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O Practical issues



Information and materials

e The main information channel of the course is itse MyCourses
homepage:
https://mycourses.aalto.fi/course/view.php7id=29656

e The text books are “J. Kaipio and E. Somersalo, Statistical and
Computational Inverse Problems, Springer, 2005 (mainly Chapters
2 and 3) and “D. Calvetti and E. Somersalo, Introduction to
Bayesian Scientific Computing. Ten Lectures on Subjective
Computing, Springer, 2007".

e Lecture notes and exercise sheets are posted on the course
homepage.



Exercises

e There are no actual exercise sessions, but the assistant is on call in
Zulip chat each Friday at 12-16.

e Each week there is one home assignment: The solution to the home
assignment in the exercise paper of week m is to be returned as
instructed in MyCourses before 17.00 on Wednesday of week m + 1.
(For example, the solution to the home assignment in the first

exercise paper should be returned before 17.00 on Wednesday,
March 10.)

e Model solutions for the non-homework problems of the current week
and the home assignment of the preceding week are published in
MyCourses each Thursday.



Evaluation

The course grades will be based on the weekly home assignments and a
home exam.

e The home assignments constitute 25% of the grade. Each returned
solution is given 0 — 3 points; at the end of the course, the obtained
points will be summed and scaled appropriately.

e The home exam constitutes 75% of the grade. It will be held after
the lectures have ended — the exact timing will be agreed upon
later on. There will be four, more extensive assignments that must
be solved within a given time period (e.g., within ten days).



Timetable

The lectures of the course extend over the weeks 9-14, i.e., Period IV
(plus the home exam).

e The first half will concentrate on traditional regularization
techniques.

e The second half will examine inverse problems from a statistical

view point.



1 What is an ill-posed problem?



Well-posed problems

Jacques Salomon Hadamard (1865-1963):
1. A solution exists.
2. The solution is unique.

3. The solution depends continuously on the data, in some reasonable
topology.



lll-posed problems

Nuutti Hyvonen: The ill-posed problems are the complement of the
well-posed problems in the space of all problems.

Examples:
e Interpolation.

e Finding the cause of a known consequence — inverse problems.

e Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all
possible prior and expert knowledge about the possible solutions.



An example: Heat distribution in an insulated rod

et us consider the problem

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(+,0)=f on (0, ),

where u(-,t) is the heat distribution at the time ¢ > 0, f is the initial

heat distribution, and the boundary conditions indicate that the heat
cannot flow out of the 'rod’ [0, 7].

Forward problem: Determine the ‘final’ distribution u(-,T") € L*(0, ),
T > 0, if the initial distribution f € L*(0,7) is known.

Inverse problem: Determine the initial distribution f € L?(0, r), if the
(noisy) ‘final’ distribution w(-,T) =: w € L?(0, ) is known.
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Forward problem

The solution to the forward problem can be given explicitly:

Z fre™™ T cos(na),

where {f,}°°, C R are Fourier cosine coefficients of the initial heat
distribution f, i.e., f =Y " fn cos(nz) in the sense of L2(0, ).

It is relatively easy to see that the solution operator
Er: fwu(-,T), L*0,7)— L*0,)
satisfies the following conditions:
e F7 is linear, bounded and compact.
e Fr is injective, i.e., Ker(Er) = {0}.
e Ran(FE7r) is dense in L2(0, ).
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Inverse problem

Solving the inverse problem for a general final heat distribution
w € L?(0, ) corresponds to inverting the compact operator
Er : L*(0,7) — L?(0, ), which is obviously impossible.

The unbounded solution operator
E;':Ran(Er) — L*(0,7)

is, however, well-defined. In other words, the inverse problem has a
unique solution if w = Erf for some f € L?(0,7), i.e., the
measurement contains no noise.

Summary:
e If w € Ran(FEr), the third Hadamard condition is not satisfied.
e If w ¢ Ran(Fr), none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)
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Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always contains some
information about the initial heat distribution.
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Heat distribution at t = 0,0.01,0.1,1 and 10.

0.8

0.6

0.4

0.2

14



Another heat distribution at ¢ = 0,0.01,0.1,1 and 10.
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Comparison of the two at t = 0,0.01,0.1,1 and 10.
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2 Classical regularization methods
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2.1 Fredholm equation
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Separable Hilbert space

A vector space H is a real inner product space if there exists a mapping
(-, : H x H — R satisfying

1. (x,y) = (y,z) for all z,y € H.
2. (ax1 + bxe,y) = alxy,y) + b{xa,y) for all x1,22,y € H, a,b € R.
3. (z,2) >0,and (x,2) =0 & = =0.
Furthermore, H is a separable real Hilbert space if, in addition,
1. H is complete with respect to the norm || - || = \/(-, ).

2. There exists a countable orthonormal basis {p,, } of H with respect
to the inner product (-,-). This means that

(@j, k) =05 and x = Z(x, ©n)pn forall z e H.

n
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Fredholm equation

Let A: Hy — Hy be a compact linear operator between the real
separable Hilbert spaces H; and Hs. In the first half of this course, we
mainly concentrate on the problem of finding x € H; satisfying the
equation

Axr =y, (1)

where y € Hs is given. (In this setting, compact operators are the
closure of the finite-dimensional operators, i.e., loosely speaking
matrices, in the operator topology.)

Examples:

e In the example of Section 1, we have A = E7 and
H1 = H2 — L2(O,7T).

e The most important case on this course is H; = R", Hy, = R™ and
A € R™*™ is a matrix.
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2.2 Truncated singular value decomposition

21



Orthogonal decompositions

Let A* : Hy — Hy be the adjoint operator of A : Hy — Ho, i.e.,

(Az,y) = (x, A"y) forall x € Hy,y € Hs.

We have the orthogonal decompositions

H, = Ker(A) @ (Ker(A)): = Ker(4) ® Ran(A4*),
H, = Ran(4)® (Ran(A))* = Ran(4) @ Ker(A4*),

where the “bar” denotes the closure of a set and

Ker(A) = {x € H; | Ax =0},
Ran(A) = {ye€ Hy |y = Ax for some z € H;},
(Ker(A)*t = {x e H, | (x,2)=0forall z € Ker(A)}, etc.
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Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors
{vn,} C Hy and {u,} C Hs, and a sequence of positive numbers {\,},
Ak > Apr1 and limy, oo A, = 0 in the countably infinite case, such that

Ax = Z A (T, U ) U, for all x € Hy (2)

and, in particular,

Ran(A) = span{u,, } and (Ker(A))* = span{v, }.
(Conversely, if A: Hy — Hs has this kind of decomposition, it is
compact.)

The system {v,,, un, A\, } is called a singular system of A, and (2) is a
singular value decomposition (SVD) of A. (Note that 1 <n < oo or
1 <n < N < oo depending on rank(A) := dim(Ran(A)).)
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Solvability of Az =y

It follows from the orthonormality of {u,} that

P Hy = Ran(d), yr> 3 (y, wn)un,

is an orthogonal projection, i.e., P? = P and Ran(P) L Ran(I — P).

The equation Ax = y has a solution if and only if
y= Py and ZA—%y@,um < . (3)
In case that (3) is satisfied, all solutions of Ax = y are of the form
r = xo+ ; %{y, Unp YUp,
for some xy € Ker(A).
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Intuitive interpretation of the solvability conditions:

e The first condition, y = Py, states that y cannot have components
in the orthogonal complement of Ran(A) if y = Ax.

e The second condition, i.e., the convergence of the series
1
> sl )
is redundant if rank(A) < oo, in which case Ran(A) = Ran(A). On

the other hand, if rank(A) = oo, this condition is equivalent to
asking that the norm of

=1
r = o+ 7;1 x(y, U ) Un s xg € Ker(A),
is finite, i.e., the ‘potential solutions’ belong to Hj;.
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An example: Heat distribution in a rod (revisited)

Recall the heat equation

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(-,0) = f on (0, ).

The forward solution operator
Er:fwu(,T), Hy=L*0,7)— L*0,7) = Hy

is characterized by
ET vy, = Apvn,

where {v, }22 , = {\/7} U {\/7008 )}oe, form an orthonormal basis

of L?(0,7), and A, — e T > () converges to zero as n — oc.
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In consequence, we have
00
ETf — Z >\n<fa 'Un>'Una
n=0

where the inner product of L?(0, ) is defined in the usual way:

(f.9) = /O fgdz, f,g € L*(0, ).

In this case u,, = v,, (because Er is self-adjoint). Since {v, }°2, are an
orthonormal basis for L?(0, ), we have

(Ker(Er))* = Ran(Er) = L?(0,7),

i.e., B is injective and has a dense range, as mentioned already earlier.
In particular, the projection onto the closure of the range of Er is the
identity operator, i.e., P = 1.
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We thus deduce that there exists f € L?(0, ) such that
ETf = w,

for a given w € L?(0,7), if and only if

o 1 o
Z)\— {(w, v,)|* = 262"2T](w,vn>]2
= n=0

which is a very restrictive condition and demonstrates why this inverse
problem is extremely ill-posed.
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