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A B S T R A C T

To help clinicians to efficiently diagnose the severity of a person’s depression, the affective computing com-
munity and the artificial intelligence field have shown a growing interest in designing automated systems. The
speech features have useful information for the diagnosis of depression. However, manually designing and
domain knowledge are still important for the selection of the feature, which makes the process labor consuming
and subjective. In recent years, deep-learned features based on neural networks have shown superior perfor-
mance to hand-crafted features in various areas. In this paper, to overcome the difficulties mentioned above, we
propose a combination of hand-crafted and deep-learned features which can effectively measure the severity of
depression from speech. In the proposed method, Deep Convolutional Neural Networks (DCNN) are firstly built
to learn deep-learned features from spectrograms and raw speech waveforms. Then we manually extract the
state-of-the-art texture descriptors named median robust extended local binary patterns (MRELBP) from spec-
trograms. To capture the complementary information within the hand-crafted features and deep-learned fea-
tures, we propose joint fine-tuning layers to combine the raw and spectrogram DCNN to boost the depression
recognition performance. Moreover, to address the problems with small samples, a data augmentation method
was proposed. Experiments conducted on AVEC2013 and AVEC2014 depression databases show that our ap-
proach is robust and effective for the diagnosis of depression when compared to state-of-the-art audio-based
methods.

1. Introduction

Depression and anxiety disorders are highly prevalent worldwide,
which have placed undue burden on individuals, families, and society.
Studies suggest that effective treatments for depression can be aided by
the detection of the problems at its early stages. According to the World
Health Organization (WHO), depression will become the fourth most
mental disorder by 2020 [1].

Depression is often difficult to diagnose because it manifests itself in
different ways. The assessment methodologies for its diagnosis rely on
subjective patient self-report or clinical judgments of symptom severity
[2,3]. The Hamilton Rating Scale for Depression (HAMD) [4] is cur-
rently the standard for depression severity estimation. It is worth noting
that, evaluations by clinicians vary depending on their expertise and
the used diagnosis methods, such as Diagnostic and Statistical Manual
of Mental Disorders (DSM-IV) [5], the Quick Inventory of Depressive
Symptoms-Self Report (QIDS) [6], the Beck Depression Inventory (BDI)
[7], the 10-item Montgomery–Asberg Depression Rating Scale
(MADRS) [8], the 9–item Patient Health Questionnaire (PHQ–9) [9],

and the PHQ–8 [10].
In recent years, some machine learning methods have been pro-

posed utilizing audio cues for depression analysis [11–16]. Meanwhile,
there is a wealth of research, which suggests that voice patterns have a
close relationship with emotion and stress [17–19]. In [20], the author
suggested that the analysis of voice patterns can be divided into three
primary categories, including prosodics, the vocal tract, and the glottal
source. Although hand-crafted features have been proven to obtain
better performance for estimating depression severity. However, there
are some limitations of handcrafted features for depression scale pre-
diction. First, to design hand-crafted features requires a lot of effort
(i.e., domain knowledge, labor and time, etc.). For example, Mel Fre-
quency Cepstral Coefficients (MFCCs) are widely used in automatic
speech and speaker recognition tasks. However, if we designed hand-
crafted features like MFCCs, we should have task-specific knowledge of
depression and to acquire such knowledge is time-consuming. Second,
hand-crafted features may lose some useful information related to de-
pression patterns. Specifically, some patterns of depression implied in
the audiovisual signals cannot be well mined. Moreover, the concept of
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the designed features relies on people’s subjective assumptions. Finally,
it is difficult to select an appropriate toolkit to extract the features.
Various available toolkits are widely used to extract low-level features,
such as openSMILE [21], COVAREP [22], SPTK [23], KALDI [24],
YAAFE [25], and OpenEAR [26]. Each existing toolbox is generally the
result of a single laboratory’s work. Different researchers considered
features from their own perspective. There is no unified standard de-
fining which feature is most useful for depression analysis.

Recently, deep learning has been successfully applied to various
communities. Both theories and experiments have shown that deep
learning can learn a lot of valuable information from the audiovisual
signals. The deep learning method has several variants, such as single
Layer Learning models, Probabilistic Models, Auto-Encoders and
Convolutional Neural Networks. A more in-depth understanding of the
deep learning methods the reader is referred to [27]. Among these
different deep learning representations, Convolutional Neural Networks
has been widely used to achieve state-of-the-art performance in many
communities [28–30]. Moreover, it has been proved fairly efficient in
texture classification scenario. In [31], the authors proved that the
CNN-based method matched the state-of-the-art for the dataset with
macroscopic images, and outperformed the best-published results on
the microscopic images. The performance of proposed CNN architecture
also surpass exist texture descriptors for forest species recognition. To
the best of our knowledge, deep-learned features from spectrogram for
depression recognition has not yet been explored. Accordingly, in this
work we explore how the depression severity prediction can benefit
from the adoption of CNN in learning spectrogram patterns of the
speech.

From the machine learning perspective, depression analysis can be
considered as a regression or classification problem (e.g., in AVEC2013
[14] and AVEC2014 [15] depression sub-challenges). Our goal is to
predict the depression score called Beck Depression Inventory–II
(BDI–II) of a subject from recorded audio.

In summary, the main contributions of this work can be summarized
as follows. First, we develop an automated framework, which can ef-
fectively capture the vocal information for measuring the depression
severity. Second, we find that complementary characteristics is existed
between hand-crafted features and deep learned features for estimating
the depression severity. Third, we propose a combination of the hand-
crafted and the deep-learned features to effectively measure the se-
verity of depression from speech. Finally, to address the problems with
small samples, a data augmentation method was proposed. To the best
of our knowledge, in our proposed approach, it is the first time that the
deep learning technology is employed for depression diagnosis.

The remainder of this paper is organized as follows. Section 2 briefly
discusses previous works on audio-based depression analysis and re-
cognition. Section 3 provides more implementation details about the
proposed framework. Section 4 introduces the dataset and experimental
results. Conclusions and future challenges are discussed in Section 5.

2. Related work

Various depression recognition approaches have been proposed in
the Depression Recognition Sub-Challenge (DSC) of the Audio-Visual
Emotion Challenge and Workshop (AVEC2013, AVEC2014, AVEC2016
[32], AVEC2017 [33]).

Regression methods have been developed using the AVEC2013 and
AVEC2014 data sets, and classification approaches considered the
AVEC2016 and AVEC2017 data. In this work, we make use of the
AVEC2013 and AVEC2014 data sets. Detailed description of the data-
base can be referred to Sections 4.1 and 4.2. In our research, we focus
on the recorded audio for the diagnosis of depression. In the following

section, we briefly describe the competitive audio-based methods for
measuring the depression severity.1

For AVEC2013 depression recognition [14], researchers have used
audio baseline features extracted by using the freely available open-
source Emotion and Affect Recognition (openEAR) [26] toolkit’s feature
extraction backend openSMILE [21]. The audio feature set consists of
2268 features, including 32 energy and spectral related low-level de-
scriptors (LLD)×42 functionals, 6 voicing related LLD×32 func-
tionals, 32 delta coefficients of the energy/spectral LLD×19 func-
tionals, 6 delta coefficients of the voicing related LLD×19 functionals,
and 10 voiced/unvoiced durational features. In order to capture the
dynamic, long-range characteristics, the authors segment the audio
clips with fixed length segments (3 s), which shift at one second. Fi-
nally, Support Vector Regression (SVR) is used for learning and pre-
dicting.

In the AVEC2013 depression challenge, Williamson et al. [13]
adopted the combination of eigenvalue spectra and coordination fea-
tures to analyze the relationship between the vocal behaviors and the
depression scales. With the coordination- and phoneme-rate-based
features, they designed a Gaussian staircase regression system to predict
the BDI–II scores for each audio data. PCA is also used for dimension
reduction. Finally, the authors provided the minimum performance on
the test sets with root mean square error (RMSE) of 7.42 and mean
absolute error (MAE) of 5.75.

In [34], Moore et al. explored prosodics, the vocal tract, and para-
meters extracted directly from the glottal waveform to discriminate the
depressed speech. They extracted about 200 prosodics, vocal tract, and
glottal waveform measures from the depression database and translated
them into 2000 statistics for study.

In [35], Nicholas et al. provided a comprehensive and exhaustive
conclusion about the assessment and diagnosis of the depression and
the suicide. They reviewed the important characteristics of para-
linguistic speech affected by depression and suicide. They analyzed the
patterns which were used in classification and regression issues. Finally,
they provided an in-depth discussion about the current limitations and
challenges.

In [36,16], the authors investigated the relation between vocal
prosody and change in depression severity over time. They presented
three hypotheses: (1) Naive listeners can distinguish the depressed
participants and health controls from vocal recordings; (2) the quanti-
tative features of vocal prosody can capture changes from the diagnosis
of the depression; and (3) interpersonal relationships can also occurred
in the severity of depression estimation procedure. Finally, they vali-
dated the hypotheses by experiments. The results showed that the
analysis of vocal prosody is a valuable tool for depression analysis.

In [37–47], all of them use the audio feature provided by the
AVEC2013 depression sub-challenge. In [48], they also explored a
number of features, (1) estimated articulatory trajectories during
speech production, (2) acoustic characteristics, and (3) acoustic-pho-
netic characteristics and (4) prosodic features. They are used and
compared with different models to predict the Beck depression rating
scale, such as support vector regression (SVR), a Gaussian backend, and
decision trees.

In [49], Williamson et al. explored the interrelationships and com-
plementary characteristics by extracting features from the speech
source, system, and prosody. They fused the different feature domain to
obtain a better performance. Finally, they combined Gaussian staircase
regression with Extreme Learning Machine (ELM) classifiers, and get a
test RMSE of 8.12.

For the AVEC2016 [32] and AVEC2017 [33] depression sub-chal-
lenge, the organizers provided the audio, video, and transcript files, but
did not provide the original video clips. For the audio features of both

1 Some of following works also used the video cues, while we only focus on the audio
cues.
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in AVEC2016 and AVEC2017, they used COVAREP (v1.3.2), a freely
available open source Matlab toolbox for speech analyses [22]. Pro-
sodic, voice quality, and spectral features were extracted by the COV-
AREP toolkit from the audio signals. In [50–52], all of them used the
audio features provided by the AVEC2016 organizers. However, the
baseline audio features does not include all of the features considered as
useful for depression prediction (e.g., jitter, shimmer, etc.). Therefore,
the authors in [53–55], also extracted another useful audio feature for
depression recognition. In [53], they extracted spectral features, lower
vocal tract physiology features, and loudness variation features, ob-
taining relatively better results for depression prediction. In [54], they
extracted extended spectral and prosodic features, teager energy ceps-
tral coefficients, session-level acoustic features, and phoneme-based
features. They obtained F1 scores of 0.63 and 0.89 for depressed and
not depressed classes respectively.

From the literature review we can see that hand-crafted audio fea-
tures have limitations in diagnosing depression. Specially, hand-craft
audio features are extracted by different toolboxes from the perspective
of different researchers. To overcome these limitations, we explore a
more robust representation for depression analysis, which could better
capture valuable information from the vocal cues. That is to say, we
propose a new approach based on the deep learning networks, for au-
tomatic estimation the severity of the depression scale.

3. Methodology

Feature design or feature extraction plays an important role in de-
pression analysis tasks. In this work we combine hand- crafted features
with deep-learned features for estimating the severity of depression.
First, for hand-crafted features, we extract the Low Level Descriptors
(LLD) from the raw audio clips and Median Robust extended Local
Binary Patterns (MRELBP) features from the spectrograms of audio.
Second, we use DCNN to directly learn the deep-learned features from
the raw audio and spectrogram images. Finally, we describe the pro-
posed joint fine-tuning method to combine the four streams for the final
depression prediction. The proposed framework for automatic depres-
sion recognition is given in Fig. 1.

3.1. Hand crafted based feature extraction

For hand-crafted features, two different kinds of descriptors were

adopted. The first one is the Median Robust Extended Local Binary
Patterns (MRELBP), a novel descriptor for texture classification [56].
However, its application for depression recognition has yet not been
explored. In this work, we apply MRELBP on spectrogram to extract
textural features. The other one is the audio features extracted by
openSMILE toolkit.

3.1.1. Audio features
The 2268 baseline audio features of AVEC2013 [14] and AVEC2014

[15] adopt the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) containing functionals on the 38 low-level descriptors
(LLDs), which are extracted with the openSMILE toolkit [21]. These
LLDs cover the spectral, cepstral, prosodic and voice quality informa-
tion. 38 low-level descriptors (LLDs) are shown in Table 1.

To capture the valuable pattern of the depression, we try different
strategies to segment the audio features. In our experiment, we use
overlapping fixed length segments shifting forward at a rate of 1 s,
while the size of the windows is 20 s, which can capture slow changing,
long range characteristics.

Details for functionals can be found in [14]. For the audio features,
42 functionals on 32 energy and spectral related low-level descriptors
(LLD), 32 functionals on 6 voicing related LLD, 19 functionals on 6
delta coefficients of the voicing related LLD, and 10 voiced/unvoiced
durational features, resulting in 2268 feature vectors.
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Fig. 1. Illustration of the proposed method for depression recognition using deep neural networks. The Raw-DCNN (Top) takes raw audio signals and low level
descriptors (LLD) as input, while the Spectrogram-DCNN (Bottom) uses texture features as input. The red box in Fig. 1 is Hand-Crafted features. Other two arrows are
Deep-Learned features. The predicted depression score is computed by aggregating or averaging the individual predictions per frame from four DCNNs. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
38 low-level descriptors.

Energy&Spectral (32)

loudness (auditory model based), zero crossing rate,
energy in bands from 250–650 Hz, 1 kHz-4 kHz,
25%, 50%, 75%, and 90% spectral roll-off points
spectral flux, entropy, variance, skewness, kurtosis,
psychoacousitc sharpness, harmonicity, flatness,

MFCC 1–16

Voicing related (6)

F0 (sub-harmonic summation, followed by Viterbi
smoothing), probability of voicing,

jitter, shimmer (local), jitter (delta: “jitter of jitter”),
logarithmic Harmonics-to-Noise Ratio (logHNR)
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3.1.2. Median Robust Extended Local Binary Patterns (MRELBP)
The LBP operator characterizes the spatial structure of a local image

patch by encoding the differences between the pixel value of the central
point and those of its neighbors, considering only the signs to form a
binary pattern. Formally, given a pixel xc in the image, the basic LBP
response is calculated by comparing its value with those of its P
neighboring pixels =

−x{ }R P n n
P

, , 0
1, evenly distributed on a circle of radius R

centered on xc:

∑= −
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Recently, Liu et al. [56] proposed the Median Robust Extended
Local Binary Pattern (MRELBP), where the individual pixel intensities
in Eq. (1) were replaced by a median filter response ϕ () to maximize the
robustness of the representation to noise. Different from the traditional
LBP, MRELBP compared regional image medians rather than raw image
intensities, which can capture both microstructure and macrostructure
texture information. For a more detail understanding of the methods,
we refer the reader to [56].

3.2. Deep learning based features extraction

As DCNN has shown its advantages in learning the patterns of fea-
ture, we adopt it to learn the valuable characteristic information im-
plied in the audiovisual signals. Our deep-learned features are extracted
by using two different models. The first deep network extracts deep-
learned audio features from frame-level raw waveforms, while the other
deep network model directly learns feature representations from spec-
trogram images. We describe our methods in detail below.

3.2.1. Deep learned audio features
For the deep-learned audio features, we feed the frame-level raw

waveform into the first CNN convolutional layer to learn a filter-bank
representation which was equivalent to filter kernels in a time-fre-
quency representation. In this method, if the raw waveform is filtered
by the first strided convolutional layer, the output feature map will
have the same as the spectrogram. Specifically, the parameters of the
first convolutional layer (i.e., stride, filter length, and number of filters)
corresponded to the parameters of spectrogram (i.e., mel-size, window
size, and number of mel-bands, respectively).

3.2.2. Deep learned texture features
In this section, we describe the details for the deep-learned texture

features, which were different from the deep-learned audio features.
Even as a commonly used neural network technology, CNN has its

own limitations. First, CNN cannot process the high-resolution images.
Second, it requires a lot of samples for training. Specifically, CNN can
learn a large number of parameters through the training procedure
based on the amount of the training data. To overcome the limitations
mentioned above, we first segment the audio clips with different size.
Several authors studied the appropriate length of segments for ex-
tracting reliable audio features. In [14,15] the authors proposed 20s to
capture slow changing and long range characteristics. For the extraction
of vocal patterns using CNN, we first conducted experiments using
segment of 6s, and 20s. Then we proposed a data augmentation method
to tackle with the small samples of the training data. First, Δ and ΔΔ
features were extracted from the frequency domain of spectrograms.
Second, following the above-mentioned step, the whole spectrograms
image sequences were horizontally flipped. We rotated each image by
each angle in −15°, −10°, −5°, 5°, 10°, 15°. Finally, we receptively
obtained 14 times more data than the original images, Δ, ΔΔ: original
images (1), flipped images (1), rotated images with six angles, and their
flipped versions (12). In total, we obtained 42 times more data samples
to train the model. After the above augmentation process, this makes
the model robust for learning a lot of parameters of the input images.

The DCNN architecture used in our work has been proved effective
to perform well on other tasks such as object recognition, action re-
cognition, etc. It repeatedly adopts convolutional layers with 64 filters
followed by max-pooling layers, inspired by [31]. The architecture is
illustrated in Fig. 2. To improve the computational efficiency and boost
the recognition accuracy, we resize the spectrogram image into
128× 128.

In the following, we describe the CNN architecture with parameters.
In our work, the input image size is 128×128. The convolutional
layers have trainable filters (feature maps), which were applied across
the entire image. The definition of the layers consisted of the filter size
and stride, which was the distance between the applications of the fil-
ters. If the stride size is smaller than the filter size, the overlapped
windows can be adopted for the filters. To learn the optimal hy-
perparameters, we conducted several experiments and obtained a filter
size of 5×5 with stride size of 1.

For the pooling layers, we aimed to implement a non-linear down
sampling function for dimensionality reduction and thus achieve
translation invariance. In our study, we used different kernels and
strides to carry out experiment. We found that the window size 2×2
with stride 2 get the best performance. Similar to [31], the fully-con-
nected layers connect, all the neurons of one layer with that of the next
one. In our work, depression severity measurement is considered as a
regression problem from the point of machine learning view. Therefore,
Euclidean loss was used as the loss function of the network, which was
suitable for regression. Mathematically, the Euclidean loss function E
computes the sum of squared differences of its two inputs, which can be

Patch
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• 

• 

5×5 Convolution 2×2 Subsampling 5×5 Convolution 2×2 Subsamping Full Connect Layer

Fig. 2. The deep Convolutional Neural Network architecture.
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written as:
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where N is the number of samples, ̂yi denotes the output from the
network, and yi represents the ground truth (BDI–II score).

3.3. Joint fine-tuning method

In our approach, the Raw-DCNN and the Spectrogram-DCNN are
able to predict BDI–II scores separately. To capture the complementary
information within the two used models, we propose joint fine-tuning
method to boost the recognition performance. Specifically, four fully
connected layers are concatenated as feature layers in both the raw and
spectrogram networks. Euclidean loss function is still used for regres-
sion in our task. In the training process, the four DCNNs are trained
separately, and then the joint fine-tuning is created using the archi-
tecture with joint tuning layers, as shown in Fig. 1. Meanwhile, the
dropout method is adopted for reducing over-fitting.

4. Experimental evaluation

In this section, the datasets used for the experiments are introduced
firstly in Sections 4.1 and 4.2. In Section 4.3, we briefly detail the ex-
perimental setup. Finally, the experimental results are provided in
Section 4.4.

4.1. AVEC2013 depression database

AVEC2013 [14] used a subset of the audio-visual depressive lan-
guage corpus (AVDLC), which included 340 video clips of 292 subjects,
performing a Human–Computer Interaction task while being recorded
by a webcam and a microphone. The AVEC2013 database consist of 14
different tasks which were Power Point guided: e.g., sustained vowel
phonation, sustained loud vowel phonation, and sustained smiling
vowel phonation; speaking out loud while solving a task; Counting from
1 to 10, etc. The subjects were recorded between one and four times,
with a period of two weeks between the measurements. The average
age was 31.5 years with a range of 18–63 years. The length of each
recording varied from 20 to 50min, with an average duration of 25min
per recording. The 16-bit audio was recorded at a sampling rate of
41 KHz. The videos, with frames of 640×480 pixels and 24-bits per
pixel, were recorded at 30 frames per second. For the depression sub-
challenge, there were 150 videos from 82 subjects. The recordings were
split into three partitions: a training, development, and test set of 50
recordings each.

The depression levels were labeled per clip using Beck Depression
Inventory-II (BDI-II). Final BDI-II scores range from 0 to 63 (0–13 no or
minimal depression; 14–19 mild depression; 20–28 moderate depression;
29–63 severe depression).

4.2. AVEC2014 depression database

AVEC2014 corpus [15] was a subset of the AVEC2013 corpus. The
AVEC2014 corpus consisted of recordings of 2 different hu-
man–computer interaction tasks. Each of the tasks was supplied as

separate recordings. In total, the corpus includes 300 videos with the
duration ranging from 6 s to 4min. The two tasks included a reading
task and a spontaneous speech task, which are described below:

• Northwind - Participants read aloud an excerpt of the fable “Die
Sonne und der Wind” (The North Wind and the Sun). (German).

• Freeform - Participants respond to one of a number of questions such
as: “What is your favorite dish?” or discuss a sad childhood memory
(German).

Each recording was labeled with BDI-II severity of depression. For
AVEC 2014 depression sub-challenge, every task was split into three
partitions: a training, development, and test set of 50 recordings each.
In our experiments, we combined the training sets of the Northwind
dataset and Freeform dataset to train the models, the development sets
to verify the performance, and the test sets to test the models.
Therefore, the training, development, and test set have 100 recordings,
respectively (Table 2).

4.3. Experimental setup and evaluation measures

In this sub-section, we describe the experimental setup and eva-
luation measures in detail.

4.3.1. Experimental setup
As mentioned above, we use the Raw-DCNN and Spectrogram-

DCNN to measure the severity of depression. As shown in Fig. 1, each
part is implemented using a DCNN architecture.

The dataset haven’t included the spectrograms. We first segment the
audio with 6s length segments shift forward at a rate of one second as
the augmented samples. After the segmentation, we convert each audio
segment into mono by calculating the mean of the left and right
channels, and then we normalize the data by mapping row minimum
and maximum values between −1 and 1. In other words, the normal-
ization process is to restrict the amplitude ranges. For the audio data,
sampling frequency is resampled to 16 kHz. In our work, to make the
input data smaller, we performed the discrete Fourier transform (DFT)
to obtain a time-frequency representation of the audio. For DFT para-
meter setup, we adopt a Hanning window function of 23ms and 50%
overlap. After the above steps, a spectrogram is generated for every
audio clip. For the length of LLD features, we tried various segment
lengths and found 20 s length as optimum. The 20 s of segment can
capture both slow changing and long range characteristics. For esti-
mating the LBP feature and the Median Robust extended Local Binary
Patterns (MRELBP) feature, the parameters have been selected to obtain
the best performance for texture classification. In this work, we con-
sider (i) 2 radii R values, =R 1 and =R 3, and (ii) number of local
neighboring points set as =P 8. Like most other LBP variants, we also
use the uniform encoding scheme [57] for LBP and MRELBP. For
MRELBP, the authors [56] have proved that the uniform encoding
scheme can obtain the striking texture classification accuracy.

For the DCNN architecture, the networks are trained with stochastic
gradient using caffe deep learning toolbox [58] with a batch size 32.
For both of the Raw-DCNN and Spectrogram-DCNN, the training pro-
cedure starts from scratch. Euclidean loss is considered as the loss
function for regression. The number of iterations for Raw model and
Spectrogram model were set to 200,000 and 400,000, respectively. The
parameters of the two deep networks are selected by experience and
followed recommendation in another works[59]. The learning rate was
set to −10 3 reduced by polynomial with gamma equals to 0.5. The
momentum was set to 0.9 with weight decay equals to 0.0002. All ex-
periments were conducted using NVIDIA Quadro K2200 with 4G
memory.

In our experiments, the joint tuning layers are designed as two fully
connected layers with 512 and 256 hidden units, respectively. To use
the advantage of the deep-learned model and hand-crafted model, we

Table 2
The number of samples of training, development, and
test set on the AVEC2014 database.

Partitions Number of Samples

Train 100
Dev. 100
Test 100

L. He, C. Cao Journal of Biomedical Informatics 83 (2018) 103–111

107



proposed an integration method for Raw-DCNN and Spectrogram-
DCNN using a joint fine-tuning method, which achieves better results
than the two models. In the joint fine-tuning procedure, we retrained
the top layers, and freezed other layers of the two trained networks.

4.3.2. Evaluation metric
The depression severity recognition performance is assessed in

terms of mean absolute error (MAE) and root mean square error (RMSE)
between the prediction and reported BDI–II values.

The MAE was computed as:

∑= −∼
=

MAE
N

y y1 | |
i

N

i i
1 (3)

And the RMSE was computed as:

∑= −∼
=

RMSE
N

y y1 ( )
i

N
i i1

2
(4)

where N denotes the number of data samples, yi is the ground truth and
∼yi represents the predicted value of i-th sample, respectively.

4.4. Experimental results

In the following, we first compare the performance of LBP feature
with the MRELBP feature. Then, we compare the performance of hand-
crafted features with that of deep-learned features for depression scale
prediction. Finally, we compare our results to the ones from other state-
of-art methods.

4.4.1. Performance of single models
The performances of depression recognition on AVEC2013 and

AVEC2014 databases are shown in Tables 3 and 4, respectively. In our
work, we first described the results using single models without any
joint tuning procedure. Table 3 shown that the deep-learned features
obtained the better results with MAE 8.4832 and RMSE 10.4561 on the
test set. In comparison with the performance of AVEC2013, AVEC2014
obtains better results. As shown in Table 4, the deep-learned features
also obtained the better performances with MAE 8.6014 and RMSE
10.4413 on the test set. These results showed that the deep learned
model was important for depression severity prediction, and the spec-
trogram DCNN can represent the characteristics of depression. More-
over, the deep learned model could reduce some effort to design and
find the suitable hand-crafted features for depression scale prediction.

4.4.2. Overall performance by fusing the individual models
In our experiments, to capture the complementary information with

the deep-learned features using DCNN and the hand-crafted features,
we calculate the performance by fusing the hand-crafted features and
deep-learned features. The results are shown in the first row in Tables 5
and 6 for AVEC2013 and AVEC2014, respectively. It can be seen from

the table that, when averaging is adopted, the RMSE and MAE obtained
are 10.2261 and 8.2323 on the AVEC2013 database, respectively. On
AVEC2014, the MAE of 8.2204 and RMSE of 10.1284 are obtained. The
results showed that by fusing the hand-crafted and the deep-learned
model, the overall performance can be improved than adopting the
single model which means the necessity of using both hand-crafted and
deep-learned features for depression scale prediction.

4.4.3. Overall performance by joint tuning
In our research, we also conducted the experiments by using joint

tuning method. The results are shown in the last row in Tables 5 and 6
on AVEC2013 and AVEC2014, respectively. Table 5 illustrates that the
results after joint tuning the models were MAE 8.2012 and RMSE
10.0012 on the AVEC2013 database. While on the AVEC2014 database,

Table 3
Performance of hand-crafted and deep-learned features on the development set
and test set of AVEC2013.

Partition Methods RMSE MAE

Dev. Hand crafted model LBP 9.3507 7.7314
MRELBP 9.1673 7.5455

LLD 9.3154 7.6502
Deep learned model Waveform 9.3896 7.8184

Spectrogram 9.1129 7.5371

Test Hand crafted model LBP 10.9312 9.2443
MRELBP 10.5611 8.6580

LLD 10.6418 8.8935
Deep learned model Waveform 11.0983 9.4484

Spectrogram 10.4561 8.4832

Table 4
Performance of hand-crafted and deep-learned features on the development set
and test set of AVEC2014.

Partition Methods RMSE MAE

Dev. Hand crafted model LBP 9.3478 7.5699
MRELBP 9.1523 7.5026

LLD 9.3000 7.5514
Deep learned model Waveform 9.3770 7.8813

Spectrogram 9.1100 7.4969

Test Hand crafted model LBP 10.8211 8.7489
MRELBP 10.4618 8.6420

LLD 10.5648 8.6800
Deep learned model Waveform 10.9014 8.7810

Spectrogram 10.4413 8.6014

Table 5
Overall performance on the development set and test set of AVEC2013.

Partition Methods RMSE MAE

Dev. Hand & Deep (Ave.) 9.1001 7.4456
Hand & Deep (Joint Tuning) 9.0000 7.4210

Test Hand & Deep (Ave.) 10.2261 8.2323
Hand & Deep (Joint Tuning) 10.0012 8.2012

Table 6
Overall performance on the development set and test set of AVEC2014.

Partition Methods RMSE MAE

Dev. Hand & Deep (Ave.) 9.0089 7.4213
Hand & Deep (Joint Tuning) 9.0001 7.4211

Test Hand & Deep (Ave.) 10.1284 8.2204
Hand & Deep (Joint Tuning) 9.9998 8.1919

Fig. 3. The training MSE loss decreases and converges during joint fine-tuning
for final depression scale prediction.
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as shown in Table 6, the best results were MAE of 8.1919, and RMSE of
9.9998. The results implied that the proposed joint tuning method
performance was improved when employing both the handcrafted and
deep learned models. During the training process, the performance is
measured by Euclidean loss in the joint fine-tuning process. Fig. 3
shows convergences of the MSE loss during joint fine-tuning for final
depression scale prediction.

In addition, we also combine the AVEC2013 and AVEC2014 as a
single database to predict the depression scale. As shown in Table 7, the
results after combining the two databases are the MAE of 8.1901 and
the RMSE of 9.8874. A potential reason for this is: the new enlarged
database has more data samples for training and the DCNN models can
better predict the depression scores.

4.4.4. Comparison with previous works
In Tables 8 and 9, we compare our depression recognition results.

Using the proposed approach, we combined hand-crafted features and
deep-learned features, to state-of-the-art results using other audio fea-
tures, for the AVEC2013 and AVEC2014 databases, respectively. The
indicated results were similar to those reported by previously cited

studies. We should note here that these results have also been obtained
on the combined dataset of Freeform and Northwind. As shown in
Tables 8 and 9, our approach provided better results than most of the
state-of-the-art research that has been conducted. To make a fair
comparison with other works, we use the training, validation, and test
set provided by the database providers. The new augmented samples
are generated from the original training, development and testing set.
In our work, we applied the same data augmentation approach on the
three datasets.

As shown in Table 8, it is clearly demonstrated that the proposed
method outperforms all the other methods but one [13]. In [13], the
authors adopted a feature space to capture useful information based on
the eigenvalue spectra - coordination features - and combined them
with a feature set involving average phonetic durations, i.e., phonetic-
based speaking rates. While in Table 8, the proposed method surpasses
all the methods except one [45]. In [45], Kachele et al. propose an
approach based on abstract meta information about individual subjects
and also prototypical task and label dependent templates to infer the
respective emotional states. They obtained better results in the de-
pression challenge task.

In Fig. 4, we report our results on the AVEC2014 dataset compared
to reported state-of-the-art results using both audio (A) and video (V)
features. As they can be seen using only audio features, our methods
provided comparable results to multi-modal approaches for depression
recognition.

5. Conclusions and future works

Depression is a serious psychological disorder. Computer aided
technologies have been investigated to assist psychologists in the as-
sessment of depression levels. To improve the accuracy of automatic
depression recognition from speech signals, we proposed a new method
based on deep learning and traditional method, which we employed to
overcome the difficulties caused by designing hand-crafted features for
depression recognition. In the proposed method, we use the raw and
spectrogram DCNN to model the characteristic information of depres-
sion. Moreover, we also proposed to adopt joint tuning layers, to
combine the raw and spectrogram DCNN, which can improve the per-
formance of depression recognition. Experimental results on two de-
pression dataset, AVEC2013 and AVEC2014, have demonstrated that
our approach obtain superior performance compared with other audio-
based methods for depression recognition. In our future work, we will
explore more powerful regression models to further improve the ac-
curacy of depression recognition.
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Table 7
Overall performance on the development set and test set
(AVEC2013+AVEC2014).

Partition Methods RMSE MAE

Dev. Hand & Deep (Ave.) 8.9971 7.4200
Hand & Deep (Joint Tuning) 8.8920 7.4118

Test Hand & Deep (Ave.) 10.0009 8.2323
Hand & Deep (Joint Tuning) 9.8874 8.1901

Table 8
AVEC2013 - Comparison to state-of-the-art results. Note that the listed results
use audio data only.

Partition Methods RMSE MAE

Dev. Baseline [14] 10.75 8.66
Meng et al. [38] 8.82 7.09

Williamson et al. [13] N/A N/A
Ours 9.0000 7.4210

Test Baseline [14] 14.12 10.35
Meng et al. [38] 11.19 9.14

Williamson et al. [13] 7.42 5.75
Ours 10.0012 8.2012

Table 9
AVEC2014 - comparison to state-of-the-art results. Note that the listed results
use audio data only.

Partition Methods RMSE MAE

Dev. Baseline [15] 11.52 8.93
Jain et al. [41] 11.51 9.75
Jan et al. [40] 10.69 8.92

Senoussaoui et al. [46] 10.09 7.41
Parez et al. [43] 9.79 7.75

Kachele et al. [45] N/A N/A
Mitra et al. [48] 7.71 6.10

Ours 9.0001 7.4211

Test Baseline [15] 12.567 10.036
Jain et al. [41] 10.25 8.40
Jan et al. [40] 11.30 9.10

Senoussaoui et al. [46] 12.71 9.82
Parez et al. [43] 11.92 9.36

Kachele et al. [45] 9.18 7.10
Mitra et al. [48] 11.10 8.83

Ours 9.9998 8.1919
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Fig. 4. AVEC2014 - Comparison with techniques of depression recognition
using audio (A) and visual (V) features.
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