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Learning objective

• Learn Web Ontology Language OWL
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Basic Notions

Axioms: statements/propositions
• Logical assertions about the domain of discourse (real world) 

- E.g., “every eagle is a bird”, “A chair has three or four legs”

• Axioms are assumed to be always true (tautologies)
Ontology
• An ontology is a set of axioms + data assertions (e.g., “Bob is an eagle”)
Consistency (inconsistency)
• There is (is not) a state of affairs that satisfies statements
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Main Components of an OWL Ontology

• Classes Concepts  (e.g. bird, eagle)
- Class definitions = “constructors”

• Properties Classes are defined using properties
- Object properties (link individuals, e.g., married)
- Datatype properties (describe data values, e.g., name, age, date)
- Annotation properties (document ontology for human users)

• Individuals (e.g. Bob)
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Examples on the Next Slides are Taken from This 
OWL 2 Primer
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OWL Syntaxes

• RDF(S)-based syntaxes
• Specific OWL/XML schema
• More user-friendly notations

- Functional-style syntax (for specifications)
- Manchester syntax (for non-logicians)
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Classes, hierarchies, individuals (1)

• Classes and individuals

• Subclass relations

• Class equivalence and 
disjointness

- Necessary and 
sufficient conditions

• Individual equivalence
and disjointness
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Classes, hierarchies, individuals (2)
Enumerations
• Defining a class by its members

Complex classes
• Union

• Intersection

• Complement
- Jack is a person

but not a parent
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Quantification

Class constructors based on quantified property values

• Universal restrictions
All children of a happy person are happy
(may have no children, too)

• Existential restrictions
A parent has at least one child

•
Using several conditions
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Property Cardinality Restrictions

• Max cardinality
John has at most 4 children 

• Min cardinality
John has at least 2 children 

• Exact cardinality 
John has 3 children
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More Property Restrictions

• Value restrictions

• Self restrictions
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Property Types
Object properties
• Relate individuals to other individuals
• :rents rdf:type owl:ObjectProperty ;

rdfs:domain :Person ;
rdfs:range :Apartment ;
rdfs:subPropertyOf :livesIn .

Datatype properties
• Relate individuals to literals of certain datatypes
• E.g., :age, :name of an individual of class Person
Annotation properties
• For labeling, commenting, etc. for human consumption
• No logical meaning for the machine!
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Property Characteristics (1)

• Inverse properties

• Symmetric and 
asymmetric properties

• Disjointness

• Reflexive (self-relating) and 
irreflexive properties
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Property characteristics (2)

• Transitive properties
- :isPartOf

• Functional properties
- :hasNumberOfRooms

• Inverse-functional properties
- :hasSocialSecurityID

• Subproperty relations and
property chains

• Keys
- Identify uniquely individuals 

by values of key properties
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Individual Facts for 
Populating an Ontoogy
Class and property assertions
• As in RDF
Negative assertions
• Asserting that a relation does not hold
Identity assertions
• owl:sameAs, owl:differentFrom, owl:allDifferent
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Setting Property Values

• Object property values

- Domain/range restrictions

• Datatype properties
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Examples: OWL syntaxes
https://www.w3.org/TR/owl2-primer/
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You can see and learn different 
syntaxes on the Primer!   

https://www.w3.org/TR/owl2-primer/
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OWL Syntax Converter
http://www.ldf.fi/service/owl-converter/
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Select format here

http://www.ldf.fi/service/owl-converter/
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Ontology Document Parts

Like RDF documents
• Namespace declarations
• Name (IRI) of the ontology
• Ontology-level metadata (versioning, comments, etc.)
• Importing other OWL documents
• Definition of classes
• Definition of properties
• Definition of individuals
See a full example in: https://www.w3.org/TR/owl2-primer/
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Example OWL ontology from OWL 2 Primer
Prefix(:=<http://example.com/owl/families/>)
Prefix(otherOnt:=<http://example.org/otherOntologies/families/>)
Prefix(xsd:=<http://www.w3.org/2001/XMLSchema#>)
Prefix(owl:=<http://www.w3.org/2002/07/owl#>)
Ontology(<http://example.com/owl/families>
Import( <http://example.org/otherOntologies/families.owl> )

Declaration( NamedIndividual( :John ) )
Declaration( NamedIndividual( :Mary ) )
Declaration( NamedIndividual( :Jim ) )
Declaration( NamedIndividual( :James ) )
Declaration( NamedIndividual( :Jack ) )
Declaration( NamedIndividual( :Bill ) )
Declaration( NamedIndividual( :Susan ) )
Declaration( Class( :Person ) )
AnnotationAssertion( rdfs:comment :Person "Represents the set of all people." )
Declaration( Class( :Woman ) )
Declaration( Class( :Parent ) )
Declaration( Class( :Father ) )
Declaration( Class( :Mother ) )
Declaration( Class( :SocialRole ) )
Declaration( Class( :Man ) )
Declaration( Class( :Teenager ) )
Declaration( Class( :ChildlessPerson ) )
Declaration( Class( :Human ) )
Declaration( Class( :Female ) )
Declaration( Class( :HappyPerson ) )
Declaration( Class( :JohnsChildren ) )
Declaration( Class( :NarcisticPerson ) )
Declaration( Class( :MyBirthdayGuests ) )
Declaration( Class( :Dead ) )
Declaration( Class( :Orphan ) )
Declaration( Class( :Adult ) )
Declaration( Class( :YoungChild ) )

Declaration( ObjectProperty( :hasWife ) )
Declaration( ObjectProperty( :hasChild ) )
Declaration( ObjectProperty( :hasDaughter ) )
Declaration( ObjectProperty( :loves ) )
Declaration( ObjectProperty( :hasSpouse ) )
Declaration( ObjectProperty( :hasGrandparent ) )
Declaration( ObjectProperty( :hasParent ) )
Declaration( ObjectProperty( :hasBrother ) )
Declaration( ObjectProperty( :hasUncle ) )
Declaration( ObjectProperty( :hasSon ) )
Declaration( ObjectProperty( :hasAncestor ) )
Declaration( ObjectProperty( :hasHusband ) )
Declaration( DataProperty( :hasAge ) )
Declaration( DataProperty( :hasSSN ) )
Declaration( Datatype( :personAge ) )
Declaration( Datatype( :majorAge ) )
Declaration( Datatype( :toddlerAge ) )

SubObjectPropertyOf( :hasWife :hasSpouse )
SubObjectPropertyOf(

ObjectPropertyChain( :hasParent :hasParent )
:hasGrandparent

)
SubObjectPropertyOf(

ObjectPropertyChain( :hasFather :hasBrother )
:hasUncle

)
SubObjectPropertyOf(

:hasFather
:hasParent

)
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EquivalentObjectProperties( :hasChild otherOnt:child )
InverseObjectProperties( :hasParent :hasChild )
EquivalentDataProperties( :hasAge otherOnt:age )
DisjointObjectProperties( :hasSon :hasDaughter )
ObjectPropertyDomain( :hasWife :Man )
ObjectPropertyRange( :hasWife :Woman )
DataPropertyDomain( :hasAge :Person )
DataPropertyRange( :hasAge xsd:nonNegativeInteger )

SymmetricObjectProperty( :hasSpouse )
AsymmetricObjectProperty( :hasChild )
DisjointObjectProperties( :hasParent :hasSpouse )
ReflexiveObjectProperty( :hasRelative )
IrreflexiveObjectProperty( :parentOf )
FunctionalObjectProperty( :hasHusband )
InverseFunctionalObjectProperty( :hasHusband )
TransitiveObjectProperty( :hasAncestor )
FunctionalDataProperty( :hasAge )

SubClassOf( :Woman :Person )
SubClassOf( :Mother :Woman )
SubClassOf(

:Grandfather
ObjectIntersectionOf( :Man :Parent )

)
SubClassOf(

:Teenager
DataSomeValuesFrom( :hasAge

DatatypeRestriction( xsd:integer
xsd:minExclusive "12"^^xsd:integer
xsd:maxInclusive "19"^^xsd:integer

)
)

)

SubClassOf(
Annotation( rdfs:comment "States that every man is a person." )
:Man
:Person

)
SubClassOf(

:Father
ObjectIntersectionOf( :Man :Parent )

)
SubClassOf(

:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf(
ObjectSomeValuesFrom(

ObjectInverseOf( :hasParent )
owl:Thing

)
)

)
)
SubClassOf(

ObjectIntersectionOf(
ObjectOneOf( :Mary :Bill :Meg )
:Female

)
ObjectIntersectionOf(

:Parent
ObjectMaxCardinality( 1 :hasChild )
ObjectAllValuesFrom( :hasChild :Female )

)
)
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EquivalentClasses( :Person :Human )
EquivalentClasses(

:Mother
ObjectIntersectionOf( :Woman :Parent )

)
EquivalentClasses(

:Parent
ObjectUnionOf( :Mother :Father )

)
EquivalentClasses(

:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf( :Parent )

)
)
EquivalentClasses(

:Parent 
ObjectSomeValuesFrom( :hasChild :Person )

)
EquivalentClasses(

:HappyPerson
ObjectIntersectionOf(

ObjectAllValuesFrom( :hasChild :HappyPerson )
ObjectSomeValuesFrom( :hasChild :HappyPerson )

)
)
EquivalentClasses(

:JohnsChildren
ObjectHasValue( :hasParent :John )

)
EquivalentClasses(

:NarcisticPerson
ObjectHasSelf( :loves )

)

ObjectPropertyAssertion( :hasWife :John :Mary )
NegativeObjectPropertyAssertion( :hasWife :Bill :Mary )
NegativeObjectPropertyAssertion(

:hasDaughter
:Bill
:Susan

)
DataPropertyAssertion( :hasAge :John "51"^^xsd:integer )
NegativeDataPropertyAssertion( :hasAge :Jack "53"^^xsd:integer )

SameIndividual( :John :Jack )
SameIndividual( :John otherOnt:JohnBrown )
SameIndividual( :Mary otherOnt:MaryBrown )
DifferentIndividuals( :John :Bill )

)

EquivalentClasses(
:MyBirthdayGuests
ObjectOneOf( :Bill :John :Mary)

)

ClassAssertion( :Person :Mary )
ClassAssertion( :Woman :Mary )
ClassAssertion(

ObjectIntersectionOf(
:Person
ObjectComplementOf( :Parent )

)
:Jack

)
ClassAssertion(

ObjectMaxCardinality( 4 :hasChild :Parent )
:John

)
ClassAssertion(

ObjectMinCardinality( 2 :hasChild :Parent )
:John

)
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ClassAssertion(
ObjectExactCardinality( 3 :hasChild :Parent ) 
:John

)
ClassAssertion(

ObjectExactCardinality( 5 :hasChild )
:John

)
ClassAssertion( :Father :John )
ClassAssertion( :SocialRole :Father )
ObjectPropertyAssertion( :hasWife :John :Mary )
NegativeObjectPropertyAssertion( :hasWife :Bill :Mary )
NegativeObjectPropertyAssertion(

:hasDaughter
:Bill
:Susan

)
DataPropertyAssertion( :hasAge :John "51"^^xsd:integer )
NegativeDataPropertyAssertion( :hasAge :Jack "53"^^xsd:integer )

SameIndividual( :John :Jack )
SameIndividual( :John otherOnt:JohnBrown )
SameIndividual( :Mary otherOnt:MaryBrown )
DifferentIndividuals( :John :Bill )

)  
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Example ontology in Protégé editor
PluginsOWL constructs
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…and in TopBraid Composer
• Commercial product with a free edition option
• SPIN rules for reasoning, e.g., OWL RL support available
• Includes possibility for SPARQL querying
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Two Logical Assumptions of OWL



Closed World Assumption (CWA)

Closed-world assumption: what is not known to be true is false
• Assumes that everything is known, and data not stated is assumed to be false
• Very powerful and often useful assumption

- In use in, e.g., databases

• The notion of defaults leads to nonmonotonic logics

OWL adopts the open-world assumption: 
• CWA is not made
• On the huge and only partially knowable WWW, this is a correct assumption
• Lots of additional assertions may be needed for closing data

- For stating what facts are not true in addition to what is true
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Unique Names Assumption (UNA)

• Typical database applications assume that individuals with 
same/different names are indeed same/different individuals

• OWL follows the usual logical paradigm where this is not the case
- Plausible on the WWW where multiple IDs exist

• One may want to indicate portions of the ontology for which the 
assumption does or does not hold

- In many cases UNA is useful
- Lots of additional assertions may then be needed for stating what objects are 

different and what are the same
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OWL Profiles:
Trade-off between Expressive Power and 
Efficient Reasoning



Compatibility of OWL with RDF(S):
OWL Full
OWL 2 Full
• All OWL features added on top of RDF(S)

- Allows, e.g., redefining the meaning of RDF(S) and OWL primitives

• Advantages
- Fully upward compatible with RDF

• Any RDF document is an OWL 2 Full document
• Any RDF(S) conclusion is an OWL 2 Full conclusion

- RDF-based semantics

• Disadvantages
- Undecidable, as RDFS already has some very powerful modeling primitives
- Complete and efficient reasoning not possible
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Compatibility of OWL 2 with RDF(S):
OWL DL
OWL 2 DL (Description Logic)
• Restricted form of OWL Full for which decidable, efficient support for reasoning is possible

- OWL 2 primitives cannot be applied to themselves
- Only classes of non-literal resources considered
- Strict separation between datatype and object properties
- Strict separation between an individual, a class, or a property

• Using ”punning” the same name may be used for different purposes, but treated as different 
views on the same IRI, interpreted semantically as if they were distinct

• Direct semantics, based on Description logics (Terminology logics)
- Subsets of predicate logic
- But also RDF-based semantics can be applied to OWL 2 DL ontologies

• Reasoning engines are available for DL
- Pellet, FaCT, RACER, HermiT
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OWL 2 profiles

OWL 2 DL includes three specific profiles for different use cases
• OWL 2 EL
• OWL 2 QL
• OWL 2 RL
Each profile includes a subset of OWL DL features
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OWL 2 EL (“ℰℒ  description logics”)

• Good for ontologies with lots of classes and/or properties
• Polynomial complexity of standard inference types: satisfiability, 

classification, instance checking
• Used for large scale class ontologies, e.g., Snomed CT

• Limitations include:
- Negation and disjunction not supported
- Universal quantification on properties

• E.g., “all children of a rich person are rich” cannot be stated

- All kinds of role inverses are not available
• E.g., parentOf and childOf cannot be stated as inverses
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OWL 2 QL (“query language”)

• Good for querying large numbers of individuals
• Relational Query Languages (conjunctive queries)

- Can be implemented efficiently using relational databases

• Limitations include:
- Existential quantification of roles to a class expression

• E.g., it can be stated that every person has a parent, but not that every person has a female 
parent

- Property chain axioms and equality are not supported
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OWL 2 RL (“rule language”)

• Good for rule-based reasoning, database focus
• Can be implemented using logic programming

- First-order implications: IF certain triples exist THEN add additional triples
• See partial axiomatization of the OWL 2 RDF-based semantics as rules in the OWL 2 Profiles specification (Section 4.3)

• Limitations include:
- Statements where the existence of an individual enforces the existence of another individual

• E.g., the statement “every person has a parent” is not expressible

- Restricts class axioms asymmetrically
• Constructs for a subclass cannot necessarily be used as a superclass

• An implementation of OWL RL is used in the exercises for reasoning
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Summary

• OWL 2 extends RDF(S) 
• Multiple corresponding syntaxes

- RDF notations (RDF/XML, Turtle, etc.), OWL/XML, Functional-style, Manchester syntax

• Two corresponding semantics: Direct and RDF-based
• Two OWL versions

- OWL 2 DL: Direct semantics based on Description Logics
• Decidable, efficient reasoning
• Not fully upward compatible with RDF(S)

- OWL 2 Full: Based on RDF semantics
• Undecidable, partial reasoning possible
• Upward compatible with RDF(S)

• Three more efficient DL profiles for different purposes
- OWL 2 EL, OWL 2 QL, and OWL 2 RL
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References and Further Information

Namespace IRI of OWL contains the specification in RDF for 1) 
classes and 2) properties
• http://www.w3.org/2002/07/owl#
Theory
• M. Krötzsch, F. Simančík, I. Horrocks: Description Logic Primer. 2013. 
• P. Hitzler, M. Krötzsch, S. Rudolph: Foundations of Semantic Web 

Technologies. CRC Press, 2009. 
Reasoners
• http://semanticweb.org/wiki/Category_Reasoner
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