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0 Practical issues

2



Information and materials

• The main information channel of the course is itse MyCourses

homepage:

https://mycourses.aalto.fi/course/view.php?id=29656

• The text books are “J. Kaipio and E. Somersalo, Statistical and

Computational Inverse Problems, Springer, 2005” (mainly Chapters

2 and 3) and “D. Calvetti and E. Somersalo, Introduction to

Bayesian Scientific Computing. Ten Lectures on Subjective

Computing, Springer, 2007”.

• Lecture notes and exercise sheets are posted on the course

homepage.
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Exercises

• There are no actual exercise sessions, but the assistant is on call in

Zulip chat each Friday at 12-16.

• Each week there is one home assignment: The solution to the home

assignment in the exercise paper of week m is to be returned as

instructed in MyCourses before 17.00 on Wednesday of week m+ 1.

(For example, the solution to the home assignment in the first

exercise paper should be returned before 17.00 on Wednesday,

March 10.)

• Model solutions for the non-homework problems of the current week

and the home assignment of the preceding week are published in

MyCourses each Thursday.
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Evaluation

The course grades will be based on the weekly home assignments and a

home exam.

• The home assignments constitute 25% of the grade. Each returned

solution is given 0− 3 points; at the end of the course, the obtained

points will be summed and scaled appropriately.

• The home exam constitutes 75% of the grade. It will be held after

the lectures have ended — the exact timing will be agreed upon

later on. There will be four, more extensive assignments that must

be solved within a given time period (e.g., within ten days).
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Timetable

The lectures of the course extend over the weeks 9–14, i.e., Period IV

(plus the home exam).

• The first half will concentrate on traditional regularization

techniques.

• The second half will examine inverse problems from a statistical

view point.
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1 What is an ill-posed problem?
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Well-posed problems

Jacques Salomon Hadamard (1865-1963):

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data, in some reasonable

topology.
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Ill-posed problems

Nuutti Hyvönen: The ill-posed problems are the complement of the

well-posed problems in the space of all problems.

Examples:

• Interpolation.

• Finding the cause of a known consequence =⇒ inverse problems.

• Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all

possible prior and expert knowledge about the possible solutions.
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An example: Heat distribution in an insulated rod

Let us consider the problem

ut = uxx in (0,π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0,π),

where u(·, t) is the heat distribution at the time t > 0, f is the initial

heat distribution, and the boundary conditions indicate that the heat

cannot flow out of the ’rod’ [0,π].

Forward problem: Determine the ‘final’ distribution u(·, T ) ∈ L2(0,π),

T > 0, if the initial distribution f ∈ L2(0,π) is known.

Inverse problem: Determine the initial distribution f ∈ L2(0,π), if the

(noisy) ‘final’ distribution u(·, T ) =: w ∈ L2(0,π) is known.
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Forward problem

The solution to the forward problem can be given explicitly:

u(x, T ) =
∞
∑

n=0

f̂ne
−n2T cos(nx),

where {f̂n}∞n=0 ⊂ R are Fourier cosine coefficients of the initial heat

distribution f , i.e., f =
∑∞

n=0 f̂n cos(nx) in the sense of L2(0,π).

It is relatively easy to see that the solution operator

ET : f &→ u(·, T ), L2(0,π)→ L2(0,π)

satisfies the following conditions:

• ET is linear, bounded and compact.

• ET is injective, i.e., Ker(ET ) = {0}.

• Ran(ET ) is dense in L2(0,π).
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Inverse problem

Solving the inverse problem for a general final heat distribution

w ∈ L2(0,π) corresponds to inverting the compact operator

ET : L2(0,π)→ L2(0,π), which is obviously impossible.

The unbounded solution operator

E−1
T : Ran(ET )→ L2(0,π)

is, however, well-defined. In other words, the inverse problem has a

unique solution if w = ET f for some f ∈ L2(0,π), i.e., the

measurement contains no noise.

Summary:

• If w ∈ Ran(ET ), the third Hadamard condition is not satisfied.

• If w /∈ Ran(ET ), none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)
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Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always contains some

information about the initial heat distribution.
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Heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Another heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Comparison of the two at t = 0, 0.01, 0.1, 1 and 10.
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2 Classical regularization methods
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2.1 Fredholm equation
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Separable Hilbert space

A vector space H is a real inner product space if there exists a mapping

〈·, ·〉 : H ×H → R satisfying

1. 〈x, y〉 = 〈y, x〉 for all x, y ∈ H.

2. 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 for all x1, x2, y ∈ H, a, b ∈ R.

3. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇔ x = 0.

Furthermore, H is a separable real Hilbert space if, in addition,

1. H is complete with respect to the norm ‖ · ‖ =
√

〈·, ·〉.

2. There exists a countable orthonormal basis {ϕn} of H with respect

to the inner product 〈·, ·〉. This means that

〈ϕj ,ϕk〉 = δjk and x =
∑

n

〈x,ϕn〉ϕn for all x ∈ H.
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Fredholm equation

Let A : H1 → H2 be a compact linear operator between the real

separable Hilbert spaces H1 and H2. In the first half of this course, we

mainly concentrate on the problem of finding x ∈ H1 satisfying the

equation

Ax = y, (1)

where y ∈ H2 is given. (In this setting, compact operators are the

closure of the finite-dimensional operators, i.e., loosely speaking

matrices, in the operator topology.)

Examples:

• In the example of Section 1, we have A = ET and

H1 = H2 = L2(0,π).

• The most important case on this course is H1 = Rn, H2 = Rm and

A ∈ Rm×n is a matrix.
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2.2 Truncated singular value decomposition
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Orthogonal decompositions

Let A∗ : H2 → H1 be the adjoint operator of A : H1 → H2, i.e.,

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ H1, y ∈ H2.

We have the orthogonal decompositions

H1 = Ker(A)⊕ (Ker(A))⊥ = Ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕Ker(A∗),

where the “bar” denotes the closure of a set and

Ker(A) = {x ∈ H1 | Ax = 0},
Ran(A) = {y ∈ H2 | y = Ax for some x ∈ H1},

(Ker(A))⊥ = {x ∈ H1 | 〈x, z〉 = 0 for all z ∈ Ker(A)}, etc.
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Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors

{vn} ⊂ H1 and {un} ⊂ H2, and a sequence of positive numbers {λn},
λk ≥ λk+1 and limn→∞ λn = 0 in the countably infinite case, such that

Ax =
∑

n

λn〈x, vn〉un for all x ∈ H1 (2)

and, in particular,

Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.

(Conversely, if A : H1 → H2 has this kind of decomposition, it is

compact.)

The system {vn, un,λn} is called a singular system of A, and (2) is a

singular value decomposition (SVD) of A. (Note that 1 ≤ n ≤ ∞ or

1 ≤ n ≤ N <∞ depending on rank(A) := dim(Ran(A)).)
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Solvability of Ax = y

It follows from the orthonormality of {un} that

P : H2 → Ran(A), y &→
∑

n

〈y, un〉un,

is an orthogonal projection, i.e., P 2 = P and Ran(P ) ⊥ Ran(I − P ).

The equation Ax = y has a solution if and only if

y = Py and
∑

n

1

λ2
n
|〈y, un〉|2 < ∞. (3)

In case that (3) is satisfied, all solutions of Ax = y are of the form

x = x0 +
∑

n

1

λn
〈y, un〉vn

for some x0 ∈ Ker(A).
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Intuitive interpretation of the solvability conditions:

• The first condition, y = Py, states that y cannot have components

in the orthogonal complement of Ran(A) if y = Ax.

• The second condition, i.e., the convergence of the series

∑

n

1

λ2
n
|〈y, un〉|2,

is redundant if rank(A) <∞, in which case Ran(A) = Ran(A). On

the other hand, if rank(A) =∞, this condition is equivalent to

asking that the norm of

x = x0 +
∞
∑

n=1

1

λn
〈y, un〉vn, x0 ∈ Ker(A),

is finite, i.e., the ‘potential solutions’ belong to H1.

25



An example: Heat distribution in a rod (revisited)

Recall the heat equation

ut = uxx in (0,π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0,π).

The forward solution operator

ET : f &→ u(·, T ), H1 = L2(0,π)→ L2(0,π) = H2

is characterized by

ET : vn &→ λnvn,

where {vn}∞n=0 = {
√

1
π} ∪ {

√

2
π cos(n ·)}∞n=1 form an orthonormal basis

of L2(0,π), and λn = λn(T ) = e−n2T > 0 converges to zero as n→∞.
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In consequence, we have

ET f =
∞
∑

n=0

λn〈f, vn〉vn,

where the inner product of L2(0,π) is defined in the usual way:

〈f, g〉 =
∫ π

0
fg dx, f, g ∈ L2(0,π).

In this case un = vn (because ET is self-adjoint). Since {vn}∞n=0 are an

orthonormal basis for L2(0,π), we have

(Ker(ET ))
⊥ = Ran(ET ) = L2(0,π),

i.e., ET is injective and has a dense range, as mentioned already earlier.

In particular, the projection onto the closure of the range of ET is the

identity operator, i.e., P = I .
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We thus deduce that there exists f ∈ L2(0,π) such that

ET f = w,

for a given w ∈ L2(0,π), if and only if

∞
∑

n=0

1

λ2
n
|〈w, vn〉|2 =

∞
∑

n=0

e2n
2T |〈w, vn〉|2 < ∞,

which is a very restrictive condition and demonstrates why this inverse

problem is extremely ill-posed.

28


