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Introduction

● According to the World Health Organization (WHO), depression is the fourth 
most mental disorder by 2020.

● The effective treatments for depression can be aided by the detection of the 
problems at its early stages.

● The diagnosis of depression is mostly based on patient self-report or clinical 
judgments of symptom.

● Evaluations by clinicals depends on their expertise and diagnosis methods.
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Introduction

● Depression, stress or emotion affect:
○ the process of speech production 

■ Prosodic features
■ Vocal tract
■ Glottal source

● The voice patterns have a close relationship with depression.
● In recent years, deep learning methods utilized to predict depression severity by learning a lot 

of valuable information from the voice patterns. 
● Among these different deep learning methods, Convolutional Neural Networks (CNN) has been 

widely used to achieve state-of-the-art performance in many communities, especially for
○ Audiovisual signals

● This paper explores how the depression severity prediction can benefit from the adoption of CNN in 
learning spectrogram patterns of the speech.
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Databases utilized 

● AVEC2013 depression database is a subset of the Audio-visual depressive language corpus (AVDLC).
○ 340 videos from 292 subjects (average duration of 25 min)
○ Performing a Human–Computer Interaction task while being recorded by a webcam and a microphone.
○ For this study, 150 videos from 82 subjects were used:

■ Training set:  50 recordings 
■ Development set: 50 recordings 
■ Test set: 50 recordings

● AVEC2014 depression database is a subset of the AVEC2013 corpus.
○ 300 videos (duration ranging from 6s to 4 min)
○ Performing two different Human–Computer Interaction tasks
○ For this study, they used 300 videos:

■ Training set:  100 recordings 
■ Development set: 100 recordings 
■ Test set: 100 recordings

● The depression levels were labeled per each video using
Beck Depression Inventory-II (BDI-II).

Depression level Label

0 -13 Minimal 
depression

14 - 19 Mild depression

20 - 28 Moderate 
depression

29 - 63 Severe 
depression
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Methodology used

● Hand-crafted  and deep-learned features used 
for estimating the severity of depression.

● For hand-crafted features:
○ Low level descriptors are extracted 

from the raw audio.
○ Median Robust extended Local Binary 

Patterns (MRELBP) features are 
extracted from the spectrograms of audio.

● For deep-learned features:
○ DCNN used to directly learn the 

deep-learned features from the the raw
audio and spectrogram images.

● The joint fine-tuning method used to combine
 the four streams for the final depression
 prediction.
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Hand-crafted features

● For audio features:
○ 2268 feature vectors extracted by openSMILE toolkit.

■ 42 functionals on 32 energy and spectral related low-level descriptors
(LLD).

■ 32 functionals on 6 voicing related LLD.
■ 19 functionals on 6 delta coefficients of the voicing related LLD.
■ 10 voiced/unvoiced durational features.

Tables source Valstar, Michel, et al. "Avec 2013: the continuous audio/visual emotion and depression recognition challenge." 
Proceedings of the 3rd ACM international workshop on Audio/visual emotion challenge. 2013. 6



Hand-crafted features

● The LBP is computed as:

● LBP(xC) = s(6-4)20 + s(1-4)21 + s(9-4)22 +  s(5-4)23 + s(4-4)24 + s(7-4)25 + s(2-4)26 + s(3-4)27

    = 1 x 20 + 1 x 22 + 1 x 23 + 1 x 24 + 1 x 25  = 1 + 2 + 8 + 16 + 32 = 59 

● Median Robust Extended Local Binary Patterns (MRELBP) applied on spectrograms of the audio to 
extract the textural features.

● It uses a median filter to maximize the robustness of the representation to noise.
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Deep-learned features

● Two different models used to extract
○ Deep-learned audio features from frame-level raw waveforms
○ Deep-learned texture features from spectrogram images

● For the deep learned audio features
○ The frame-level raw waveforms were fed to the first CNN convolutional layer to learn a 

filter-bank representation which is equivalent to filter kernels in a time-frequency 
representation. 

○ The output feature map will have the same as the spectrogram
○ Parameters of the convolutional layer (stride, filter length and number of filters) corresponds to 

the parameters of spectrogram (mel-size, window size, number of mel-bands)
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Deep-learned features

● For the deep learned texture features
○ Segment of 6s and 20s were used for the extraction of vocal patterns
○ A data augmentation method used to tackle with the small samples in training data

■ Original images (1)
■ Flipped images (1)
■ Rotated images with six angles (-15, -10, -5, 5, 10, 15) and their flipped versions (12)
■ 14 times more data than the original images obtained

○ The input image size 128 x 128
○ Filter size 5 x 5 with stride size of 1
○ For pooling layer, window size 2 x 2 with stride 2
○ Euclidean loss was used as the loss function
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Joint fine-tuning method

● To capture the complementary information
within the two used models (Raw-DCNN and 
the Spectrogram-DCNN), joint fine-tuning
Method used to boost the recognition 
performance.

● In the training process, the four DCNNs are 
trained separately, and then the joint 
fine-tuning is created using joint tuning layer

● The top layers retrained and other layers 
of the two trained networks were freezed.

● Euclidean loss function used.
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Evaluation metrics 

● The depression severity recognition performance is assessed with:
○ Mean absolute error (MAE) 

○ Root mean square error (RMSE)

● N denotes the number of data samples, yi is the ground truth and yi^ 
represents the predicted value of i-th sample

11



Results (Performance of single models)

● The deep-learned features obtained the better results on the test set for AVEC2013 and AVEC2014.
● Deep learned model can reduce some effort for finding suitable hand-crafted features for depression 

scale prediction.
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Results (Overall performance by fusing the individual models and joint tuning)

● For fusing the individual models:
○  For AVEC2013:

■ RMSE: 10.2261 
■ MAE: 8.2323

○ For AVEC2014:
■ RMSE: 10.1284 
■ MAE: 8.2204

● Fusing the the hand-crafted and the deep-learned model
showed better performance than the single model.

● For joint tuning method:
○  For AVEC2013:

■ RMSE: 10.0012 
■ MAE: 8.2012

○ For AVEC2014:
■ RMSE: 9.9998 
■ MAE: 8.1919

● The results implied that the proposed joint tuning method 
performance was improved when employing both the 
hand-crafted and deep-learned models.
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Results (combined databases)

● RMSE : 9.8874
● MAE : 8.1901
● A potential reason for this is the new 

enlarged database has more data samples
for training and the DCNN models can 
better predict the depression scores.
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Results (AVEC2014 Depression Challenge Results)

● By using only audio features, the proposed methods
provided comparable results to multi-modal approaches for depression
recognition.
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Questions

1. Explain briefly the following terms:

● Convolutional layer
● Pooling layer
● Fully-connected layer
● Dropout method
● Activation functions

2. Explain briefly why deep learned model performs better than hand crafted 
model? 
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