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Abstract
Speech impairments are one of the earliest manifestations in pa-
tients with Parkinson’s disease. Particularly, articulation deficits
related to the capability of the speaker to start/stop the vibration
of the vocal folds have been observed in the patients. Those
difficulties can be assessed by modeling the transitions between
voiced and unvoiced segments from speech. A robust strategy to
model the articulatory deficits related to the starting or stopping
vibration of the vocal folds is proposed in this study. The tran-
sitions between voiced and unvoiced segments are modeled by
a convolutional neural network that extracts suitable informa-
tion from two time–frequency representations: the short time
Fourier transform and the continuous wavelet transform. The
proposed approach improves the results previously reported in
the literature. Accuracies of up to 89% are obtained for the
classification of Parkinson’s patients vs. healthy speakers. This
study is a step towards the robust modeling of the speech im-
pairments in patients with neuro–degenerative disorders.
Index Terms: Parkinson’s disease, Articulation, Convolutional
neural network, Time–frequency representations, Wavelet
transform.

1. Introduction
Parkinson’s disease (PD) is a neurological disorder that alters
the function of the basal ganglia in the midbrain, producing mo-
tor and non–motor deficits in the patients [1]. Speech impair-
ments are an early and prominent manifestation that can con-
tribute primarily to the diagnosis of PD [2]. The main symptoms
of the impaired speech of PD patients include reduced loudness,
monopitch, monoloudness, hypotonicity, breathy, hoarse voice
quality, and imprecise articulation. These symptoms are typi-
cally grouped and called hypokinetic dysarthria [3].

Several studies in the literature have described the speech
impairments of PD patients in terms of phonation, articulation,
and prosody [4, 5, 6]. Phonation is related to the capability of
the speaker to make the vocal folds vibrate to produce vocal
sounds, articulation is related with the modification of the po-
sition, stress, and shape of several muscles to produce speech,
and prosody reflects variation of loudness, pitch, and timing to
produce natural speech. Articulation deficits in PD patients are
mainly related to reduced amplitude and velocity of lip, tongue,
and jaw movements [7]. Particularly, imprecise consonant ar-
ticulation was perceptually found as one of the most deviant
speech dimensions in PD [8].

In general, articulation impairments of PD patients have
been analyzed in several studies both from the medical and
engineering perspective. In [5] the authors evaluated possible
correlations between vowel articulation, global motor perfor-
mance, and the stage of the disease. A total of 68 patients and
32 healthy control (HC) speakers are considered. According to

the results obtained in several statistical tests, the authors con-
cluded that the vowel articulation index (VAI) is significantly
reduced in PD speakers. In [9] six different articulatory deficits
in PD were modeled: vowel quality, coordination of laryngeal
and supra-laryngeal activity, precision of consonant articula-
tion, tongue movement, occlusion weakening, and speech tim-
ing. The authors studied the rapid repetition of the syllables /pa-
ta-ka/ pronounced by 24 Czech native speakers, and reported
an accuracy of 88% discriminating between PD patients and
HC. Articulation impairments have been also analyzed using
time–frequency representations (TFR) [10], where three TFR
were computed from continuous speech utterances with the aim
of detecting changes in the low frequency components of the
spectrum that could be associated to the presence of tremor in
the speech. The TFR include modulation spectra, the wavelet
packet transform, and the Wigner-Ville distribution. The au-
thors extract features related to the energy content and spectral
centroids in different frequency bands, and report an accuracy
of up to 77% classifying PD patients and HC speakers using
several classification strategies.

In [11] it was introduced a method to model difficulties ob-
served in PD patients to start/stop the vibration of vocal folds.
The method consists of detecting the transitions from voiced to
unvoiced (v-uv), i.e. offset, and from unvoiced to voiced (uv-v),
i.e. onset in the speech recording. Then the energy content in
frequency bands separated according to the Bark scale is com-
puted. In order to improve the method presented in [11], in
the present study the onset and offset are modeled with a more
robust strategy that considers both the temporal and frequency
domains of the transitions. The onset and offset are modeled
using two TFR: the short time Fourier transform (STFT) and
the continuous wavelet transform (CWT). The TFRs are used
to feed a convolutional neural network (CNN) that learns high–
level representations from the low–level raw features from the
TFR. The combination of TFRs and CNNs has been previ-
ously used in speech recognition and other speech processing
tasks [12, 13, 14].

The proposed model is tested in the classification of PD pa-
tients vs. HC subjects in three different languages: Spanish,
German, and Czech. The results obtained are compared to a
baseline computed with the strategy introduced in [11]. Ac-
cording to the results, the proposed approach improves the re-
sults relative to previous studies. Accuracies of up to 89% are
obtained for the classification of PD patients vs. HC speakers.
This study is a step towards the robust modeling of the speech
impairments in patients with neuro–degenerative disorders

2. Methods
The proposed method is divided into three stages: (1) the de-
tection of the onset and offset transitions, (2) the computation
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of the two TFRs (STFT and CWT), and (3) the feature learn-
ing and classification using the CNN. Each stage is described as
follows.

2.1. Onset and Offset detection

The offset and onset are segmented according to the presence
of the fundamental frequency F 0 using Praat. The borders are
detected, and 80 ms of the signal are taken to the left and to the
right of each border, forming “chunks” of signals with 160 ms
length. Each one of those chunks is modeled using the STFT
and the CWT.

2.2. Time–Frequency Representations

2.2.1. Short time Fourier transform

The STFT with 64 frequency bins is computed for each transi-
tion. Frames of 16 ms and time-shift of 10 ms are considered,
forming and image of 65× 25 pixels to feed the CNN. Figure 1
shows the difference between the onset for a PD patient (fe-
male, 73 years old) and a HC speaker (female, 73 years old).
In both cases a female speaker with 73 years old is considered.
Note that onset is more spread out for the PD patient than for
the HC, where the starting point of the voiced segment is well
defined. The figure also indicates breathy voice in the speech of
the patient. Note that most of the energy is concentrated at the
beginning of the frame for PD and at the end of the frame for
HC, which may be caused by compensatory articulatory move-
ments of the patient at the beginning of the vocal fold vibration.
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Figure 1: STFT of the onset for a PD patient (left) and a HC
speaker (right) when they pronounce the syllable /ta/

2.2.2. Continuous wavelet transform

The CWT is introduced as an alternative to represent and de-
compose non–stationary signals. This TFR allows a time–
frequency multi–resolution analysis based on the decomposi-
tion of the signal into time–variable length frames. The CWT is
computed for each transition using the Morlet wavelet function,
which is closely related to the human hearing perception and
has been used in other speech processing tasks [15]. The signal
is decomposed into 512 scales in steps of 16. As in the STFT,
frames of 16ms length with a time–shift of 10ms are considered,
forming an image of 34× 26 pixels. Figure 2 shows the CWT
obtained for the same speakers considered in Figure 1. Note
the difficulty of the patient to start the vibration of the vocal
folds. Note the same effect observed in the STFT: most of the
energy is concentrated at the beginning of the utterance of the
PD patient which may be caused by compensatory movements.
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Figure 2: CWT of the onset for a PD patient (left) and a HC
speaker (right) when they pronounce the syllable /ta/

2.3. Convolutional Neural network

A CNN can be defined as a variant of the standard neural
networks. Instead of using fully connected hidden layers the
CNN introduces a structure that consists of alternating con-
volution and pooling layers. The CNN receives as inputs a
matrix V ∈ Rt×f , where t and f are the time and frequency
indexes of the TFR. A weight matrix W ∈ Rm×m×d is con-
volved with the input matrix, where m is the order of the
convolution filter (kernel size), and d is the number of hid-
den units of the layer i.e., feature maps. The weight matrix
transforms the input image into d small local TF patches of
size (t−m+ 1)× (f −m+ 1). After performing the con-
volution, a max–pooling layer is applied to remove variability
in the time–frequency plane that appears due to the speaking
style, channel distortion, or other external factors. The pooling
layer performs a sub–sampling operation to reduce the time–
frequency space. The last layer of a CNN corresponds to a fully
connected layer with h hidden units followed by a sigmoid ac-
tivation function to make the final decision of whether the TFR
corresponds to a PD patient or a HC speaker. Figure 3 shows
the architecture of the CNN used in this study, which is formed
with two convolutional and max–pooling layers followed by a
fully connected multi–layer perceptron (MLP).

The CNN is trained using the stochastic gradient descent
(SGD) algorithm with a defined batch size, using cross–entropy
as the loss function. TensorFlow [16] is used for the implemen-
tation of the CNN. Rectifier linear (ReLu) activation functions
are used in the convolutional layers, and dropout is included in
the training stage with the aim of avoiding over–fitting. Dropout
consists of setting to zero the output of each hidden neuron with
probability 0.5. The neurons which are “dropped out” in this
way do not contribute to the forward pass and do not participate
in back-propagation [17]. The meta–parameters used to train
the CNN are detailed in Table 1. A 10–fold speaker indepen-
dent cross–validation strategy is performed to train the CNN.

3. Experimental framework
3.1. Databases

3.1.1. Spanish

The PC-GITA database [18] is used in this study. The data
contain speech utterances from 50 PD and 50 HC Colombian
native speakers balanced in age and gender. The participants
pronounce several speech tasks including the rapid repetition
of the syllables /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, /ka/,
isolated sentences, a read text, and a monologue. All patients
were recorded in ON state, i.e., no more than three hours after
their morning medication, and were evaluated by a neurologist
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Figure 3: Architecture of the convolutional neural network implemmented for this study

Table 1: Parameters used to train the CNN

Meta-parameter Values

Batch size 64
kernel size conv. layer I {4, 6, 8}
kernel size conv. layer II {5, 7, 9}
max–pool size layer I 2
max–pool size layer II 2
depth of convolutional layers {16, 32, 64}
hidden units in fully connected MLP {16, 32, 64, 256}
training rate 0.05
number of iterations 40000

expert.

3.1.2. German

The German data contain recordings from 88 PD patients and
88 HC subjects. The speakers perform several speech tasks, in-
cluding the repetition of /pa-ta-ka/, isolated sentences, a read
text, and a monologue [6].

3.1.3. Czech

The Czech data are formed with recordings from 20 PD patients
and 15 HC subjects. The patients were newly diagnosed with
PD, and none of them had been medicated before or during the
recording session. The speech tasks performed by the speak-
ers include the repetition of /pa-ta-ka/, a read text and a mono-
logue [6].

3.2. Experiments

The STFT and the CWT are used to train CNNs individually
with the aim of discriminate whether the transitions were ut-
tered by PD patients or HC speakers. The CNN is trained using
the onset and offset transitions obtained from read texts, mono-
logues, isolated sentences, and the rapid repetitions of sylla-
bles /pa-ta-ka/, /pa-ka-ta/, /pe-ta-ka/, /pa/, /ta/, and /ka/. The
classification is performed in the three languages, i.e., Spanish,
German, and Czech. Cross–language experiments are also per-
formed, i.e., train with utterances from one language, and test
with the utterances from the other two languages.

The results with the proposed approach are compared to a
baseline computed with the method introduced in [11], where
onset and offset are modeled with the energy content distributed
according to the Bark scale, and using a radial basis support
vector machine to perform the classification.

4. Results
4.1. Classification in the same language

Table 2 contains the results for the classification of PD patients
vs. HC speakers in the three languages separately, i.e., training
and testing on the same language. Note that the classification
with the proposed method highly improves the results obtained
with the baseline in Spanish and Czech languages. In German
the results obtained with the baseline are slightly better than
those obtained with the proposed approach for the separately
classification of onset and offset; however the result with the
proposed approach improves the baseline when onset and off-
set are combined. Onset and offset are combined in order to
increase the amount of information and to analyze whether the
information from the different transitions could be complemen-
tary. Note that such a combination slightly improves the results
relative to the separate analyses in all scenarios. This fact indi-
cates that the features extracted from onset and offset could pro-
vide complementary information that can be merged together to
analyze the articulation impairments of PD patients.

Table 2: Accuracies (%) for classification of PD patients vs. HC
speakers in three different languages

TFR onset offset onset+offset

Spanish

STFT 85.3 81.6 85.9
CWT 84.2 81.8 85.2
Baseline 69.3 69.6 71.6

German

STFT 70.3 68.0 75.0
CWT 68.0 66.9 70.5
Baseline 72.7 70.9 74.0

Czech

STFT 77.9 80.4 84.4
CWT 89.2 87.7 89.4
Baseline 75.3 74.4 78.8

Figure 4 displays the output of the CNN after the last max-
pooling layer for the same speakers from Figure 1: an onset
for a PD patient (left) and for a HC speaker (right). Note that
the image for the HC speaker shows more energy content in the
voiced region than the observed in the image from the patient,
where the transition from unvoiced to voiced is not observed,
which was also observed in the STFT representation.
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Figure 4: Output of the CNN after the last max–pool layer for a
PD patient (left) and a HC speaker (right) when they pronounce
the syllable /ta/

Table 3 shows the accuracies obtained with the transitions
from read text, monologue, and the rapid repetition of /pa-ta-
ka/ in Spanish, German, and Czech. The reported results are
obtained with the TFR that provides the highest accuracy in
each language, i.e., STFT for Spanish and German, and CWT
for Czech. Note that there is no high differences among the
results obtained for each task, which makes the approach pro-
posed in this study independent from the speech task uttered by
the speaker.

Table 3: Individual accuracies (%) for monologues, read texts,
and the repetition of /pa-ta-ka/ in the three different languages

Speech Task Spanish German Czech

read text 85.0 70.3 88.5
monologue 85.6 70.3 89.1
/pa-ta-ka/ 85.4 70.7 89.2

4.2. Cross-language classification

The results when the languages used for train and test are differ-
ent are shown in Table 4 with the aim to analyze the language
independence of the proposed approach. In general, none of
the proposed methods or the baseline are able to classify cor-
rectly the PD patients and the HC speakers. More experiments
should be performed to obtain a robust strategy able to model
the articulation impairments of PD patients independently of the
language spoken by the subjects. The incremental insertion of
speakers from the target language could be a good strategy as
in [6].

5. Conclusions
A robust strategy to model the articulation impairments of
Parkinson’s patients is proposed in this study. The method
focuses on analyzing the time–frequency components of the
speech signal in the transitions from voiced to unvoiced and
from unvoiced to voiced segments. The analysis is performed
with the aim of evaluating the capabilities of the speaker to
start/stop the vibration of the vocal folds. A convolutional neu-
ral network is used to extract features from the time–frequency
representations and to make the final decision of whether the
speech segments are from patients or healthy subjects.

Table 4: Accuracies (%) for classification of PD patients vs.
HC speakers in three different languages when the train and the
target languages are different

Test Lang. TFR onset offset onset+offset

Train with Spanish

German STFT 51.7 50.2 54.7
German CWT 50.8 50.3 50.6
German Baseline 53.7 55.0 54.1
Czech STFT 53.0 55.0 51.7
Czech CWT 55.2 55.4 57.9
Czech Baseline 60.3 57.4 60.4

Train with German

Spanish STFT 58.0 55.7 55.8
Spanish CWT 51.5 51.3 50.8
Spanish Baseline 53.5 53.5 53.6
Czech STFT 53.0 52.4 53.0
Czech CWT 53.1 51.7 52.5
Czech Baseline 50.9 51.7 52.6

train with Czech

Spanish STFT 55.1 51.2 50.5
Spanish CWT 53.8 56.3 56.7
Spanish Baseline 53.4 51.6 52.4
German STFT 54.0 51.8 54.0
German CWT 50.8 50.2 50.6
German Baseline 51.2 51.0 50.7

The proposed method is able to discriminate between pa-
tients and healthy subjects when the language used for train and
test is the same. The proposed strategy improves the results rel-
ative to a baseline where the articulation impairments of the pa-
tients in the transitions between voiced and unvoiced segments
are evaluated.

Additional experiments and methods need to be proposed
to improve the results when the language used for train and
test is different. The main aim would be to find a language–
independent model to discriminate between Parkinson’s pa-
tients and healthy speakers. One possible alternative would be
to incrementally add speakers of the target language into the
train set as it was presented in [6]; however, this strategy as-
sums to have access to speakers of the target language, which is
not always possible. Models based on recurrent neural networks
(RNN) which models the time dependence between consecutive
voiced–unvoiced transitions should be also considered to assess
co-articulation. This approach could contribute to understand
difficulties of PD speakers to produce stops, plosives and other
consonant in continuous speech.
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