1. [4 pts] Sketch a contour plot (ie level curves) of the following surface. Clearly indicate on your plot the locations of local minima, local maxima and saddle points.

2. [4 pts] Determine if the following limit exists: $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+4 y^{6}}$
3. [4 pts] Find the tangent plane to the surface $z=\ln (x y)$ when $x=1$ and $y=1$.
4. [8 pts] Consider the function

$$
f(x, y)=\frac{\sqrt{1-x^{2}-y^{2}}}{x^{2}}
$$

and let D be its domain.
(a) Find and sketch D.
(b) Is the domain open, closed or neither?
(c) Does the function have an absolute minimum on D ? If so, then find it. If not, explain why not.
(d) Does the function have an absolute maximum on D ? If so, then find it. If not, explain why not.
5. [6 pts] Let C be the curve with parametric equation $\mathbf{r}(t)=\left\langle 1+t^{2}, 2+2 t^{2}\right\rangle$, for $-1 \leq t \leq 1$.
(a) What shape is the curve?
(b) Find the arc length of C.
6. [bonus 4 pts] Propose a function $f(x, y)$ whose graph is the surface in question 1 .

