
CS-C2160 Theory of Computation

Lecture 5: Limitations of Regular Languages; Context-Free Grammars
and Languages

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

2/29

Topics

Limitations of regular languages
I The pumping lemma

Context-free grammars and languages
I Generating strings with grammars
I Context-free grammars
I Some useful constructions

Connection to regular languages
I Right- and left-linear grammars

Material:

In Finnish: Sections 2.8 and 3.1–3.2 in Finnish lecture notes

In English: Sections 1.4 and 2.1 (up to "ambiguity") in the Sipser
book, and right/left-linear grammars on these slides

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

3/29

Recap: Regular languages

M := .

.

+,- digit

digit

digitdigit

digitdigit

exp

q0 q1 q2 q3

q4

q5

q6

exp exp

digit

digitq7

↓ recognises L(M)

{.256,1.,3.14,2.3E−10, . . .}

↑ describes L(r)

r := (dd∗.d∗∪ .dd∗)(e(+∪−∪ ε)dd∗∪ ε)∪ (dd∗e(+∪−∪ ε)dd∗)

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

4/29

Limitations of Regular Languages

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

5/29

4.3 The pumping lemma
Due to cardinality reasons, there must be a large number of
languages that are not regular: there are uncountably many
languages but only countably many regular expressions.1

Can we find a concrete, interesting example of a language that is
not regular? Yes, easily.
A fundamental limitation is that finite automata only have a
bounded amount of “memory” (= the states). Therefore, they
cannot solve problems that require “remembering” arbitrarily
large numbers.
For instance, the “parentheses language”

Lmatch = {(k)k | k ≥ 0}
is not regular.
Such results can be established precisely using the “pumping
lemma for regular languages”.

1We shall discuss countable and uncountable sets in Lecture 9.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

6/29

Lemma 4.3 (Pumping lemma for regular languages)
Let A be a regular language. Then there is a number p≥ 1 such that
every x ∈ A with |x| ≥ p can be divided in three parts, x = uvw,
satisfying the conditions (i) |uv| ≤ p, (ii) |v| ≥ 1, and (iii) uviw ∈ A for
all i = 0,1,2, . . .

Proof

Let M be a deterministic finite automaton that recognises A, i.e. has
L(M) = A. Let p be the number of states in M. Study the sequence of
states visited when M is run on any input x ∈ A with |x| ≥ p. The initial
state is visited first and then |x| other states, one for each symbol in x.
Thus at least p+ 1 states are visited, and since M has only p states,
some state(s) are visited more than once. In fact, the revisit to some
state happens already during the first p symbols of x. Let q be the first
revisited state.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

7/29

Let now:

u be the prefix of x already processed by M’s first visit to q,

v the substring of x processed next before M’s first revisit to q,

w the remaining suffix of x.

q
w

v

u

Obviously |uv| ≤ p and |v| ≥ 1. Consider what happens on any string of
the form uviw, with i ≥ 0: (i) M processes u similarly as when accept-
ing x = uvw, and enters q, (ii) M processes vi by executing the same
loop as when accepting x = uvw, but now i times instead of once, and
again enters q, (iii) processes w and enters the same accepting state
as when accepting x = uvw. Thus M accepts uviw as well, and so
uviw ∈ L(M) = A.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

8/29

Example:

Consider the language of balanced parentheses (for clarity, replace ‘(’
= a and ‘)’ = b):

L = Lmatch = {akbk | k ≥ 0}.

Suppose (towards an eventual contradiction) that L were regular.
In that case, by the pumping lemma, there should be some p ≥ 1 so
that all the strings in L that have at least p symbols can be “pumped”.
Choose one such string, say x = apbp. Now x ∈ L and |x|= 2p > p.
The lemma says that x can be divided in three parts, x = uvw, so that
|uv| ≤ p, |v| ≥ 1 and uviw ∈ L for all i = 0,1,2, In detail:

u = am, v = an, w = ap−(m+n)bp for some m,n s.t. m+n≤ p and n≥ 1.

But when “pumping” the middle part zero times we get

uv0w = amap−(m+n)bp = ap−nbp 6∈ L as n≥ 1.

From the contradiction, we conclude that the assumption must be wrong
and in fact L is not regular.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

9/29

Note
There are also non-regular languages that can be “pumped”.

+ Lemma 4.3 can not be used to show that a language is
regular.

As an example, the language

L = {crakbk | r ≥ 1,k ≥ 0}∪{akbl | k, l≥ 0}

is not regular, even though the strings in it can be “pumped”.

Brainteaser: Show that (i) L satisfies the conditions of Lemma
4.3, (ii) L is not regular.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

10/29

Context-Free Grammars and Languages

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

11/29

5.1 Generating strings with grammars
A grammar = a system for generating strings from an initial string
by repeatedly substituting substrings with others according to
some rules.

A grammar is context-free if (i) each substitution replaces only
one symbol (variable) with some new substring and (ii) this
substitution can always be done independently of the context, i.e.,
of the other symbols around the substituted variable.

Applications: Description of structural text (e.g., BNF descriptions
for programming languages, DTD/Schema descriptions in XML)
and other structural data (e.g. structural pattern recognition,
structured data mining).
Some examples of describing the syntax of programmig
languages:

I grammar for Python 3
I grammar for Java SE7

http://docs.python.org/3/reference/grammar.html
http://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

12/29

Context-free grammars can generate (i.e., describe) languages
that are not regular.

Example:

A context-free grammar for language Lmatch (S is the start variable):

S → ε

S → (S)

Generating string ((())) according to this grammar:

S⇒ (S)⇒ ((S))⇒ (((S)))⇒ (((ε))) = ((())).

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

13/29

Example:

A (simplified) grammar for generating arithmetic expressions in a pro-
gramming language resembling C:

E → T | E + T

T → F | T ∗ F

F → a | (E)

Generating string (a+a)∗a according to this grammar:

E ⇒ T ⇒ T ∗F ⇒ F ∗F
⇒ (E)∗F ⇒ (E+T)∗F ⇒ (T +T)∗F
⇒ (F+T)∗F ⇒ (a+T)∗F ⇒ (a+F)∗F
⇒ (a+a)∗F ⇒ (a+a)∗a.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

14/29

5.2 Context-free grammars
Definition 5.1
A context-free grammar is a tuple

G = (V,Σ,P,S),

where

V a finite set of symbols,

Σ⊆ V is the set of terminals and its complement N = V−Σ is
the set of variables (also called non-terminals),

P⊆ N×V∗ is the finite set of rules (also called productions), and

S ∈ N is the start symbol of the grammar.

A rule (A,ω) ∈ P is usually written as A→ ω.

Note
The Sipser book has a slightly different, but equivalent, definition.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

15/29

Let G be a context-free grammar.
A string γ ∈ V∗ yields (or “derives in a single step”) a string
γ′ ∈ V∗, denoted by

γ⇒
G

γ
′

if
I the grammar G contains a rule A → ω such that
I γ = αAβ and γ′ = αωβ for some α,β ∈ V∗.

A string γ ∈ V∗ derives a string γ′ ∈ V∗, denoted by

γ⇒
G
∗

γ
′

if there is a finite sequence of strings γ0,γ1, . . . ,γn over V (n≥ 0)
such that

γ = γ0, γ0⇒
G

γ1⇒
G
. . .⇒

G
γn, and γn = γ

′.

As the special case n = 0, relation γ⇒
G
∗ γ holds for any γ ∈ V∗.

If the grammar G is clear from the context, we simply write γ⇒ γ′

and γ⇒∗ γ′ instead of γ⇒
G

γ′ and γ⇒
G
∗ γ′, respectively.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

16/29

A grammar G generates (or describes) the language

L(G) = {x ∈ Σ
? | S⇒

G
∗ x}.

That is, the language generated by a grammar consists of all the
variable-free strings that can be derived from the start variable.
These terminal strings are also called the words of the language.

Definition 5.2
A language L⊆ Σ∗ is context-free if it can be generated by some
context-free grammar.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

17/29

Example:

The “parentheses language” Lmatch = {(k)k | k ≥ 0} is generated by the
grammar:

Gmatch = ({S,(,)},{(,)},{S→ ε,S→ (S)},S).

Example:

Our earlier grammar for generating simple arithmetic expressions is for-
mally:

Gexpr = (V,Σ,P,E),

where

V = {E,T,F,a,+,∗,(,)},
Σ = {a,+,∗,(,)},
P = {E→ T, E→ E+T, T→ F, T→ T ∗F,

F→ a, F→ (E)}.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

18/29

Example:

Another grammar for generating simple arithmetic expressions is:

G′expr = (V,Σ,P,E),

where

V = {E,a,+,∗,(,)},
Σ = {a,+,∗,(,)},
P = {E→ E+E, E→ E ∗E, E→ a, E→ (E)}.

Note

Even though the grammar G′expr looks simpler than the grammar Gexpr,
it has the disadvantage of being ambiguous, which is usually an un-
wanted structural feature. (More on this topic in Lecture 6.)

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

19/29

Some notational conventions
Variables: A,B,C, . . . ,S,T .
Terminal symbols:

I letters a,b,c, . . . ,s, t
I digits 0,1, . . . ,9
I special symbols such as parentheses
I boldface or underlined atomic strings or “reserved names”: if, for,

end, . . .

Symbols in general (when one does not want to distinguish
terminals and variables): X,Y,Z.

Variable-free (i.e., only terminal symbol) strings u,v,w,x,y,z.

Strings in general (i.e., mixed terminal/variable): α,β,γ, . . . ,ω.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

20/29

Rules that have the same symbol A on the left-hand side,

A→ ω1, A→ ω2, . . . ,A→ ωk

can be presented together as:

A→ ω1 | ω2 | . . . | ωk

A grammar is usually represented simply as a set of rules:

A1 → ω11 | . . . | ω1k1

A2 → ω21 | . . . | ω2k2
...
Am → ωm1 | . . . | ωmkm

In this case, the variables are deduced by the above conventions
or by the fact that they appear as the left-hand sides of the rules;
other symbols are then terminal symbols. The start symbol is the
left-hand side of the first rule, e.g. A1 in the above rule set.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

21/29

5.3 Some useful constructions
Let L(T) be the set of terminal strings that can be derived from a
variable T (i.e., “the language generated by T”).
Let P be a set of rules which (i) does not contain a variable A,
and (ii) in which one can generate L(B) from variable B and
L(C) from variable C.
One can obtain new languages by adding new rules to P:
rule language

A→ B | C union L(A) = L(B)∪L(C)

A→ BC concatenation L(A) = L(B)L(C)

A→ AB | ε (left recursion) or Kleene star L(A) = (L(B))∗

A→ BA | ε (right recursion)

Using these constructions it is easy to prove the following:

Theorem 5.1
The class of context-free languages is closed under union,
concatenation and star operations. In other words„ if the languages
L1,L2 ⊆ Σ? are context-free, then so are L1∪L2, L1L2 and L?

1.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

22/29

Centre embedding is a characteristic context-free grammar
construction:

Adding rule
A→ BAC | ε

results in the language

L(A) =
∞⋃

i=0

L(B)iL(C)i.

Grammars containing this construction usually — but not always
— generate non-regular languages (cf. grammar Gmatch).

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

23/29

Connection to Regular Languages

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

24/29

5.4 Right- and left-linear grammars

Context-free grammars can generate non-regular languages, e.g.
the languages Lmatch and Lexpr.

We next show that also every regular language can be generated
by some context-free grammar. Thus, context-free languages are
a proper super-class of regular languages.
We say that a context-free grammar is

I right-linear if all the rules in it are of form A→ aB or A→ ε, and
I left-linear if all the rules in it are of form A→ Ba or A→ ε.

It turns out that both right- and left-linear grammars generate
exactly the class of regular languages. (Hence they are also
known as regular grammars.)

In the following, we prove this for right-linear grammars.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

25/29

Theorem 5.2
Each regular language can be generated by some right-linear
context-free grammar.

Proof

Let L be a regular language over an alphabet Σ and let M =
(Q,Σ,δ,q0,F) be a (deterministic or nondeterministic) finite automa-
ton that recognises it. We construct a right-linear context-free grammar
GM such that L(GM) = L(M) = L.
The set of terminal symbols of GM is Σ and its variable set contains a
variable Aq for each state q of M. The start variable of the grammar is
Aq0 and its rules correspond to the transitions of M:

For each accept state q ∈ F of M there is a rule Aq→ ε.

For each transition q a→ q′ in M (that is, q′ ∈ δ(q,a)) there is a
rule Aq→ aAq′ .

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

26/29

Example:

Automaton:

2

b

b
1

a, b

The corresponding grammar:

A1 → aA1 | bA1 | bA2

A2 → ε | bA2.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

27/29

For establishing the correctness of the construction, let us again denote
the set of terminal symbol strings that can be derived from a variable
Aq by

L(Aq) = {x ∈ Σ
? | Aq⇒

GM

∗ x}.

By induction on the length of a string x one can then show that for all
states q it holds that:

x ∈ L(Aq) iff (q,x)
M̀
∗ (qf ,ε) for some qf ∈ F.

In particular,

L(GM) = L(Aq0) = {x ∈ Σ
∗ | (q0,x)

M̀
∗ (qf ,ε) for some qf ∈ F}

= L(M) = L.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

28/29

Theorem 5.3
If a language can be generated by a right-linear context-free grammar,
then it is regular.

Proof

Let G = (V,Σ,P,S) be a right-linear context-free grammar. We con-
struct a nondeterministic finite automaton MG = (Q,Σ,δ,qS,F) that
recognises L(G) as follows:

The states of MG correspond to the variables of G:

Q = {qA | A ∈ V \Σ}.
The initial state of MG is the state qS corresponding to the start
variable of G.

The alphabet of MG is the set Σ of terminal symbols in G.

CS-C2160 Theory of Computation / Lecture 5

Aalto University / Dept. Computer Science

29/29

The transition function δ of MG simulates the rules of G so that
for each rule A→ aB, the automaton has the transition qA

a→ qB

(that is, qB ∈ δ(qA,a)).

The accept states of MG are the ones that correspond to
variables having an ε-rule in G:

F = {qA ∈ Q | A→ ε ∈ P}.
By induction on the length of a string x one can again show that for all
variables A it holds that:

x ∈ L(A) iff (qA,x)
M̀
∗ (qf ,ε) for some qf ∈ F.

In particular,

L(MG) = L(qS) = {x ∈ Σ
∗ | (qS,x)

M̀
∗ (qf ,ε) for some qf ∈ F}

= L(S) = L.

	Limitations of Regular Languages
	Context-Free Grammars and Languages
	Connection to Regular Languages

