Computational inverse problems

Nuutti Hyvönen and Juha-Pekka Puska

nuutti.hyvonen@aalto.fi, juha-pekka.puska@aalto.fi

First lecture, March 1, 2021.

Practical issues

Information and materials

- The main information channel of the course is itse MyCourses homepage: https://mycourses.aalto.fi/course/view.php?id=29656
- The text books are "J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2005" (mainly Chapters 2 and 3) and "D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific Computing. Ten Lectures on Subjective Computing, Springer, 2007".
- Lecture notes and exercise sheets are posted on the course homepage.

Exercises

- There are no actual exercise sessions, but the assistant is on call in Zulip chat each Friday at 12-16.
- Each week there is one home assignment: The solution to the home assignment in the exercise paper of week m is to be returned as instructed in MyCourses before 17.00 on Wednesday of week m + 1. (For example, the solution to the home assignment in the first exercise paper should be returned before 17.00 on Wednesday, March 10.)
- Model solutions for the non-homework problems of the current week and the home assignment of the preceding week are published in MyCourses each Thursday.

Evaluation

The course grades will be based on the weekly *home assignments* and a *home exam*.

- The home assignments constitute 25% of the grade. Each returned solution is given 0-3 points; at the end of the course, the obtained points will be summed and scaled appropriately.
- The home exam constitutes 75% of the grade. It will be held after the lectures have ended — the exact timing will be agreed upon later on. There will be four, more extensive assignments that must be solved within a given time period (e.g., within ten days).

Timetable

The lectures of the course extend over the weeks 9–14, i.e., Period IV (plus the home exam).

- The first half will concentrate on traditional regularization techniques.
- The second half will examine inverse problems from a statistical view point.

1 What is an ill-posed problem?

Well-posed problems

Jacques Salomon Hadamard (1865-1963):

- 1. A solution exists.
- 2. The solution is unique.
- 3. The solution depends continuously on the data, in some *reasonable* topology.

III-posed problems

Nuutti Hyvönen: The ill-posed problems are the complement of the well-posed problems in the space of all problems.

Examples:

- Interpolation.
- Finding the cause of a known consequence \implies inverse problems.
- Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all possible prior and expert knowledge about the possible solutions.

An example: Heat distribution in an insulated rod

Let us consider the problem

$$u_t = u_{xx} \qquad \text{in } (0, \pi) \times \mathbb{R}_+,$$

$$u_x(0, \cdot) = u_x(\pi, \cdot) = 0 \qquad \text{on } \mathbb{R}_+,$$

$$u(\cdot, 0) = f \qquad \text{on } (0, \pi),$$

where $u(\cdot, t)$ is the heat distribution at the time t > 0, f is the initial heat distribution, and the boundary conditions indicate that the heat cannot flow out of the 'rod' $[0, \pi]$.

Forward problem: Determine the 'final' distribution $u(\cdot, T) \in L^2(0, \pi)$, T > 0, if the initial distribution $f \in L^2(0, \pi)$ is known.

Inverse problem: Determine the initial distribution $f \in L^2(0, \pi)$, if the (noisy) 'final' distribution $u(\cdot, T) =: w \in L^2(0, \pi)$ is known.

Forward problem

The solution to the forward problem can be given explicitly:

$$u(x,T) = \sum_{n=0}^{\infty} \hat{f}_n e^{-n^2 T} \cos(nx),$$

where $\{\hat{f}_n\}_{n=0}^{\infty} \subset \mathbb{R}$ are Fourier cosine coefficients of the initial heat distribution f, i.e., $f = \sum_{n=0}^{\infty} \hat{f}_n \cos(nx)$ in the sense of $L^2(0,\pi)$.

It is relatively easy to see that the solution operator

$$E_T: f \mapsto u(\cdot, T), \quad L^2(0, \pi) \to L^2(0, \pi)$$

satisfies the following conditions:

- E_T is linear, bounded and *compact*.
- E_T is injective, i.e., $Ker(E_T) = \{0\}$.
- $\operatorname{Ran}(E_T)$ is dense in $L^2(0,\pi)$.

Inverse problem

Solving the inverse problem for a general final heat distribution $w \in L^2(0,\pi)$ corresponds to inverting the compact operator $E_T: L^2(0,\pi) \to L^2(0,\pi)$, which is obviously impossible.

The *unbounded* solution operator

$$E_T^{-1}$$
: Ran $(E_T) \to L^2(0,\pi)$

is, however, well-defined. In other words, the inverse problem has a unique solution if $w = E_T f$ for some $f \in L^2(0, \pi)$, i.e., the measurement contains no noise.

Summary:

- If $w \in \operatorname{Ran}(E_T)$, the third Hadamard condition is not satisfied.
- If $w \notin \operatorname{Ran}(E_T)$, none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)

Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement *always* contains *some* information about the initial heat distribution.

Heat distribution at t = 0, 0.01, 0.1, 1 and 10.

Another heat distribution at t = 0, 0.01, 0.1, 1 and 10.

Comparison of the two at t = 0, 0.01, 0.1, 1 and 10.

2 Classical regularization methods

2.1 Fredholm equation

Separable Hilbert space

A vector space H is a *real inner product space* if there exists a mapping $\langle \cdot, \cdot \rangle : H \times H \to \mathbb{R}$ satisfying

1.
$$\langle x, y \rangle = \langle y, x \rangle$$
 for all $x, y \in H$.

- 2. $\langle ax_1 + bx_2, y \rangle = a \langle x_1, y \rangle + b \langle x_2, y \rangle$ for all $x_1, x_2, y \in H$, $a, b \in \mathbb{R}$.
- 3. $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Furthermore, H is a separable real Hilbert space if, in addition,

- 1. *H* is *complete* with respect to the norm $\|\cdot\| = \sqrt{\langle \cdot, \cdot \rangle}$.
- 2. There exists a *countable orthonormal basis* $\{\varphi_n\}$ of H with respect to the inner product $\langle \cdot, \cdot \rangle$. This means that

$$\langle \varphi_j, \varphi_k \rangle = \delta_{jk}$$
 and $x = \sum_n \langle x, \varphi_n \rangle \varphi_n$ for all $x \in H$.

Fredholm equation

Let $A: H_1 \to H_2$ be a *compact* linear operator between the real separable Hilbert spaces H_1 and H_2 . In the first half of this course, we mainly concentrate on the problem of finding $x \in H_1$ satisfying the equation

$$Ax = y, \tag{1}$$

where $y \in H_2$ is given. (In this setting, compact operators are the closure of the finite-dimensional operators, i.e., loosely speaking matrices, in the operator topology.)

Examples:

- In the example of Section 1, we have $A = E_T$ and $H_1 = H_2 = L^2(0, \pi).$
- The most important case on this course is $H_1 = \mathbb{R}^n$, $H_2 = \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$ is a matrix.

2.2 Truncated singular value decomposition

Orthogonal decompositions

Let $A^*: H_2 \to H_1$ be the adjoint operator of $A: H_1 \to H_2$, i.e.,

 $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x \in H_1, y \in H_2$.

We have the orthogonal decompositions

$$H_1 = \operatorname{Ker}(A) \oplus (\operatorname{Ker}(A))^{\perp} = \operatorname{Ker}(A) \oplus \overline{\operatorname{Ran}(A^*)},$$

$$H_2 = \overline{\operatorname{Ran}(A)} \oplus (\operatorname{Ran}(A))^{\perp} = \overline{\operatorname{Ran}(A)} \oplus \operatorname{Ker}(A^*),$$

where the "bar" denotes the closure of a set and

$$\operatorname{Ker}(A) = \{ x \in H_1 \mid Ax = 0 \},$$

$$\operatorname{Ran}(A) = \{ y \in H_2 \mid y = Ax \text{ for some } x \in H_1 \},$$

$$(\operatorname{Ker}(A))^{\perp} = \{ x \in H_1 \mid \langle x, z \rangle = 0 \text{ for all } z \in \operatorname{Ker}(A) \}, \quad \text{etc.}$$

Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors $\{v_n\} \subset H_1$ and $\{u_n\} \subset H_2$, and a sequence of *positive* numbers $\{\lambda_n\}$, $\lambda_k \geq \lambda_{k+1}$ and $\lim_{n\to\infty} \lambda_n = 0$ in the countably infinite case, such that

$$Ax = \sum_{n} \lambda_n \langle x, v_n \rangle u_n \qquad \text{for all } x \in H_1$$
 (2)

and, in particular,

$$\overline{\operatorname{Ran}(A)} = \overline{\operatorname{span}\{u_n\}} \quad \text{and} \quad (\operatorname{Ker}(A))^{\perp} = \overline{\operatorname{span}\{v_n\}}.$$

(Conversely, if $A: H_1 \to H_2$ has this kind of decomposition, it is compact.)

The system $\{v_n, u_n, \lambda_n\}$ is called a *singular system* of A, and (2) is a *singular value decomposition* (SVD) of A. (Note that $1 \le n \le \infty$ or $1 \le n \le N < \infty$ depending on $\operatorname{rank}(A) := \dim(\operatorname{Ran}(A))$.)

Solvability of Ax = y

It follows from the orthonormality of $\{u_n\}$ that

$$P: H_2 \to \overline{\operatorname{Ran}(A)}, \quad y \mapsto \sum_n \langle y, u_n \rangle u_n,$$

is an orthogonal projection, i.e., $P^2 = P$ and $\operatorname{Ran}(P) \perp \operatorname{Ran}(I - P)$. The equation Ax = y has a solution *if and only if*

$$y = Py$$
 and $\sum_{n} \frac{1}{\lambda_n^2} |\langle y, u_n \rangle|^2 < \infty.$ (3)

In case that (3) is satisfied, all solutions of Ax = y are of the form

$$x = x_0 + \sum_n \frac{1}{\lambda_n} \langle y, u_n \rangle v_n$$

for some $x_0 \in \text{Ker}(A)$.

Intuitive interpretation of the solvability conditions:

- The first condition, y = Py, states that y cannot have components in the orthogonal complement of $\overline{\text{Ran}(A)}$ if y = Ax.
- The second condition, i.e., the convergence of the series

$$\sum_{n} \frac{1}{\lambda_n^2} |\langle y, u_n \rangle|^2,$$

is redundant if $\operatorname{rank}(A) < \infty$, in which case $\overline{\operatorname{Ran}(A)} = \operatorname{Ran}(A)$. On the other hand, if $\operatorname{rank}(A) = \infty$, this condition is equivalent to asking that the norm of

$$x = x_0 + \sum_{n=1}^{\infty} \frac{1}{\lambda_n} \langle y, u_n \rangle v_n, \qquad x_0 \in \operatorname{Ker}(A),$$

is finite, i.e., the 'potential solutions' belong to H_1 .

An example: Heat distribution in a rod (revisited)

Recall the heat equation

$$u_t = u_{xx} \qquad \text{in } (0, \pi) \times \mathbb{R}_+,$$

$$u_x(0, \cdot) = u_x(\pi, \cdot) = 0 \qquad \text{on } \mathbb{R}_+,$$

$$u(\cdot, 0) = f \qquad \text{on } (0, \pi).$$

The forward solution operator

$$E_T: f \mapsto u(\cdot, T), \quad H_1 = L^2(0, \pi) \to L^2(0, \pi) = H_2$$

is characterized by

 $E_T: v_n \mapsto \lambda_n v_n,$ where $\{v_n\}_{n=0}^{\infty} = \{\sqrt{\frac{1}{\pi}}\} \cup \{\sqrt{\frac{2}{\pi}}\cos(n \cdot)\}_{n=1}^{\infty}$ form an orthonormal basis of $L^2(0,\pi)$, and $\lambda_n = \lambda_n(T) = e^{-n^2T} > 0$ converges to zero as $n \to \infty$. In consequence, we have

$$E_T f = \sum_{n=0}^{\infty} \lambda_n \langle f, v_n \rangle v_n,$$

where the inner product of $L^2(0,\pi)$ is defined in the usual way:

$$\langle f,g\rangle = \int_0^{\pi} fg \, dx, \qquad f,g \in L^2(0,\pi).$$

In this case $u_n = v_n$ (because E_T is self-adjoint). Since $\{v_n\}_{n=0}^{\infty}$ are an orthonormal basis for $L^2(0,\pi)$, we have

$$(\operatorname{Ker}(E_T))^{\perp} = \overline{\operatorname{Ran}(E_T)} = L^2(0,\pi),$$

i.e., E_T is injective and has a dense range, as mentioned already earlier. In particular, the projection onto the closure of the range of E_T is the identity operator, i.e., P = I. We thus deduce that there exists $f\in L^2(0,\pi)$ such that

$$E_T f = w,$$

for a given $w \in L^2(0,\pi)$, if and only if

$$\sum_{n=0}^{\infty} \frac{1}{\lambda_n^2} |\langle w, v_n \rangle|^2 = \sum_{n=0}^{\infty} e^{2n^2 T} |\langle w, v_n \rangle|^2 < \infty,$$

which is a very restrictive condition and demonstrates why this inverse problem is extremely ill-posed.