable, efficient support for reasoning is possible

- OWL 2 primitives cannot be applied to themselves
- Only classes of non-literal resources considered
- Strict separation between datatype and object properties
- Strict separation between an individual, a class, or a property

• Using ”punning” the same name may be used for different purposes, but treated as different
views on the same IRI, interpreted semantically as if they were distinct

• Direct semantics, based on Description logics (Terminology logics)
- Subsets of predicate logic
- But also RDF-based semantics can be applied to OWL 2 DL ontologies

• Reasoning engines are available for DL
- Pellet, FaCT, RACER, HermiT

34

OWL 2 profiles

OWL 2 DL includes three specific profiles for different use cases
• OWL 2 EL
• OWL 2 QL
• OWL 2 RL
Each profile includes a subset of OWL DL features

35

OWL 2 EL (“ℰℒ description logics”)

• Good for ontologies with lots of classes and/or properties
• Polynomial complexity of standard inference types: satisfiability,

classification, instance checking
• Used for large scale class ontologies, e.g., Snomed CT

• Limitations include:
- Negation and disjunction not supported
- Universal quantification on properties

• E.g., “all children of a rich person are rich” cannot be stated

- All kinds of role inverses are not available
• E.g., parentOf and childOf cannot be stated as inverses

36

OWL 2 QL (“query language”)

• Good for querying large numbers of individuals
• Relational Query Languages (conjunctive queries)

- Can be implemented efficiently using relational databases

• Limitations include:
- Existential quantification of roles to a class expression

• E.g., it can be stated that every person has a parent, but not that every person has a female
parent

- Property chain axioms and equality are not supported

37

OWL 2 RL (“rule language”)

• Good for rule-based reasoning, database focus
• Can be implemented using logic programming

- First-order implications: IF certain triples exist THEN add additional triples
• See partial axiomatization of the OWL 2 RDF-based semantics as rules in the OWL 2 Profiles specification (Section 4.3)

• Limitations include:
- Statements where the existence of an individual enforces the existence of another individual

• E.g., the statement “every person has a parent” is not expressible

- Restricts class axioms asymmetrically
• Constructs for a subclass cannot necessarily be used as a superclass

• An implementation of OWL RL is used in the exercises for reasoning

38

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Summary

• OWL 2 extends RDF(S)
• Multiple corresponding syntaxes

- RDF notations (RDF/XML, Turtle, etc.), OWL/XML, Functional-style, Manchester syntax

• Two corresponding semantics: Direct and RDF-based
• Two OWL versions

- OWL 2 DL: Direct semantics based on Description Logics
• Decidable, efficient reasoning
• Not fully upward compatible with RDF(S)

- OWL 2 Full: Based on RDF semantics
• Undecidable, partial reasoning possible
• Upward compatible with RDF(S)

• Three more efficient DL profiles for different purposes
- OWL 2 EL, OWL 2 QL, and OWL 2 RL

39

References and Further Information

Namespace IRI of OWL contains the specification in RDF for 1)
classes and 2) properties
• http://www.w3.org/2002/07/owl#
Theory
• M. Krötzsch, F. Simančík, I. Horrocks: Description Logic Primer. 2013.
• P. Hitzler, M. Krötzsch, S. Rudolph: Foundations of Semantic Web

Technologies. CRC Press, 2009.
Reasoners
• http://semanticweb.org/wiki/Category_Reasoner

40

http://www.w3.org/2002/07/owl
http://arxiv.org/pdf/1201.4089v3.pdf
http://semanticweb.org/wiki/Category_Reasoner

	OWL Web Ontology Language�An Introduction � �CS-E4410 Semantic Web, 10.2.2021�
	Learning objective
	Basic Notions
	Main Components of an OWL Ontology
	Examples on the Next Slides are Taken from This OWL 2 Primer�
	OWL Syntaxes
	Classes, hierarchies, individuals (1)
	Classes, hierarchies, individuals (2)
	Quantification
	Property Cardinality Restrictions��
	More Property Restrictions
	Property Types
	Property Characteristics (1)
	Property characteristics (2)
	Individual Facts for �Populating an Ontoogy
	Setting Property Values
	Examples: OWL syntaxes�https://www.w3.org/TR/owl2-primer/
	Slide Number 18
	OWL Syntax Converter�http://www.ldf.fi/service/owl-converter/
	Slide Number 20
	Slide Number 21
	Ontology Document Parts
	Example OWL ontology from OWL 2 Primer
			
	Slide Number 25
	Slide Number 26
	Example ontology in Protégé editor
	…and in TopBraid Composer
	Two Logical Assumptions of OWL
	Closed World Assumption (CWA)
	Unique Names Assumption (UNA)
	OWL Profiles:�Trade-off between Expressive Power and Efficient Reasoning�
	Compatibility of OWL with RDF(S):�OWL Full
	Compatibility of OWL 2 with RDF(S):�OWL DL
	OWL 2 profiles
	OWL 2 EL (“ℰℒ description logics”)
	OWL 2 QL (“query language”)
	OWL 2 RL (“rule language”)
	Summary
	References and Further Information

