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a b s t r a c t

This paper presents a study of the approaches in the state-of-the-art in the field of pathological speech
signal analysis with a special focus on parametrization techniques. It provides a description of 92 speech
features where some of them are already widely used in this field of science and some of them have not
been tried yet (they come from different areas of speech signal processing like speech recognition or
coding). As an original contribution, this work introduces 36 completely new pathological voice
measures based on modulation spectra, inferior colliculus coefficients, bicepstrum, sample and
approximate entropy and empirical mode decomposition. The significance of these features was tested
on 3 (English, Spanish and Czech) pathological voice databases with respect to classification accuracy,
sensitivity and specificity. To our best knowledge the introduced approach based on complex feature
extraction and robust testing outperformed all works that have been published already in this field. The
results (accuracy, sensitivity and specificity equal to 100:070:0%) are discussable in the case of
Massachusetts Eye and Ear Infirmary (MEEI) database because of its limitation related to a length of
sustained vowels, however in the case of Príncipe de Asturias (PdA) Hospital in Alcalá de Henares of
Madrid database we made improvements in classification accuracy (82:173:3%) and specificity
(83:875:1%) when considering a single-classifier approach. Hopefully, large improvements may be
achieved in the case of Czech Parkinsonian Speech Database (PARCZ), which are discussed in this work as
well. All the features introduced in this work were identified by Mann–Whitney U test as significant
(po0:05) when processing at least one of the mentioned databases. The largest discriminative power
from these proposed features has a cepstral peak prominence extracted from the first intrinsic mode
function (p¼ 6:9443� 10�32) which means, that among all newly designed features those that quantify
especially hoarseness or breathiness are good candidates for pathological speech identification. The
paper also mentions some ideas for the future work in the field of pathological speech signal analysis
that can be valuable especially under the clinical point of view.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Voice Pathology description and characterization has always
demanded attention from the physiological and medical fields [1],

as well as from the voice function point of view [2]. The term voice
is described by [3] both in a broad and a narrow sense. In the
broad sense voice may be taken as synonymous of speech, there-
fore terms as Voice over IP (VoIP) can be found in the literature
and media with the meaning of speech data on internet. In the
narrow sense voice refers to the vibration of the vocal folds.
Speech sounds resulting from the interaction of this vibration with
the Oro-Naso-Pharyngeal Tract (ONFT) are referred to, as voiced.
Speech sounds produced by turbulent flow within the ONFT are
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termed voiceless. Phonation is the recommended term to refer to
vocal fold vibration. A speaker showing an anomalous vocal fold
vibration pattern is referred as dysphonic, and aphonic if there is
no vocal fold vibration at all. If no anomalies are present the
speaker is referred as normophonic.

Dysphonic voice is a perceptual and subjective term associated
to Voice Pathology. Dysphonia is the perceptual quality of voice
signaling that something wrong is happening in the phonation
organs (mainly the larynx and its associated structures). Voice
Pathologies and Dysphonic Voice are thus intrinsically related. The
classification of Voice Pathologies or Disorders is described in [3] as
tissue infection (e.g. laryngitis, bronchitis, croup, … ), systemic
changes (e.g. dehydration, pharmacological and drug effects, hor-
monal changes, … ), mechanical stress (e.g. vocal nodules, polyps,
ulcers, granulomae, laryngocele, hemorrhage, … ), surface irritation
(e.g. laryngitis, leukoplakia, gastroesophageal reflux, … ), tissue
changes (e.g. laryngeal carcinoma, keratosis, papillomas, cysts, … ),
neurological and muscular changes (e.g. bilateral and unilateral
vocal fold paralysis, Parkinson's Disease (PD), Amyotrophic Lateral
Sclerosis (ALS), myotonic dystrophy, Huntington's Chorea, myasthe-
nia gravis, … ), and abnormal muscle patterns (e.g. conversion
aphonia or dysphonia, spasmodic dysphonia, mutational dysphonia,
ventricular phonation, … ). In [4] a description of vocal pathologies
can be found. A last important group of neurological diseases which
leave a correlate in voice and speech is that of cognitive origin,
Alzheimer's Disease (AD) being the most relevant one for their
impact in well-being and in aging specialized-attention demand.
Some references on the influence of AD in speech and voice can be
found in [5–8]. Going a step further, emotional alterations (either
temporary or persistent) leave also correlates in the speech and
phonation signature, and may be subjects of further study by
acoustic analysis [9,10].

The relationship between acoustic correlates and voice pathol-
ogy has been clinically established in the last decades, subjectively
and quantitatively [11,12]. Acoustic Voice Quality Analysis (AVQA)
is a wide term for a set of different methodologies designed to
quantify acoustic correlates giving a definition of the quality of
phonation or speech production. Therefore AVQA would be the
procedural way to objectively quantify anomalies manifested in
Dysphonic Voice. Modern signal processing technologies provide
estimates of voice and speech correlates in time and frequency
[13], allowing to better visualize and quantify phonation patterns.
Spectral techniques facilitate the study of pathologic phonation,
establishing relations between harmonic–harmonic and harmo-
nic–formant ratios, which were found as important correlates to
organic voice pathology [14]. Similarly, harmonic–noise ratios
were found significant in characterizing certain types of dysphonic
pathologies [15,16]. Time domain estimates, as jitter, shimmer and
open-closed phase quotients are also used in describing dysphonic
voice [17,18]. These descriptions gave rise to AVQA as a specific
field [19].

Under the point of view of AVQA the following objectives can
be established in order of difficulty: dysphonic voice detection,
dysphonic voice grading, and dysphonic voice classification
according to etiology. Dysphonic voice detection would be the
task of assigning normophonic (normative) or dysphonic (non-
normative) labels to a given phonation produced by a specific
speaker. The determination of the dysphonic grade is traditionally
carried out by independent referees according to a subjective
criterion on a given scale. One of the most popular is GRBAS
(grade, roughness, breathiness, asthenia and strain) [11]. The
relative dependence of the assigned grade to the referee's
subjective opinion results in wide grading differences among
referees. To overcome this problem requires the design of clinical
assessment methodologies [20]. The task of dysphonic voice
classification according to etiology is far more difficult, as a given

acoustic correlate may be attributed to different pathologies. If this
problem is stated in terms of associating acoustic correlates to
specific pathologies, the potential risk is that it will remain
unsolved for long, because it is an ill-posed problem (a many-to-
one subjective mapping). A preliminary step to be covered first is
to define the implications of different pathologies in the vocal
function, especially at the level of the larynx. Under the functional
point of view, the following main behaviors may be observed in
the abnormal operation of the vocal folds: asymmetric vibration,
contact defects and dystonia (hypo-, hyper-tension and tremor).
Most organic larynx pathologies reproduce either one or another
behavior, or all of them. Asymmetric vocal fold vibration is to be
expected in pathologies as polyps, cysts, carcinomae, vocal fold
paralysis, ulcers, cysts, and papillomae, and produces acoustic
correlates as jitter, shimmer, poor harmonic–noise ratios, unba-
lance, and sub- and inter-harmonics. On its turn, contact defects
are to be expected in pathologies as polyps, nodules, edemae, and
cysts, where full closure of the glottal gap is not granted by vocal
fold adduction and produce acoustic correlates as open and close
phase perturbations, recovery phase attenuation, and harmonic
display reduction. Other pathologies, especially those of neurolo-
gical origin produce deviations in biomechanical parameters, as
vocal fold tension (hypo- and hyper-tonic) and tremor, which can
also be manifested as modulations in amplitude or frequency, and
as changes in the vocal fold tension. As many organic pathologies
induce a hyper-tonic behavior, the main problem when dealing
with correlates produced by neurological pathology is to differ-
entiate their origin from that of organic origin. Contact defect
pathologies can also show asymmetric vocal fold vibration, and
this may also be the case in aging voice (presbyphonia). To
establish differentiation criterion, for using acoustic correlates
when dealing with organic, neurologic or aging-induced perturba-
tions, is a major issue in AVQA [21].

Another problem regarding AVQA is the lack of good reference
baselines to establish the methodologies for voice pathology
classification from acoustic analysis. Rigorous databases, acquired
to represent each of the different pathologies under well-defined
sample population size and recording conditions are scant. Many
times the problem comes from the simultaneous presence of
different larynx pathologies in the same patient, either related or
unrelated (e.g. it is common to find a counter-lateral lesion as a
consequence of a unilateral polyp). The problem then is how to
decide if a specific acoustic correlate is produced by one cause or
another. Most of the times acoustic databases are produced by
laryngological services as part of examination protocols [22,23],
but this is not always the case, as many laryngologists prefer to
depend on visual exploration, neglecting the possibilities offered
by AVQA for different reasons [24]. Speech therapists rely more on
acoustic exploration, but many times it is mainly restricted to
measurements of vocal effort, long term frequency analysis,
respiratory efficiency, or distortion measures. Therefore voice
records from speakers ranked by etiology and severity index,
using compatible standards (digitalization, channel, microphones)
are scant. Most of the available databases are either incomplete,
inconsistent (made up of recordings taken under different condi-
tions) or deficient (many non-frequent pathologies are not well
represented in sample size). Besides, there is a lack of good
normative databases, as most of the records produced by medical
services contain information from dysphonic voice, but normative
speakers are absent or poorly represented (this is the case of the
most widely used database [25]). This is a severe limitation for
systematic AVQA. Another problem is cross-lingual representation.
As far as sustained vowels are concerned, this would not be a
problem, but it becomes a major obstacle when segmental para-
meters are involved, as in the use of passages (either read or
spontaneous).
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After all these considerations, it may be said that the aim of
AVQA is to design the best methodology to use Voice Correlates in
Voice Pathology detection, grading and classification. Several steps
are to be assumed and methodologically formulated for such.
Voice Pathologies and Correlates have to be well connected by
adequate physiological and biomechanical modeling of larynx
dynamics to understand how acoustic correlates and organic
dysfunctions could be associated [26]. This requirement is of vital
importance in meeting the challenge of pathology classification
from acoustic correlates. On its turn, inverse methods to obtain
robust and significant estimates of voice correlates are of great
relevance [27]. These are to be combined with other parameter-
ization methods based in direct time and frequency domain
estimates to produce rich feature sets [28]. Finally, good Statistical
Pattern Matching and Machine Learning methodologies have to be
used to reduce redundancy and to make a selection by relevance
within the feature set, to determine the best combinations for
each specific task (detect, grade, classify), and procure specific
results under quality criteria (sensitivity, specificity and accuracy)
[29]. These methods have to be contrasted on generally-accepted
benchmark databases [30].

Having in mind all these conditions the present study is aimed
to describe a wide set of tests on different databases, using an
exhaustive set of acoustic features, by means of well-known
classifiers to estimate the performance of the methods and
features regarding specificity, sensitivity and accuracy in dyspho-
nic voice detection tasks. There are already many publications
describing the methods of pathological speech detection. Usually
the authors use just a limited set of speech features and most of
the publications present the detection accuracies tested only on
one monolingual database [31–37]. Probably the widest range of
features describing different aspects of speech was tested in a
work of Tsanas et al. [34]. Regarding the databases there are just a
few publications considering 2 different data sets [38–41].

To sum up the state-of-the-art approaches in the field of
pathological voice analysis there is still a lack of publications
providing a complex overview of features quantifying pathological
speech and providing strong conclusions supported by a robust
testing. Therefore this work has 4 main goals:

1. According to complex parameterization and consequent robust
testing identify features that have the largest discriminative
power in the field of pathological speech analysis.

2. Design new features that can quantify hoarseness, breathiness
and non-linearities in pathological speech signals.

3. Prove that the proposed large set parameterization approach
can provide better classification results (with respect to classi-
fication accuracy, sensitivity and specificity) than those pub-
lished in the field of pathological speech analysis by the other
researchers.

4. Select a database that has high potential for the future,
especially in terms of speech features design, tuning and
testing.

The paper is organized as follows: the classically used features
as well as the newly designed ones are discussed in Section 2,
Section 3 describes the 3 databases, Section 4 describes the testing
procedure, Section 5 is devoted to the experimental results and
discussion. The conclusions are given in Section 6.

2. Features

The aim of this work was to explore significance of the mostly
used speech features when focusing on the ability of differentia-
tion between healthy and pathological speech. The features that

are usually known in different fields of speech signal processing
(speech recognition, enhancement, denoising, and identification)
and newly designed features originally introduced in this paper
will be investigated as well.

Due to the limited size of this paper the features that were not
originally introduced in this work will be mentioned without their
deeper description by an algorithm. However each parameter will
be accompanied by a reference where the reader can find further
information.

2.1. Features describing phonation

Probably the most popular features describing pathological
voice are fundamental frequency F0 and parameters describing
its variability in time (jitter): PPQ5 (five-point Pitch Perturbation
Quotient), RAP (Relative Average Perturbation), jittloc (average
absolute difference between consecutive periods, divided by the
average period), jittabs (average absolute difference between con-
secutive periods), jittddp (average absolute difference between
consecutive differences on neighbor glottal periods, divided by
the average period) [39,41–43]. These features are good candidates
especially for quantification of voice tremor [44].

A disadvantage of previously mentioned measurements is that
the values of the features are highly dependent on gender and
variable acoustic environment. To overcome this disadvantage
Little et al. proposed the PPE (Pitch Period Entropy) [45]. During
the calculation of PPE, logarithmic semitone scale, inverse filtering
and entropy estimation are incorporated. Another method which
is close to jitter is a measure of standard deviation (std) of the time
that vocal folds are apart (GQopen) and in collisions respectively
(GQclosed) [34].

To effectively describe hypophonia or intensity perturbations,
short-time energy E or pitch-level variations (shimmer) can be
used [34,42,46]. In this work 6 kinds of shimmer will be con-
sidered (they are calculated similarly to jitter but the intensity is
used): APQ3 (three-point Amplitude Perturbation Quotient),
APQ5, APQ11, shimmloc, shimmddp, shimmdB (average absolute
base-10 logarithm of the difference between the amplitudes of
consecutive periods) [43,47].

Another feature describing speech intensity is TKEO (Teager–
Kaiser Energy Operator) [48]. The advantage over simple E is that
it takes into account also signal frequency. It has been shown that
speech contains dominant modulation frequencies in a range 2–
20 Hz with maximum at approximately 4 Hz [49]. The 4 Hz
modulation energy (ME) was selected as a feature which is related
to a measure describing energy distribution in power spectra.
Similarly MPSD (Median of Power Spectral Density), usually called
median frequency, was selected [50]. The last feature in this
category is LSTER (Low Short-Time Energy Ratio) [51]. This feature
is usually used for differentiation between speech and music
signals because speech exhibits higher variations in energy per
10–30 ms frames. However this feature was selected for analysis of
pathological speech as well. It is considered that patients will
reach higher values of this feature in the case of maintained
vowels due to the inability to sustain the same amount of airflow
during the whole phonation.

2.2. Features describing tongue movement

Frequencies of first three formants F1, F2, F3 and their band-
widths B1, B2, B3 are related to volumes of vocal tract cavities.
Especially the volume of throat and oral cavity is modified by the
tongue position. According to this fact it is possible to consider
formants as a measure of tongue movement [52,53].
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2.3. Features describing speech quality

Signs of vocal fold dysfunctions are usually associated with
breathiness or hoarseness [32]. From signal theory point of view
these dysfunctions are characteristically decreasing voice quality,
under a simplified consideration, by additive noise. This implies
that methods based on speech quality measurements can suitably
quantify vocal folds impairment and describe its progress. Besides
breathiness and hoarseness these methods can be also used for
analysis of hypernasality caused by an improper work of soft
palate [54].

Probably the simplest quality measure feature is ZCR (Zero-
Crossing Rate) and its modification HZCRR (High Zero-Crossing
Rate Ratio) which takes into account a variation of ZCR in time
[51]. Another simple measure is FLUF (Fraction of Locally Unvoiced
Frames) which can describe an impossibility of carrying out
periodical glottal closure [55].

The next three measures are based on the variation of spectrum
values between adjacent frames. Specifically these are SF (Spectral
Flux) [56], SDBM (Spectral Distance Based on Module) and SDBP
(Spectral Distance Based on Phase) [55].

We have also used several features based on cepstral analysis. It
was shown that cepstrum and its rahmonics correlate well with
the perception of breathiness [57]. Moreover from the nature of
cepstrum it can be said that it is a kind of periodicity measure and
therefore it should also predict roughness. The most famous
feature based on the real cepstrum is CPP (Cepstral Peak Promi-
nence) originally introduced by Hillenbrand et al. [57]. Besides this
feature, PECM (Pitch Energy Cepstral Measure) [55] and VR
(Variation in Ratio between the second/first harmonic within the
derived cepstral domain) were also used [55].

The other quality measure features are based on an estimation
of the level of noise present. We will test the significance of HNR
(Harmonic-to-Noise Ratio) [37,38,54,58], NHR (Noise-to-Harmonic
Ratio) [37,59], NNE (Normalized Noise Energy) [60], GNE (Glottal-
to-Noise Excitation ratio) [58], SPI (Soft Phonation Index) [59] and
VTI (Voice Turbolence Index) [59]. The methods differ especially in
the estimation of noise.

The last feature in this category is SSD (Segmental Signal-to-
Dysperiodicity ratio). It was shown that this feature correlates
strongly with the perceived degree of the speaker's hoarseness [38].

2.4. Segmental features

Although some of the features mentioned in the other cate-
gories can be denoted as segmental as well (they are calculated
from 10–30 ms segments), here the segmental features are con-
sidered as matrices (not only vectors) calculated from the whole
signal. Probably the most popular segmental features in the field
of speech signal analysis are MFCC (Mel Frequency Cepstral
Coefficients) [33,36,42,54]. The advantage of these coefficients is
that they can indirectly detect slight misplacements of articulators
[34]. In this work 20 MFCC coefficients are extracted. The coeffi-
cient number zero is replaced by an estimate of log-energy.

Although MFCC are generally used, there is a lack of publica-
tions that compare these features to other segmental ones for the
purpose of pathological speech analysis. Therefore we decided to
include other segmental features. We extracted 20 mel frequency
cepstral coefficients but in this case the bank of triangular filters
was adjusted to the equal loudness curve [61]. We call these
features MFCCE. The other two sets of features derived from MFCC
are LFCC (Linear Frequency Cepstral Coefficients) and CMS (Ceps-
tral Mean Subtraction coefficients). In the case of LFCC the bank of
triangular filters is equidistantly spread in the frequency scale [62].
CMS is a kind of standardized z-score of MFCC (subtraction of
mean and division by std over the time).

MSC (Modulation Spectra Coefficients) can provide information
complementary to MFCC [36,63]. These features can capture a class
of source mechanism characteristics related to voice quality [33].

In the next step features based on linear prediction were
extracted. LPC (Linear Predictive Coefficients) [42], PLP (Perceptual
Linear Predictive coefficients) [64], LPCC (Linear Predictive Ceps-
tral Coefficients) [65], LPCT (Linear Predictive Cosine Transform
coefficients) [42] and ACW (Adaptive Component Weighted coef-
ficients) [65] were tested. The advantage of PLP over simple LPC or
MFCC is that it also takes into account an adjustment to the equal
loudness curve and intensity-loudness power law [64]. The
advantage of LPCC and LPCT over “classic” LPC is that a transfor-
mation is used into the cepstral domain and thus the values do not
correlate much. The advantage of ACW is that these coefficients
are less sensitive to channel distortion [65].

The last segmental features used in this work are parameters
that analyze amplitude modulations in voice using a biologically-
inspired model of the inferior colliculus [66]. These features are
called ICC (Inferior Colliculus Coefficients).

Segmental features are sometimes extended by their 1st and
2nd order regression coefficients (Δ and ΔΔ respectively). In this
work we used the Δ coefficients.

2.5. Features based on bispectrum

Alonso et al. proved that a greater presence of quadratic
coupling is observed in healthy voice when comparing it to the
pathological one [55]. It is probably due to a fact that healthy voice
is characterized by a vocal tract which is more non-linear than in
the case of pathological voices. This quadratic coupling can be
appropriately described by bispectrum and features derived from
this 2D signal.

There were proposed measures such as BII (Bicoherence Index
Interference), HFEB (High Frequency Energy of one-dimensional
Bicoherence), LFEB (low Frequency Energy of one-dimensional
Bicoherence), BMII (Bispectrum Module Interference Index) and
BPII (Bispectrum Phase Interference Index) [55].

2.6. Features based on wavelet decomposition

The wavelet transform is widely used especially in the field of
coding and speech denoising. However its application can be
found in the field of pathological speech analysis too [67]. Detail
coefficients after the decomposition can be used to estimate the
present noise and consequently it is possible to calculate SNR
(Signal-to-Noise ratio). In fact this is just another method of voice
quality measurement.

According to some measurements we have empirically selected
7 wavelets: 10th, 15th, 20th-order Daubechies wavelets; 10th,
15th, 20th-order symlet wavelets and 5th-order coiflet wavelet.
We will mark the features derived from the detail coefficients of
the wavelet transform as SNRW(wvl), where wvl corresponds to
the specific wavelet (e.g. daub15).

2.7. Features based on empirical mode decomposition

Recently, in speech processing new methods based on EMD
(Empirical Mode Decomposition) have been used. Using EMD it is
possible to decompose the arbitrary non-linear and time-varying
signal into countable and usually a small number of IMF (Intrinsic
Mode Functions). These functions are modulated in amplitude and
frequency and their sum gives the original signal.

Tsanas et al. proposed several measures of SNR and NSR based
on the IMFs [34]. The time-varying high frequency components are
present in the first few IMFs. Therefore these first few IMFs can be
used to represent the noise in the signal and the rest of IMFs can be
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used for a representation of the useful information. According to
this consideration features like IMF�SNRTKEO (based on Teager-
Kaiser Energy Operator), IMF�SNRSEO (based on Squared Energy
Operator), IMF�SNRSE (based on Shannon Entropy), IMF�NSRTKEO,
IMF�NSRSEO and IMF�NSRSE have been introduced.

2.8. Non-linear dynamic features

Tension on the vocal folds can significantly differ in the case of
pathological speech. Voice becomes aperiodic, noisy-like, and it is
very difficult to find any regularities in the signal. There is a
frequent presence of sub-harmonics and chaos which can lead to a
failure of conventional techniques of speech signal analysis. How-
ever it was shown that these kinds of signals can be sufficiently
described by non-linear dynamical analysis [32,37,40,54].

The first representative in this category is CD (Correlation
Dimension) which statistically measures attractor geometry in
the phase space. This measure is related to a number of indepen-
dent variables necessary for generating the attractor [32,45,47].
Another dimension measure FD (Fractal Dimension) is based on a
number of basic building blocks that form a pattern [32,68]. We
will also use complexity measures like ZL (Ziv-Lempel complexity)
which quantify the regularity embedded in a time series [69].
Possible long-term dependencies in the speech signal will be
described by HE (Hurst Exponent) [54].

Another set of measures is based on entropy. We will use SHE
(Shannon Entropy), RE (second-order Rényi Entropy) [70], CE
(Correlation Entropy) [40,70], RBE1 (first-order Rényi Block
Entropy) [40], RBE2 (second-order Rényi Block Entropy) [40], AE
(Approximate Entropy) [32,71,72], SE (Sample Entropy) [72] and
RPDE (Recurrence Probability Density Entropy) [37]. Generally the
entropy is a measure of uncertainty and it can be used to quantify
the complexity of a system. Rényi entropies quantify the loss of
information in time in a dynamic system [40], correlation entropy
gives an indication of the predictability of the nonlinear time
series [70] and RPDE represents the uncertainty in the measure-
ment of the pitch period [37]. The only difference between AE and
SE is that SE does not evaluate a comparison of embedding vectors
with themselves.

Another measure we have considered in this work is FMMI
(First Minimum of Mutual Information function) which was found
by Henriquez et al. as a feature that better discriminates among
the different voice qualities of the multiquality database [40]. To
include also a measure of sensitivity to an initial condition, the LLE
(Largest Lyapunov Exponent) was selected [32,54]. We also used
detrended fluctuation analysis (DFA) to characterize the self-
similarity of the graph of a signal from a stochastic process
[34,37]. In this field NSE (Normalized Scaling Exponent) and FA
(Fluctuation Amplitudes) were evaluated.

2.9. High-level features

The features that are calculated for each speech segment
separately form a vector or a matrix at the output of the
parametrization process. This representation must be then trans-
formed to a scalar value to be able to carry out the next processing
like statistical analysis and classification. This is usually done by an
extraction of some kind of statistics. These statistics are called
high-level features while parameters extracted directly from the
speech signal are called local features. If the local feature is
represented by a matrix, then the high-level feature is calculated
for each row separately (this monitors feature changes in time).
We have extracted 60 high-level features:

� max, min, position of max, position of min, relative pos. of max,
relative pos. of min.

� range, relative range, interquartile range, rel. interquartile
range, interdecile range, rel. interdecile range, interpercentile
range, rel. interpercentile range, studentized range.

� mean, geometric mean, harmonic mean, mean excluding 10%,
20%, 30%, 40% and 50%, of outliers, median, mode.

� var, std, mean absolute deviation, median absolute dev., geo-
metric standard dev., coefficient of variation, index of
dispersion.

� 3rd, 4th, 5th and 6th moment, kurtosis, skewness, Pearson's 1st
and 2nd skewness coefficient

� 1st, 5th, 10th, 20th, 30th, 40th, 60th, 70th 80th, 90th 95th and
99th percentile, 1st and 3rd quartile.

� Slope, offset and error of linear regression.
� Modulation, Shannon entropy, second-order Rényi entropy.

2.10. Newly designed features

In Sections 2.1–2.8 we have presented 92 local features that are
already used in the field of speech signal processing. However
during the experiments these parameters will be extended by the
other 36 features that are originally introduced in this work.

2.10.1. Features based on modulation spectra
An initial step of modulation spectra calculation employs a

short-time Fourier transform (STFT) of the discrete input speech
signal s½n� with length N:

S½k;m� ¼
XN�1

n ¼ 0

s½n�w½n�mL�e� jkð2π=NÞn;

k¼ 0;1;…;N�1;
m¼ 0;1;…;M�1; ð1Þ

where w½n� is a window function (in our case a Hamming window)
with a step of L samples and M number of speech segments.
Consequently the power spectra S½k;m�

�� ��2 is extracted and filtered
by a bank of P triangular filters equidistantly spaced out in the mel
scale. This procedure forms a matrix X½p;m� with subbands
p¼ 1;2;…; P. A distribution of amplitudes of each subband envel-
ope X½p;m� of the voiced speech signal has a strong exponential
component which is suppressed by logarithmization and mean
subtraction [33]

X̂ ½p;m� ¼ ln X½p;m�ð Þ� ln X½p;m�ð Þ; ð2Þ
where n corresponds to the average operator over m. Next the
frequency analysis of subband envelopes is performed using the
discrete Fourier transform (DFT)

Ψ ½p; l� ¼
XM�1

m ¼ 0

X̂ ½p;m�e� jlð2π=MÞm;

l¼ 0;1;…;M�1; ð3Þ
where p and l denote the acoustic and modulation frequency
respectively. In the last step of modulation spectra extraction the
second power of each subband is taken and normalized which
partially suppresses the effect of training and testing conditions
mismatch

Ψ n½p; l� ¼
Ψ ½p; l�P
l
Ψ ½p; l�: ð4Þ

The features we are proposing are based on a function ψ ½l�
which is extracted from the normalized modulation spectra
according to

ψ ½l� ¼
XP
p ¼ 1

Ψ n½p; l�: ð5Þ
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Due to the instability of vocal fold vibrations pathological speech
exhibits larger energy spread on higher modulation frequencies.
This fact can be sufficiently expressed in function ψ ½l�. Fig. 1
illustrates function ψ ½l� calculated for healthy and pathological
female vowels [a] obtained from the database Príncipe de Asturias
(PdA) Hospital in Alcalá de Henares of Madrid [73,74]. As it can be
seen the peak of function ψ ½l� in the case of healthy voice is higher,
narrower and more shifted to lower modulation frequencies than
in the case of the pathological one.

The proposed features derived from ψ ½l� are MSER (Modulation
Spectra Energy Ratio), MFP (Modulation Frequency of Peak) and
RPHM (Relative Peak Height of Modulation spectra). MSER is
defined as

MSER¼
Pl5 Hz

l ¼ 0 ψ ½l�PM�1
l ¼ l5 Hz þ1 ψ ½l�

; ð6Þ

where l5 Hz is a sample corresponding to 5 Hz modulation fre-
quency (this limit was empirically found). MFP is defined as

MFP¼ arg max
l

ψ ½l�� �
; ð7Þ

where MFP is given in Hz. Finally RPHM can be calculated
according to the following expression:

RPHM¼ψ ½i��r½i�
ψ ½i� ;

i¼ argmax
l

ψ ½l�� �
; ð8Þ

where r is a linear regression line of ψ ½l� for l¼ l5 Hz;…;M�1 and i
is the index at which the function ψ ½l� reaches maximum value.

2.10.2. Features based on inferior colliculus coefficients
Using inferior colliculus coefficients (ICC) it is possible to

extract the frequency content of the modulation envelopes applied
to different bands of an auditory stimuli [66]. Similarly to modula-
tion spectra, the ICC extraction process employs at the beginning
STFT and consequent calculation of power spectra S½k;m�

�� ��2. How-
ever in the next step instead of the bank of the triangular filters,
the bank of P mel-spaced gammatone filters are applied. We used
filters defined by the impulse response

g½n� ¼ n
f s

� �o�1

� cos 2πf cn
f s

� �
� e�2πbn=f s ;

b¼ 24:7 4:37�3f cþ1
� �

; ð9Þ

where f c is the center frequency in Hz, o the filter order (in our
case 4) and f s the sampling frequency in Hz. The DFT on the
subband envelopes was applied next, this time without prior to
normalization

T ½p; l� ¼
X1

m ¼ �1
X½p;m�e� jlð2π=MÞm: ð10Þ

Finally the magnitude spectrum of each envelope T ½p; l�
�� �� is filtered

by a bank of Q¼13 resonance filters with exponentially spaced

frequencies from 12 to 107 Hz. In this work we used resonance
filters defined by the following transfer function:

HðzÞ ¼ 0:1z2�0:09
z2�1:8 cos 2πf c=f s

� �
zþ0:81

: ð11Þ

At the output of this process a matrix Ξ½p; q� (q¼ 1;2;…;Q ) of ICC
for the input signal s½n� is extracted.

The proposed features are based on a function ξ½p� which is
extracted from Ξ½p; q� according to

ξ½p� ¼
XQ
q ¼ 1

ln Ξ½p; q�ð Þ: ð12Þ

Contrary to ψ ½l� this function reflects the misplacement of articu-
lators better than the instability of vocal fold vibrations. In Fig. 2 it
is possible to see an example of ξ½p� calculated for the pathological
and healthy voice obtained from the PdA database. The features
derived from ξ½p� are ICER (Inferior Colliculus Energy Ratio) and
RPHIC (Relative Peak Height of Inferior Colliculus). The ratio ICER
is defined by the following expression:

ICER¼
P12

p ¼ 1 ξ½p�P20
p ¼ 13 ξ½p�

: ð13Þ

Similarly to RPHM the RPHIC is extracted using the regression line
but in this case r½p� is calculated for p¼ 13;…;20

RPHIC¼ ξ½i��r½i�
ξ½i� ;

i¼ arg max
p

ξ½p�� �
: ð14Þ

2.10.3. Features based on bicepstrum
We will use a definition of the real bicepstrum c½n1;n2� similar

to the definition of the real cepstrum

c½n1;n2� ¼
1

N2

XN�1

k1 ;k2 ¼ 0

B̂½k1; k2�ej
2π
N

k1n1þk2n2ð Þ; ð15Þ

B̂½k1; k2� ¼ ln B½k1; k2�
�� ��� �

; ð16Þ
where the bispectrum B½k1; k2� is calculated as the DFT of triple
correlation or circular triple correlation γ½n1;n2� [75]. In our work
we used the second approach based on γ½n1;n2�

B½k1; k2� ¼
XN�1

n1 ;n2 ¼ 0

γ½n1;n2�e� jð2π=NÞ k1n1 þk2n2ð Þ;

γ½n1;n2� ¼
1
N

XN�1

n ¼ 0

δ½n�δ½nþn1�δ½nþn2�;

δ½i� ¼ s½ nþ ið ÞmodN�: ð17Þ
The first feature we are proposing in the present work is BCII
(BiCepstral Index Interference)

BCII¼ 1

N2�1

1
max b½n1;n2�ð Þ
�� ���

0 2 4 6 8 100

500

1000

1500

l [Hz]

ψ
[l]

healthy voice
pathological voice

Fig. 1. Function ψ ½l� calculated for healthy and pathological female vowels [a]
obtained from the database PdA [73,74].
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Fig. 2. Function ξ½p� calculated for the healthy and pathological female vowels [a]
obtained from the database PdA [73,74].
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�
XN�1

n1 ¼ 0

XN�2

n2 ¼ 0

b½n1;n2þ1��b½n1;n2�
�� ��; ð18Þ

b½n1;n2� ¼
PM�1

m ¼ 0 cm½n1;n2�
��� ���PM�1

m ¼ 0 cm½n1;n2�
�� ��; ð19Þ

where cm½n1;n2� is the bicepstrum calculated from the mth speech
segment. The two features introduced next are HFEBC (High
Frequency Energy of one-dimensional BiCepstral index) and LFEBC
(Low Frequency Energy of one-dimensional BiCepstral index)

LFEBC¼
PL

n ¼ 0 ρ½n�PN�1
n ¼ 0 ρ½n�

; ð20Þ

HFEBC¼
PN�1

n ¼ Lþ1 ρ½n�PN�1
n ¼ 0 ρ½n�

; ð21Þ

ρ½n� ¼ c½n;n�;
L¼ f s

fmax
; ð22Þ

where ρ½n� (for n¼ 0;1;…;N�1) is the one-dimensional bicepstral
index and fmax the maximum expected fundamental frequency (in
our case fmax ¼ 350 Hz).

It is supposed that pathological voice contains much more
white noise (symmetrically distributed) than healthy voice. This is
especially due to incorrect glottal closure. This kind of noise
disappears in the real cepstrum estimated by ρ½n� (see Fig. 3),
therefore a difference between the real cepstrum c½n� (estimated
using DFT) and the one-dimensional bicepstral index can estimate
noise components of the analyzed signal. According to this idea
BCMII (BiCepstrum Module Interference Index) and BCPII (BiCep-
strum Phase Interference Index) are proposed

BCMII¼ 1

N2�1

1
max ηm½m�� ��

�
XM�2

m ¼ 0

ηm½mþ1��ηm½m�
�� ��; ð23Þ

BPMII¼ 1

N2�1

1

max ηp½m�
� ��

�
XM�2

m ¼ 0

ηp½mþ1��ηp½m�
��� ���; ð24Þ

ηm½m� ¼
XN�1

n ¼ 0

cm½n�
�� ��� ρm½n�

�� ��� �2
; ð25Þ

ηp½m� ¼
XN�1

n ¼ 0

ang ~cm½n�ð Þ�ang ~ρm½n�
� �� �2

; ð26Þ

where cm½n� and ρm½n� are the mth frame real cepstrum and the
one-dimensional bicepstral index respectively. ~cm½n� is the

complex cepstrum and ~ρm½n� is the one-dimensional bicepstral
index where the absolute value in Eq. (16) was not taken.

The other features, based on c½n� and ρ½n� are LCBCER (Low
Cepstra/BiCepstra Energy Ratio) and HCBCER (High Cepstra/BiCep-
stra Energy Ratio)

LCBCER¼
PL

n ¼ 0 c½n�
�� ��PL

n ¼ 0 ρ½n�
�� ��; ð27Þ

HCBCER¼
PN�1

n ¼ Lþ1 c½n�
�� ��PN�1

n ¼ Lþ1 ρ½n�
�� ��: ð28Þ

According to these equations we also propose the features LSBER
(Low Spectra/Bispectra Energy Ratio) and HSBER (High Spectra/
Bispectra Energy Ratio), however the ratios of spectrum S½k� and
one-dimensional bispectral index ϑ½k� for L¼ N=2

	 

are calculated

in this case.
The other two features BCMD (BiCepstral Module Distance) and

BCPD (BiCepstral Phase Distance) are based on distance measures.
The values of these features for the mth speech segment are

BCMD¼
XN�1

n1 ;n2 ¼ 0

~cmþ1½n1;n2�
�� ����

� ~cm½n1;n2�
�� ����; ð29Þ

BCPD¼
XN�1

n1 ;n2 ¼ 0

ang ~cmþ1½n1;n2�ð Þ
��

�ang ~cm½n1;n2�ð Þ
��; ð30Þ

where ~cm½n1;n2� is the complex bicepstrum calculated without the
absolute value in Eq. (16). Similarly to Eqs. (29) and (30) features
BMD (Bispectral Module Distance) and BPD (Bispectral Phase
Distance) are also extracted, where Bm½k1; k2� is used instead of
~cm½n1;n2�.

2.10.4. Different kernel based approximate and sample entropy
Approximate entropy (AE) is a measure of regularities inside the

analyzed time series. The advantage of AE is that it can robustly
estimate the system complexity using just a limited number of
samples (100–5000) [76]. To define AE we need to firstly recon-
struct a state space using Takens’ embedding theorem [77]

x½n� ¼ s½n�; s½nþτ�;…; s½nþðm�1Þτ�½ �;
n¼ 0;1;…;N�1�ðm�1Þτ; ð31Þ

where x½n� is an embedding vector, m is an embedding dimension
and τ is a time delay (τ¼ 1 for AE). Next, the regularity quantity of a
particular pattern C½i;m; r� is defined as

C½i;m; r� ¼ 1
N�m

XN�m

j ¼ 0

κ i; j; rð Þ: ð32Þ

Finally AE can be calculated according to expression [32]

AE¼Φ½m; r��Φ½mþ1; r�; ð33Þ

Φ½m; r� ¼ 1
N�m

XN�m

i ¼ 0

ln C½i;m; r�ð Þ: ð34Þ

A disadvantage of AE is its dependence on the signal length due
to the self comparison of points in the attractor. This fact can be
avoided using the sample entropy (SE) which does not evaluate
the comparison of embedding vectors among themselves [78]

SE¼Γ½m; r��Γ½mþ1; r�; ð35Þ

Γ½m; r� ¼ 1
N�m

XN�m

i ¼ 0

ln Cx½i;m; r�ð Þ; ð36Þ

0 20 40 60 80 100
-0.2

0

0.2

n

c[
n]

, ρ
[n

]

c[n] ρ[n]

Fig. 3. Comparison of the one-dimensional bicepstral index ρ½n� and the real
cepstrum c½n� calculated for a maintained vocal [a] uttered by a healthy speaker.
Only first 101 samples are displayed.
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Cx½i;m; r� ¼ 1
N�m

XN�m

j ¼ 0;ia j

κ i; j; rð Þ: ð37Þ

The usual values for embedding dimension are m¼ 1;2. In this
work we used m¼2 which provides more detailed reconstruction.
Finally, a function must be defined κ i; j; rð Þ we call kernel function.
Originally the AE or SE are based on

κ i; j; rð Þ ¼Θfr�d x½i�; x½j�ð Þg; ð38Þ

d x½i�; x½j�ð Þ ¼ max
k

j s½iþk��s½jþk�j ;
k¼ 0;1;…;m�1; ð39Þ

where Θ is the Heaviside function and r a radius in our case
calculated according to

r¼ 0:2std s½n�ð Þ: ð40Þ
We will denote these entropies as AE (Heaviside) and SE (Heavi-
side) respectively. Orozco-Arroyave et al. proposed AE (Gaussian)
and SE (Gaussian) based on the Gaussian kernel [78]

κ i; j; rð Þ ¼ exp � Jx½i��x½j�J2
10r2

 !
: ð41Þ

In this work we propose AE and SE based on the other 6 kernels:
exponential kernel

κ i; j; rð Þ ¼ exp � Jx½i��x½j�J
2r2

� �
; ð42Þ

Laplacian kernel,

κ i; j; rð Þ ¼ exp � Jx½i��x½j�J
r

� �
; ð43Þ

circular kernel,

κ i; j; rð Þ ¼ 2
π
arccos � Jx½i��x½j�J

r

� �

�2
π
Jx½i��x½j�J

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Jx½i��x½j�J

r

� �2
s

; ð44Þ

for Jx½i��x½j�Jor, zero otherwise; spherical kernel,

κ i; j; rð Þ ¼ 1�3
2
Jx½i��x½j�J

r

þ1
2

Jx½i��x½j�J
r

� �3

; ð45Þ

for Jx½i��x½j�Jor, zero otherwise; Cauchy kernel,

κ i; j; rð Þ ¼ 1
1þðJx½i��x½j�J2Þ=r

; ð46Þ

for Jx½i��x½j�Jor, zero otherwise and triangular kernel,

κ i; j; rð Þ ¼ 1�j x½i��x½j�j
r

; ð47Þ

for jx½i��x½j�jor, zero otherwise.

2.10.5. Features based on empirical mode decomposition
As was mentioned in Section 2.7 Tsanas et al. proposed several

measures of SNR and NSR based on EMD [34]

IMF�SNR¼
PI

i ¼ 4 μiP3
i ¼ 1 μi

; ð48Þ

IMF�NSR¼
P2

i ¼ 1 μ̂ iPI
i ¼ 3 μ̂ i

; ð49Þ

where μi is a parameter, or mean sequence value, calculated from
the original ith IMF and I is the total number of the IMFs. In the
case of μ̂ the ith IMF was logarithmized before the consequent
parametrization. To extract the sequence from IMF, Tsanas et al.

used SEO (Squared Energy Operator) and TKEO. As a parameter
they also used SHE.

We have extended this idea on these parameters: IMF�SNRRE

(based on second-order Rényi Entropy), IMF�SNRZCR (based on
Zero-Crossing Rate) and IMF�NSRRE. In the case of IMF�SNRRE μi

is defined as

μi ¼ � log 2

XJ
j ¼ 1

p2 xij
� �0

@
1
A; ð50Þ

where p2 xij
� �

is the probability P IMFi ¼ xij
� �

and xi1; x
i
2;…; xiJ

n o
are

the possible values of the ith IMF. In the case of IMF�SNRZCR μi is
calculated according to

μi ¼
1
N

XN�1

n ¼ 1

sgn f i½n�
� ��sgn f i½n�1�� ��� ��; ð51Þ

where f i½n� is the ith IMF.
The time-varying high frequency components present in the

1st IMF represent the noise part of the speech signal. We propose a
new feature IMF-FD which is based on the fractal dimension
calculated from the 1st IMF. This complexity measure appropri-
ately quantifies the amount of noise present in the signal and
indirectly describes hoarseness or breathiness. The feature is
defined as

IMF�FD¼ log 10N
log 10Nþ log 10 N=Nþ0:4Nch

� �
Nch ¼

XN�1

n ¼ 1

sgn f 1½n�
� ��sgn f 1½n�1�� �j:�� ð52Þ

Another feature based on the first intrinsic mode function is
IMF-CPP (Cepstral Peak Prominence extracted from the 1st IMF). It
can be calculated as

IMF�CPP¼ c½i��r½i�
c½i� ;

i¼ arg max
n

c½n�ð Þ;

n¼ f s
fmax

;…;N�1; ð53Þ

where c½n� is real cepstrum calculated from f 1½n� and r½i� is a linear
regression line of c½n� for n¼ f s=fmax;…N�1. We consider
fmax ¼ 350 Hz.

The last feature proposed in this work is IMF-GNE (Glottal-to-
Noise Excitation ratio based on the 1st IMF). The whole procedure
of IMF-GNE extraction can be described in following steps:

1. Segment the speech signal and extract the 1st IMF for
each frame.

2. Repeat step 3–6 for each segment.
3. Do an inverse filtering of the 1st IMF.
4. For each band of 1000 Hz with 1000 Hz step get the Hilbert

envelope (the absolute value of analytical signal).
5. Calculate cross correlation functions for all possible combina-

tions of Hilbert envelopes and pick the maximum of each
function.

6. Pick the maximum from all the maxima in 5.

3. Databases

To provide robust results 3 (English, Spanish and Czech)
databases have been used during the testing procedure. Each
database represents a different language group (Germanic, Roma-
nic and Slavic). This approach is advantageous from the cultural
difference point of view. Speakers of different languages exhibit
especially different prosodic characteristics. The aim of this work
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is to find features significant for the particular language, but we
have focused on a selection of features that are language-
independent as well.

3.1. MEEI disordered voice database

The Massachusetts Eye and Ear Infirmary (MEEI) database [25]
has been for many years used as a benchmark in the field of
pathological speech analysis. This commercially available database
consists of 53 healthy and 657 pathological speakers with different
pathologies (e.g. adductor spasmodic dysphonia, conversion dys-
phonia, erythema, and hyperfunction). The data of each speaker
contain 12 s of a standard text “The Rainbow Passage” [79] and a
sustained phonation of the vowel [a] pronounced as in the word
“father”. The recordings are sampled at f s ¼ 50 kHz or f s ¼ 25 kHz.
For our purpose only the vowels [a] are used.

Although MEEI consists of approximately 700 speakers in total,
the age distributions between normal and pathological speakers
are not matched. Therefore the amount of pathological speakers is
usually limited to 173 according to criteria published by Parsa and
Jamieson (we call this “limited version of MEEI database”) [15].
The statistical characteristics of MEEI database used in this work
can be found in Table 1.

Although this database is very popular and very often used, its
size and data are considered insufficient. Table 2 shows detection
results (obtained on the MEEI database) of several works. The
highest accuracy reached by Henriquez et al. is 99.69% [40].
However using the same features and same experimental setup
the authors achieved an accuracy of 82.47% using the “Multi-
quality” database [40]. This fact shows that despite the popularity
of the MEEI database there is a need to introduce new, larger and
more complex (when considering the speech tasks) benchmark
databases in order to provide more reliable results and conclu-
sions. A discussion on the reliability of results mentioned in
Table 2 can be found in Section 3.4.

3.2. PdA database

The second database we have used is Príncipe de Asturias (PdA)
database [73,74]. This database consists of 239 healthy and 200
pathological speakers with different organic pathologies (e.g.
nodules, polyps, oedemas, and carcinomas). Every speaker uttered
a sustained Spanish vowel [a]. The recordings are sampled at
f s ¼ 25 kHz. The statistical characteristics of this database can be
found in Table 3. Table 4 shows detection results (obtained on the
PdA database) of two available works. As can be seen, the
accuracies are not so high as in the case of MEEI database.
Moreover, the PdA consists of more speakers than the limited
version of MEEI. All these facts highlight the high potential of the
PdA for future use.

3.3. PARCZ database

The last database we have included in our test is the Czech
Parkinsonian Speech Database (PARCZ) recorded at St. Anne's
University Hospital in the Czech Republic. This database consists

of 52 healthy speakers and 57 speakers with Parkinson's disease
(PD) who suffer from hypokinetic dysarthria [84]. This database
contains 91 speech tasks (free speech, reading text, maintained
vowels, and diadochokinetic tasks) which are used for an analysis
of speech dysfunctions that usually accompany PD. However for
our purpose only the sustained Czech vowel [a] is used. The
recordings are sampled at f s ¼ 48 kHz. The statistical character-
istics of the PARCZ database can be found in Table 5. As it can be
seen, contrary to the MEEI or PdA, PARCZ is more focused on elder
people.

3.4. The rule of 30

To decide whether the corpus size is sufficient for the robust
conclusions Doddington et al. introduced “the rule of 30” which
comes directly from the binomial distribution, assuming indepen-
dent trials [85]. The rule is “To be 90% confident that the true error
rate is within 730% of the observed error rate, there must be at
least 30 errors.”

If we apply this rule to the original MEEI database (710
speakers), then the observed error rates below 4.25% cannot be
considered as reliable. Moreover if the MEEI database is limited to
226 speakers, then threshold reaches 13.27%. In other words,
although the results in Table 2 predict promising approaches for

Table 1
Statistical characteristics of the MEEI database used in this work.

Speakers Number Mean age Age range std of age

Male Female Male Female Male Female Male Female

Healthy 21 32 38.81 34.16 26–59 22–52 8.49 7.87
Pathological 70 103 41.7 37.59 26–58 21–51 9.40 8.19

Table 2
Summary of pathological speech detection results obtained on the
MEEI database.

Reference Accuracy (%)

Henriquez et al. [40] 99.69
Diabazar et al. [80] 99.44
Parsa and Jamieson [15] 98.70
Alpan et al. [81] 98.70
Hariharan et al. [82] 98.45
Arias-Londono et al. [83] 98.23

Table 3
Statistical characteristics of the PdA database used in this work.

Speakers Number Mean age Age range Std of age

Male Female Male Female Male Female Male Female

Healthy 101 138 34.44 35.29 18–78 8–71 16.24 14.73
Pathological 74 126 48.05 36.71 11–76 9–72 13.89 13.14

Table 4
Summary of pathological speech detection results obtained on the
PdA database.

Reference Accuracy (%)

Arias-Londono et al. [74] 84.15
Vasilakis and Stylianou [39] 77.68

Table 5
Statistical characteristics of the PARCZ database used in this work.

Speakers Number Mean age Age range Std of age

Male Female Male Female Male Female Male Female

Healthy 26 26 65.65 62.15 49–83 45–87 9.02 9.50
Pathological 36 21 66.22 68.81 46–87 49–86 9.20 9.00
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pathologic speech detection results, we must be critic about these
values.

If we apply this rule to the PdA (436 speakers) or PARCZ (109
speakers) databases, we get the thresholds of 6.88% and 27.52%
respectively. According to this values it can be said that the results
obtained with the PdA are more reliable (contrary to PARCZ).

4. Experiments

All the databases were resampled to f s ¼ 16 kHz and in
dependence on the next processing the data have been divided
into 9 groups. Two approaches have been considered: gender-
dependent and gender independent. Each database is randomly
divided into 75% and 25% training and testing subsets respectively.
The classifier is evaluated consequently. This procedure (data split,
classifier tuning and evaluation) is repeated 100 times. The
resulting accuracy (ACC), sensitivity (SEN) and specificity (SPE)
are calculated according to

ACC ¼ TPþTN
TPþTNþFPþFN

� 100 ½%�; ð54Þ

SEN¼ TP
TPþFN

� 100 ½%�; ð55Þ

SPE¼ TN
TNþFP

� 100 ½%�; ð56Þ

where TP (True Positive) and FP (False Positive) represent the
number of correctly identified pathological speakers and number
of speakers diagnosed as pathological, but being healthy. Similarly,
TN (True Negative) and FN (False Negative) represent the total
number of correctly identified healthy speakers, and pathological
speakers evaluated as healthy controls.

Before classification the training data are z-score normalized.
The testing data are normalized by subtracting the training set
mean and dividing by the training set standard deviation for each
feature.

4.1. Parameterization programs

Several toolboxes and programs have been used for the
purpose of feature extraction. Features based on the detrended
fluctuation analysis have been calculated using FastDFA [86]. The
glottal quotients (GQopen and GQclosed) were extracted using the
algorithm DYPSA implemented in VOICEBOX [87]. To estimate the
largest Lyapunov exponent (LLE) TSTOOL has been used [88]. The
software Praat has been used to estimate the fundamental fre-
quency F0, all kinds of jitter and shimmer, harmonic-to-noise ratio
(HNR) and formant frequencies (F1; F2; F3) [89]. The rest of features
(108 in total), including the features introduced in this work, have

been implemented in the Neurological Disorder Analysis Tool
(NDAT) developed at the Brno University of Technology [90].

4.2. Feature selection

Considering all possible local and high-level feature combina-
tions the parameterization process extracts approximately 28,000
features for each speaker. This feature space reduced for each
scenario using the filtering feature selection approach based on
the non-parametric Mann–Whitney U test. The significance level
was set to α¼ 0:05. This feature selection method is relatively
simple, but there are several serious studies indicating that there
are scenarios where simple univariate methods perform similarly
or even better than more complex methods. For instance Haury
et al. show that a simple Student's t-test provides better results
than SVM-RFE (Support Vector Machine Recursive Feature Elim-
ination), GFS (Greedy Forward Selection), LASSO (Least Absolute
Shrinkage and Selection Operator) or elastic net [91].

After the evaluation a list of the ten most significant features is
drawn up. Finally the density estimation plots (computed using
kernel density estimation with Gaussian kernels) of the most
significant features in all scenarios are given.

4.3. Classification methods

In our test we have used 2 classifiers: SVM (Support Vector
Machine with a radial kernel) and RF (Random Forest). Regarding
the SVM, the parameter kernel gamma γ and penalty parameter C
were optimized using a grid search for possible values.

5. Results

A summary of pathological speech detection results expressed
by accuracy, sensitivity and specificity can be found in Table 6. This
table also provides some statistics related to the number of
features selected in each scenario. In the case of MEEI database
the accuracy, sensitivity and specificity were equal to 100:070:0%
in all scenarios (considering both genders together and separately)
when using an RF classifier. A discussion focused on the credibility
of these results is given below. In comparison to RF the SVM
classifier provided slightly worse results.

In the case of the PdA database the best results were found
when classifying by RF too. The accuracy (80:975:1%) and
specificity (85:476:7%) are larger for male speakers while the
sensitivity (77:277:7%) is larger for the female ones. When
considering both genders together the accuracy (82:173:3%)
and sensitivity (80:075:9%) reach the best values in the frame
of all PdA scenarios, however the specificity is approximately 1.6%
lower than in the case of the male-only scenario. In comparison to
the best accuracies published by Arias-Londono et al. our approach

Table 6
Summary of pathological speech detection results represented as mean7 std (%) (SVM – Support Vector Machine with a radial kernel, RF – Random Forest, F – female,
M – male, MF – all genders).

ID Scenario No. of sel. features Accuracy Sensitivity Specificity

Dataset Gender (Mean7 std) SVM RF SVM RF SVM RF

M1 MEEI F 13,9967288 99.571.5 100.070.0 99.372.0 100.070.0 100.070.0 100.070.0
M2 MEEI M 13,5617398 99.271.7 100.070.0 99.172.1 100.070.0 99.373.3 100.070.0
M3 MEEI MF 15,5217231 99.970.4 100.070.0 99.870.5 100.070.0 99.970.7 100.070.0
P1 PdA F 9,7267447 75.774.3 78.574.9 72.876.5 77.277.7 78.476.8 79.677.3
P2 PdA M 9,7217458 78.675.1 80.975.1 71.0710.1 74.779.8 84.276.1 85.476.7
P3 PdA MF 11,5407419 77.773.2 82.173.3 74.975.3 80.075.9 80.175.0 83.875.1
C1 PARCZ F 2,1417415 65.9711.9 67.178.3 35.3730.3 10.3716.9 79.0715.3 91.4711.3
C2 PARCZ M 2,1217489 67.3710.7 66.5710.3 50.4720.2 42.6721.6 79.4714.5 83.6716.0
C3 PARCZ MF 1,7507331 65.477.6 67.976.0 39.3714.9 31.0714.6 79.3710.0 87.578.5
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provides a lower accuracy by 2.05%, however it should be high-
lighted that the authors used classifier score fusion, which is not
considered in this work [74]. When looking at their single-
classifier solution, the authors reported these values: 81.70%
(accuracy), 80.50% (sensitivity), 82.91% (specificity). Comparing
these values to our results, we can say that our approach provides
better accuracy (by 0.40%) and specificity (by 0.89%), but worse
sensitivity (by 0.50%). Moreover, Arias-Londono et al. used in their
work an older version of PdA database which has only 199 healthy
speakers, while our version has 239. Therefore our results should
be more trustable. In comparison to the work of Vasilakis et al. our
approach outperformed the classification results provided by the
authors [39].

Regarding the PARCZ database the results are much worse than
in the case of MEEI or PdA. In scenario C1 (female speakers) the
best accuracy was 67:178:3% (classification by RF), sensitivity
35:3730:3% (SVM) and specificity 91:4711:3% (RF). The accu-
racy (67:3710:7%) and sensitivity (50:4720:2%), both obtained
using the SVM, were slightly better in the case of male speakers.
Vice versa, the specificity (83:6716:0%) was worse. Finally in
scenario C3 (both genders) the best accuracy was 67:976:0% (RF),
sensitivity 39:3714:9% (SVM) and specificity 87:578:5% (RF). It
should be also mentioned that in comparison to MEEI or PdA the
PARCZ database exhibits much larger standard deviations.

The poor classification results are caused probably by the fact
that PD patients were in different progression stages of hypoki-
netic dysarthria, from first to more advanced ones (this fact most
likely explains the large standard deviations that were obtained). It
means that we were performing a two-class classification over the
data that can be split into approximately 4 classes (1 healthy and
3 levels of dysarthria: mild, moderate and severe). It can be an
issue for future work to develop a system that would not only
identify the presence of pathological speech, but also estimate the
level of voice pathology. The PARCZ database is a good candidate
for a development of such a system. The system can be interesting
especially if we are able to detect the first stages of different
disorders so that the doctors can start the treatment early and
slow down the progress. One of the works that deals with this
issue has been published by Henriquez et al. [40].

When looking into a number of significant features selected by
the Mann–Whitney U test, it can be concluded that this number
positively correlates with the classification accuracy. For example
in the case of both genders the number of selected features is
15;5217231 (MEEI), 11;5407419 (PdA) and for PARCZ only
1;7507331.

The ten most significant features selected by Mann–Whitney U
test in all considered scenarios can be found in Tables 7–15. The
density estimation plots (computed using kernel density estima-
tion with Gaussian kernels) of the most significant features in
these scenarios can be seen in Fig. 4. In all MEEI scenarios (M1–3)
the 10 most significant features produce equivalent p values and
they are sorted alphabetically. Regarding scenarios M1 (females)
and M3 (both genders) the most discriminative features are those
derived from MSC (Modulation Spectra Coefficients) while in the
case of M2 (males) features based on ACW (Adaptive Component
Weighted coefficients) and FADFA (Fluctuation Amplitudes of
Detrended Fluctuation Analysis) are mainly selected. Looking at
Fig. 4(a)–(c) it can be concluded that the relative interpercentile
range of first modulation spectra coefficients and the third
moment of the first adaptive component weighted cepstral coeffi-
cients show always a single value for pathological speech. More-
over, in the case of male speakers the single value also represents
the healthy one. In other words, regarding the MEEI database we
can use a very simple classifier (theoretically a decision tree with
only one node) to differentiate between healthy and pathological
speech. This fact supports our classification accuracies equal to

100:070:0%. But the question is: Are these results trustable
enough?

The MEEI database itself introduces many issues related to the
credibility of the results. The main problem is that both the

Table 7
10 most significant features selected by Mann–Whitney U test in scenario M1:
MEEI, females (MSC – Modulation Spectra Coefficients).

Feature p Value

Relative interpercentile range of 1st MSC 2.8610�10�30

Relative interpercentile range of 10th MSC 2.8610�10�30

Relative interpercentile range of 11th MSC 2.8610�10�30

Relative interpercentile range of 12th MSC 2.8610�10�30

Relative interpercentile range of 13th MSC 2.8610�10�30

Relative interpercentile range of 14th MSC 2.8610�10�30

Relative interpercentile range of 15th MSC 2.8610�10�30

Relative interpercentile range of 16th MSC 2.8610�10�30

Relative interpercentile range of 17th MSC 2.8610�10�30

Relative interpercentile range of 18th MSC 2.8610�10�30

Table 8
10 most significant features selected by Mann–Whitney U test in scenario M2:
MEEI, males (ACW – Adaptive Component Weighted coefficients, FADFA – Fluctua-
tion Amplitudes of Detrended Fluctuation Analysis).

Feature p Value

3rd moment of 1st ACW 2.5336�10�21

4th moment of 1st ACW 2.5336�10�21

5th moment of 1st ACW 2.5336�10�21

6th moment of 1st ACW 2.5336�10�21

Mean absolute deviation of 1st ACW 2.5336�10�21

Mean excluding 50% outliers of 1st ACW 2.5336�10�21

Mean of 1st ACW 2.5336�10�21

Offset of linear regression of 1st ACW 2.5336�10�21

Position of max. of FADFA 2.5336�10�21

Relative position of min. of FADFA 2.5336�10�21

Table 9
10 most significant features selected by Mann–Whitney U test in scenario M3:
MEEI, all (MSC – Modulation Spectra Coefficients).

Feature p Value

Relative interpercentile range of 1st MSC 1.0560�10�49

Relative interpercentile range of 10th MSC 1.0560�10�49

Relative interpercentile range of 11th MSC 1.0560�10�49

Relative interpercentile range of 12th MSC 1.0560�10�49

Relative interpercentile range of 13th MSC 1.0560�10�49

Relative interpercentile range of 14th MSC 1.0560�10�49

Relative interpercentile range of 15th MSC 1.0560�10�49

Relative interpercentile range of 16th MSC 1.0560�10�49

Relative interpercentile range of 17th MSC 1.0560�10�49

Relative interpercentile range of 18th MSC 1.0560�10�49

Table 10
10 most significant features selected by Mann–Whitney U test in scenario P1: PdA,
females (UCPP – Unsmooth Cepstral Peak Prominence).

Feature p Value

Mode of UCPP 1.6224�10�19

Mean of UCPP 2.9605�10�19

Mean excluding 10% outliers of UCPP 3.6871�10�19

60th percentile of UCPP 4.2979�10�19

Mean excluding 20% outliers of UCPP 4.5230�10�19

Mean excluding 40% outliers of UCPP 4.9362�10�19

Median of UCPP 4.9719�10�19

Mean excluding 30% outliers of UCPP 5.0820�10�19

Mean excluding 50% outliers of UCPP 5.0820�10�19

90th percentile of UCPP 6.6980�10�19
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healthy and disordered speech were recorded in a different way.
First of all the healthy one was sampled at f s ¼ 50 kHz and the
disordered one at f s ¼ 25 kHz. In our experiment all databases
were resampled to f s ¼ 16 kHz but some small differences will
remain among signals. But probably the most serious problem is
that the duration of a sustained vowel is 3 s and 1 s for healthy and
disordered voice respectively. Therefore all high-level or local
features that somehow reflect the signal length (entropy, range,
std, and duration) can provide very good discriminative results.
This can also be a case of the relative interpercentile range
mentioned in Tables 7 and 9. Although it is a relative measure it
is still dependent on the length of the input vector. We made a
small experiment repetitively and randomly generating vectors
with length N¼ 10i for i¼ 1;2;3;4 and with a normal distribution.
After that we calculated the relative interpercentile range of these
vectors and found out that the value of this measure is increasing
with the decreasing vector length.

To avoid the problem of different vowel durations one can skip
features dependent on this property but we would loose para-
meters that can be potentially very good candidates for patholo-
gical speech identification. The other approach is to take only a
one-second segment from the healthy speech but in our opinion
this is not a good solution. The first second segment could be
selected but then we are losing the sustained part of the signal
(used for estimating jitter) and phonation trail. If we take only the
sustained part, then we will loose information about phonation
onset and offset. It has been shown that an analysis of these parts
is useful for example for the dysarthric speech description [90,92].
Therefore there is no elegant solution that would not distort the
results. Moreover, Malysla et al. mention that some speakers were
recorded in different sites and over potentially different channels
[66]. In conclusion, although the MEEI database is a very popular
benchmark in the field of pathological speech analysis, the results
obtained using this database should be taken very carefully. An
introduction of a new English disordered voice database is thus
highly important for the future evaluation of new state-of-the-art
speech signal processing techniques.

In scenario P1 (PdA, males) all the most significant features are
based on UCPP (Unsmooth Cepstral Peak Prominence). On the other
hand, in the case of scenarios P2 (females) and P3 (both genders) all
the selected features are based on IMF-CPP (Cepstral Peak Promi-
nence of first Intrinsic Mode Function) which is originally intro-
duced in this work. However looking at Tables 10–12 it is evident
that the features listed here correlate significantly (e.g. mean and
median, std and var). We have not carried out an analysis of
correlation in this work due to a large number of features, but
some statistics related to the most popular ones have been
published, for example by Tsanas et al. [29].

Table 11
10 most significant features selected by Mann–Whitney U test in scenario P2: PdA,
males (IMF-CPP – Cepstral Peak Prominence of first IMF).

Feature p Value

Median absolute deviation of IMF-CPP 6.4974�10�17

Interquartile range of IMF-CPP 1.2600�10�16

60th Percentile of IMF-CPP 8.6433�10�16

3rd Quartile of IMF-CPP 1.1901�10�15

Error of linear regression of IMF-CPP 1.3454�10�15

Median of IMF-CPP 1.4129�10�15

Mean absolute deviation of IMF-CPP 2.0881�10�15

Mean excluding 50% outliers of IMF-CPP 2.2461�10�15

70th Percentile of IMF-CPP 2.3014�10�15

Mean excluding 40% outliers of IMF-CPP 3.1541�10�15

Table 12
10 most significant features selected by Mann–Whitney U test in scenario P3: PdA,
all (IMF-CPP – Cepstral Peak Prominence of first IMF).

Feature p Value

Error of linear regression of IMF-CPP 6.9443�10�32

Median absolute deviation of IMF-CPP 1.3082�10�31

Mean absolute deviation of IMF-CPP 1.8834�10�31

80th Percentile of IMF-CPP 4.5625�10�31

Interquartile range of IMF-CPP 5.3469�10�31

Std. of IMF-CPP 5.5387�10�31

Var. of IMF-CPP 5.5387�10�31

3rd Quartile of IMF-CPP 5.7880�10�31

70th Percentile of IMF-CPP 7.0861�10�31

Interdecile range of IMF-CPP 7.4045�10�31

Table 13
10 most significant features selected by Mann–Whitney U test in scenario C1:
PARCZ, females (LPCC – Linear Predictive Cepstral Coefficients, GNE – Glottal-to-
Noise Excitation ratio, MPSD – Median of Power Spectral Density, GQopen – Qlottal
Quotient (vocal folds are apart)).

Feature p Value

Coeff. of var. of 11th LPCC 1.0832�10�04

Position of max. of GNE 1.3509�10�04

Index of dispersion of 11th LPCC 1.6228�10�04

Min. of MPSD 3.0797�10�04

1st Percentile of MPSD 3.1013�10�04

Modulation of MPSD 3.1013�10�04

Relative range of MPSD 3.1013�10�04

Harmonic mean of MPSD 3.1085�10�04

Modulation of GQopen 4.0151�10�04

Relative range of GQopen 4.0151�10�04

Table 14
10 most significant features selected by Mann–Whitney U test in scenario C2:
PARCZ, males (UCPP – Unsmooth Cepstral Peak Prominence, LPCT – Linear
Predictive Cosine Transform coefficients, CMS – Cepstral Mean Subtraction coeffi-
cients, IMF-NSRRE – Noise-to-Signal Ratio derived from IMF based on second-order
Rényi Entropy, AE (Laplacian) – Approximate Entropy based on Laplacian kernel).

Feature p Value

Slope of UCPP 3.4500�10�05

40th Percentile of 2nd LPCT 4.2438�10�05

Offset of linear regression of 5th CMS 4.2438�10�05

1st Quartile of 2nd LPCT 5.2089�10�05

Offset of linear regression of IMF-NSRRE 6.3797�10�05

Mean excluding 40% outliers of 2nd LPCT 7.0546�10�05

Mean excluding 50% outliers of 2nd LPCT 7.0546�10�05

Offset of linear regression of AE (Laplacian) 7.0546�10�05

Mean excluding 10% outliers of 2nd LPCT 7.7966�10�05

Mean excluding 20% outliers of 2nd LPCT 7.7966�10�05

Table 15
10 most significant features selected by Mann–Whitney U test in scenario C3:
PARCZ, all (LFCC – Linear Frequency Cepstral Coefficients, MPSD – Median of Power
Spectral Density, FADFA – Fluctuation Amplitudes of Detrended Fluctuation
Analysis, ICC – Inferior Colliculus Coefficients).

Feature p Value

Interquartile range of 18th LFCC 1.8665�10�05

Median absolute deviation of 18th LFCC 1.9509�10�05

Min. of MPSD 1.9970�10�05

Modulation of MPSD 2.0055�10�05

Relative range of MPSD 2.0055�10�05

Harmonic mean of MPSD 2.1543�10�05

40th percentile of FADFA 3.7451�10�05

Median absolute deviation of 2nd ICC 5.7179�10�05

Mean excluding 10% outliers of 2nd ICC 5.9621�10�05

Mean excluding 20% outliers of 2nd ICC 5.9621�10�05
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In the case of scenario C1 (PARCZ, females) there were selected
features based on LPCC (Linear Predictive Cepstral Coefficients),
GNE (Glottal-to-Noise Excitation ratio), MPSD (Median of Power
Spectral Density) and GQopen (Qlottis Quotient–vocal folds are
apart). Regarding scenario C2 (males), the 10 most significant
features are based on UCPP, LPCT (Linear Predictive Cosine Trans-
form coefficients), CMS (Cepstral Mean Subtraction coefficients),
IMF�NSRRE (Noise-to-Signal Ratio derived from IMF based on
second-order Rényi Entropy) and AE (Laplacian: Approximate
Entropy based on Laplacian kernel). And finally, when considering
both genders, there were selected features based on LFCC (Linear
Frequency Cepstral Coefficients), MPSD, FADFA and ICC (Inferior
Colliculus Coefficients). Generally p values are much lower than in
the case of MEEI or PdA databases. This is also closely related to
the poor classification results mentioned in Table 6.

To summarize the discussion about the databases we can say
that the MEEI database should no longer be used as a benchmark.
The more challenging one is PARCZ database, however it has some
disadvantages from the scientific point of view: it is in Czech
language, which is not a widespread language in the world; it is
focused only on PD people with hypokinetic dysarthria; and it is
not really suitable for a binary classification (at least 4 classes
should be considered). Probably the most suitable database for the
evaluation of pathological speech identification methods is PdA.
The classification accuracies are still challenging and they can be
significantly improved. Another advantage of this database is that
it is freely available for research purposes. The only disadvantage is
the limitation to Spanish language. This should not be such a big

problem in the case of sustained vowel [a], but there will certainly
be cultural differences when dealing with the spoken text analysis.

Another question is, whether analysis of vowel [a] is really the
best way to identify pathological speech, at least in the field of
vowels analysis (not considering the other speech tasks like read/
repeated/spontaneous words, and sentences). Although most of
researchers automatically use sustained vowel [a], just a few
publications report classification accuracies based on analysis of
the other vowels. For this purpose Henriquez et al. made an
experiment where they tried to identify pathological speech based
on analysis of 5 Spanish vowels separately ([a], [e], [i], [o], [u]) [40].
They observed that in comparison to the other vowels the
classification based on vowel [a] provides slightly better results.
Probably the choice of vowel [a] is good when classifying the
pathological speech generally (but still this should be proved by
robust testing in future). However, as soon as we focus on a
specific pathology, we can get better results when analysing
another vowel. For instance Orozco-Arroyave et al. classified
hypokinetic dysarthria in patients with Parkinson's disease and
found out that it is more advantageous to analyze vowel [o] [78].

Our initial idea was also to try the inter-database classification
(training the classifier on one database and testing it using the
other one). However the classification results were very poor. It
was caused mainly by these two facts: (1) When we trained the
classifier on MEEI database, the features reflecting the signal
length were selected. But these features were not so significant
when testing them on PdA or PARCZ databases. (2) The PARCZ
database is very different from MEEI or PdA, because it contains
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Fig. 4. Density estimation plots (computed using kernel density estimation with Gaussian kernels) of the most significant features in scenarios M1 – 3, P1 – 3 and C1 – 3.
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only one specific speech disorder (hypokinetic dysarthria), while
the other two databases contain many different voice pathologies.

From the feature selection point of view it is interesting to
point out that many segmental parameters have been found
significant. Some of them (MSC, ACW, LPCC, LPCT, CMS and ICC)
were also selected as the 10 most significant ones. Although the
segmental features are not very frequent when analysing patho-
logical speech (except MFCC, MSC and ICC), their potential seems
to be high. In fact, to our best knowledge, features like MFCCE,
LFCC, CMS or ACW were used for this purpose for the first time in
the present research.

In this work we have introduced 36 new speech features. Just
one (IMF-CPP) has been mentioned among the 10 most significant
ones (Tables 11 and 12), however the rest of them are significant
(po0:05) as well, see Table 16. In the case of MEEI database we
firstly checked if high-level features do not reflect the length of
signal. If not we kept the feature in the table. If yes we checked the
next most significant variant of the local parameter. At the top
positions of this table we can see mainly features based on
modulation spectra, bicepstrum and approximate entropy.

6. Conclusions

This work provides an insight into the robust and complex
approach of pathological speech analysis. To our best knowledge
this is the first contribution providing a complex evaluation of
feature significance from different fields of speech signal proces-
sing (e.g. speech analysis, recognition, coding, and enhancement).
It is also the first contribution deriving conclusions according to

robust tests where 3 (English, Spanish, Czech) databases were
used. These languages belong to 3 different language groups
(Germanic, Romanic, Slavic). In general, the work has 4 goals, yet
each of them has its conclusion.

(1) According to complex parameterization and consequent robust
testing identify features that have the largest discriminative power in
the field of pathological speech analysis. Unfortunately most of the
works published in the field of pathological speech analysis
provides conclusions based on a limited set of parameterization
methods. In other words there is still a lack of publications
providing a complex overview of features quantifying pathological
speech and providing strong conclusions supported by a robust
testing.

Our work is unique in this way, because together it provides
testing based on 128 local features. We made the wide overview of
all these features used for pathological speech quantification so that
the researchers can find out what exactly the specific feature
quantifies and how it can be implemented. We used features
describing phonation, tongue movement, speech quality (including
non-linear dynamic features and features based on bispectrum/
bicepstrum, empirical mode decomposition, wavelet decomposi-
tion) and segmental features.

Using the non-parametric Mann–Whitney U test we observed
that among all parameterization techniques those based on seg-
mental features provide the best classification results. To our best
knowledge this is the first work that tested the significance of 11
segmental features. The largest discriminative power can be
obtained thanks to especially segmental features like modulation
spectra coefficients, adaptive component weighted coefficients
and linear predictive cepstral coefficients. Although the segmental

Table 16
Best significance levels (computed using the Mann–Whitney U test) selected for all 36 features originally introduced in this work (F – female, M – male, MF – all genders).

Local feature High-level feature p Value Sc. ID Dataset Gender

IMF-CPP (Cepstral Peak Prominence extracted from the 1st IMF) Error of linear regression 6.9443�10�32 P3 PdA MF
MFP (Modulation Frequency of Peak) – 3.2291�10�28 M3 MEEI MF
RPHM (Relative Peak Height of Modulation spectra) – 1.5614�10�27 M3 MEEI MF
MSER (Modulation Spectra Energy Ratio) – 2.9477�10�26 M3 MEEI MF
BCPD (BiCepstral Phase Distance) Harmonic mean 4.9663�10�19 M3 MEEI MF
HFEBC (High Frequency Energy of one-dimensional BiCepstral index) – 2.5381�10�15 M3 MEEI MF
LFEBC (Low Frequency Energy of one-dimensional BiCepstral index) – 2.5381�10�15 M3 MEEI MF
AE (triangular kernel) Offset of linear regression 7.7587�10�15 P3 PdA MF
BCII (BiCepstral Index Interference) – 9.1669�10�15 P3 PdA MF
AE (exponential kernel) 1st quartile 1.4641�10�14 P3 PdA MF
SE (exponential kernel) Median 5.5444�10�14 P3 PdA MF
IMF-GNE (Glottal-to-Noise Excitation ratio based on the 1st IMF) Mean 6.0985�10�14 M3 MEEI MF
AE (Cauchy kernel) Mean 1.3344�10�13 M3 MEEI MF
AE (spherical kernel) Offset of linear regression 1.4599�10�13 P3 PdA MF
SE (spherical kernel) Mean excluding 40% outliers 2.5551�10�13 P3 PdA MF
IMF-SNRRE (based on second-order Rényi Entropy) Mean 3.1582�10�12 P3 MEEI MF
LCBCER (Low Cepstra/BiCepstra Energy Ratio) Mean 5.6242�10�12 M3 MEEI MF
IMF-FD (based on Fractal Dimension) Median 1.4092�10�11 M3 MEEI MF
ICER (Inferior Colliculus Energy Ratio) – 2.8611�10�11 M3 MEEI MF
BMD (Bispectral Module Distance) Median 5.3843�10�11 M3 MEEI MF
AE (circular kernel) 4th moment 7.3659�10�10 P3 PdA MF
SE (circular kernel) Std 1.3186�10�09 P3 PdA MF
SE (triangular kernel) Mean 1.3839�10�09 P2 PdA M
BPD (Bispectral Phase Distance) Mean 1.0753�10�08 P3 PdA MF
IMF-NSRRE (based on second-order Rényi Entropy) 90th percentile 1.1298�10�08 P2 PdA M
IMF-SNRZCR (based on Zero-Crossing Rate) Mean 1.5834�10�08 M3 MEEI MF
HCBCER (High Cepstra/BiCepstra Energy Ratio) 1st percentile 4.7190�10�08 P3 PdA MF
SE (Cauchy kernel) Harmonic mean 5.1617�10�08 M1 MEEI F
BCPII (BiCepstrum Phase Interference Index) – 1.7589�10�07 M1 MEEI F
RPHIC (Relative Peak Height of Inferior Colliculus) – 2.2653�10�07 M2 MEEI M
BCMD (BiCepstral Module Distance) Harmonic mean 1.7894�10�06 M3 MEEI MF
HSBER (High Spectra/Bispectra Energy Ratio) Mean 3.2552�10�06 M1 MEEI F
AE (Laplacian kernel) Offset of linear regression 4.2554�10�06 P2 PdA M
SE (Laplacian kernel) 80th percentile 7.5456�10�06 P2 PdA M
BCMII (BiCepstrum Module Interference Index) – 1.1755�10�04 P3 PdA MF
LSBER (Low Spectra/Bispectra Energy Ratio) Mean excluding 20% outliers 3.7662�10�04 M2 MEEI M
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features are not very frequent when analysing pathological speech,
their potential seems to be high. However, their disadvantage is
that they are usually difficult to be interpreted clinically. This is
probably the reason they are not frequently used. Although they
can provide good classification results they do not say much about
specific pathology or speech dysfunction.

(2) Design new features that can quantify hoarseness, breathiness
and non-linearities in pathological speech signals. Clinical signs of
vocal fold dysfunctions are usually associated with breathiness or
hoarseness. Moreover voice can become aperiodic, noisy-like, and
it is very difficult to find any regularities in the signal. Sometimes
there is a frequent presence of sub-harmonics and chaos, which
can lead to a failure of conventional techniques of speech signal
analysis and which requires new parameterization methods devel-
oped specifically for pathological speech description.

We introduced 36 new measures based on modulation spectra,
inferior colliculus coefficients, bicepstrum, sample and approxi-
mate entropy and empirical mode decomposition. Features based
on modulation spectra quantify instability of vocal fold vibrations
and complements features based on inferior colliculus coefficients
that reflect the misplacement of articulators. Due to incorrect
glottal closure the pathological voice contains much more white
noise that can be effectively quantified by proposed features
derived from bicepstrum. New features based on empirical mode
decomposition are able to describe the noise component of
analyzed signal as well. Finally we proposed different kernel-
based approximate and sample entropies to measure regularities
inside the signal.

These novel features were statistically processed by the non-
parametric Mann–Whitney U test. All of them have been identified
as significant and they have passed the feature selection process in
at least one database. Moreover, some of them were listed among
top ten significant features selected in specific scenario (they
outperformed the other conventional features). In other words
they helped to improve classification results in terms of accuracy,
sensitivity and specificity and due to their effective quantification
abilities they have high impact on the future work.

(3) Prove that the proposed large set parameterization approach
can provide better classification results (with respect to classification
accuracy, sensitivity and specificity) than those published in the field
of pathological speech analysis by the other researchers. We tested
the significance of all the mentioned parameters on 3 (English,
Spanish, Czech) databases. In the case of the Massachusetts Eye
and Ear Infirmary (MEEI) database we get accuracy, sensitivity and
specificity equal to 100:070:0%, which are the best results that
have been published in the frame of this database (Henriquez et al.
reached 99:69% [40]). However, we are very critical with these
results. Therefore we discussed their trustability and the viability
of using the MEEI database as a benchmark for pathological speech
signal analysis.

The results obtained with the PdA database are more challenging.
When we considered the single-classifier approach, we reached the
accuracy 82:173:3%, which is the best among the published
numbers (Arias-Londono et al. published 81:7% [74]).

Regarding the last Czech Parkinsonian Speech Database
(PARCZ), we obtained poor accuracy (67:976:0%), however, this
is probably due to the fact that we used a binary classifier for a
multi-class database. We would like to do more experiments with
this database in a near future splitting the data into healthy speech
and mild, moderate and severe dysarthria.

(4) Select a database that has high potential for the future,
especially in terms of speech features design, tuning and testing.
Due to some issues related to vowels’ length, different sampling
frequencies, and different recording conditions, the MEEI database
should no longer be used as a benchmark. Results obtained using
this database are not trustable. The more challenging one is PARCZ

database. Unfortunately it is focused only on parkinsonic people
with hypokinetic dysarthria and it is not really suitable for a binary
classification (at least 4 classes should be considered).

Therefore the most suitable database for the evaluation of
pathological speech identification methods is PdA, where the
classification accuracies are still challenging and they can be
significantly improved. Moreover this database is freely available
for research purposes.

There are many works that deal with the development of
pathological voice identification methods and there is still a lot
that can be improved in this field of science. However, the
researchers should go further and focus not only on the patholo-
gical speech identification, but also on more sophisticated analysis
that would be more helpful for doctors and that can make the
treatment or diagnosis more effective. Probably the most impor-
tant challenges to face in the next decade are:

1. Identification of particular voice pathology. Identification of
pathological speech itself is not so interesting. There are many
pathologies (adductor spasmodic dysphonia, erythema, and
hypokinetic dysarthria) and the issue is to classify them
individually. This can be very problematic, therefore we pro-
pose to do some kind of clustering and split this big set into
subsets, for example according to the way they are reflected in
speech (problems with tongue movement, improper work of
soft palate, and disordered vocal folds).

2. Identification of voice pathology in its first stage or estimation of
its progress. This would enable doctors to start the treatment
very early and slow down the progress.

We are going to deal with these issues in future works.
However this research is very dependent on good databases and
especially in the case of voice pathology identification, as in its
first stage, there is still a lack of suitable training data.
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