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Abstract—There has been considerable recent research into the
connection between Parkinson’s disease (PD) and speech impair-
ment. Recently, a wide range of speech signal processing algorithms
(dysphonia measures) aiming to predict PD symptom severity us-
ing speech signals have been introduced. In this paper, we test how
accurately these novel algorithms can be used to discriminate PD
subjects from healthy controls. In total, we compute 132 dysphonia
measures from sustained vowels. Then, we select four parsimonious
subsets of these dysphonia measures using four feature selection
algorithms, and map these feature subsets to a binary classifica-
tion response using two statistical classifiers: random forests and
support vector machines. We use an existing database consisting of
263 samples from 43 subjects, and demonstrate that these new dys-
phonia measures can outperform state-of-the-art results, reaching
almost 99% overall classification accuracy using only ten dyspho-
nia features. We find that some of the recently proposed dysphonia
measures complement existing algorithms in maximizing the abil-
ity of the classifiers to discriminate healthy controls from PD sub-
jects. We see these results as an important step toward noninvasive
diagnostic decision support in PD.

Index Terms—Decision support tool, feature selection (FS),
Parkinson’s disease (PD), nonlinear speech signal processing, ran-
dom forests (RF), support vector machines (SVM).
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I. INTRODUCTION

N EUROLOGICAL disorders affect people’s lives at an epi-
demic rate worldwide. Parkinson’s disease (PD) is one

of the most common neurodegenerative disorders with an in-
cidence rate of approximately 20/100 000 [1] and a preva-
lence rate exceeding 100/100 000 [2]. Moreover, these statis-
tics might underestimate the problem because PD diagnosis
is complicated [3]. Given that age is the single most impor-
tant factor for PD and the fact that the population is growing
older, these figures could further increase in the not too distant
future [4].

Identifying the causes of PD onset remains elusive, although
genetic and environmental factors may be implicated [1]; hence,
the disease is often referred to as idiopathic. In those cases where
particular factors can be identified that cause PD-like symptoms
(for example drugs), the disease is termed Parkinsonism. PD
symptoms include tremor, rigidity and loss of muscle control in
general, as well as cognitive impairment.

The difficulty in reliable PD diagnosis has inspired re-
searchers to develop decision support tools relying on algo-
rithms aiming to differentiate healthy controls from people with
Parkinson’s (PWP) [5]–[7]. Although this binary discrimination
approach does not form a differential diagnosis (a differential di-
agnostic tool should be able to distinguish PD subjects amongst
a variety of disorders that present PD-like symptoms), it is a
promising first step toward that long-term goal.

Research has shown that speech may be a useful signal for
discriminating PWP from healthy controls [5], [7], on the basis
of clinical evidence which suggests that the vast majority of
PWP typically exhibit some form of vocal disorder [8]. In fact,
vocal impairment may be amongst the earliest prodromal PD
symptoms, detectable up to five years prior to clinical diagno-
sis [9]. In our own research, we have also presented strong ev-
idence linking speech to average Parkinson’s disease symptom
severity [5], [10]–[13]. Collectively, these findings reinforce the
notion that speech may reflect disease status, after appropriate
processing of the recorded speech signals.

The range of symptoms present in speech includes reduced
loudness, increased vocal tremor, and breathiness (noise). Vocal
impairment relevant to PD is described as dysphonia (inabil-
ity to produce normal vocal sounds) and dysarthria (difficulty
in pronouncing words). We refer to Baken and Orlikoff [14]
for a more detailed description of speech disorders. The ex-
tent of vocal impairment is typically assessed using sustained
vowel phonations, or running speech. Although it can be argued
that some of the vocal deficiencies in running speech (such as
combinations of consonants and vowels) might not be captured
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by the use of sustained vowels, the analysis of running speech
is more complex due to articulatory and other linguistic con-
founds [15], [16]. Therefore, the use of sustained vowels, where
the speaker is requested to sustain phonation for as long as pos-
sible, attempting to maintain steady frequency and amplitude at
a comfortable level, is commonplace in clinical practice [15].
Research has shown that the sustained vowel “ahh. . .” is suf-
ficient for many voice assessment applications [15], including
PD status prediction [5] and average PD symptom monitoring
[10], [11].

The study of speech disorders in general and in the con-
text of PD, in particular, has prompted the development of
many speech signal processing algorithms (henceforth dys-
phonia measures), for example, see [5], [7], [11], [15], and
references therein. In [5], it was shown that the most com-
monly used speech signal processing algorithms could dis-
criminate PWP from healthy controls with approximately 90%
overall classification accuracy, using four dysphonia features.
That study included traditional measurement algorithms fo-
cusing on fundamental frequency perturbation (jitter mea-
sures), amplitude perturbation (shimmer measures), and signal-
to-noise ratios (SNRs) (harmonics-to-noise ratio measures).
Moreover, that study included three novel nonlinear dys-
phonia measures, complementing the classical measures (see
Section II-A).

Subsequently, the dysphonia measures of [5] were applied to
the study of the related problem of mapping speech impairment
to average PD symptom severity [10]. Very recently, additional
nonlinear dysphonia measures have been proposed for that ap-
plication [11], which (coupled with some classical algorithms)
significantly improved on previous results [10]. Hence, we hy-
pothesized that applying the dysphonia measures of [11] to the
problem of discriminating PWP from healthy controls might
bring additional insight, and improved results [5].

II. DATA

The National Center for Voice and Speech (NCVS) database
comprises 263 phonations from 43 subjects (17 females and 26
males, 10 healthy controls, and 33 PWP), an extension of the
database used in [5] (the extended database includes all the voice
recordings from the earlier study). The ten healthy controls (four
males and six females), had an age range of 46–72 years with
(mean ± standard deviation) 61 ± 8.6 years, and we processed
61 healthy phonations. The 33 PWP (22 males and 11 females),
had an age range of 48–85 (67.2± 9.3), time since diagnosis 0 to
28 years (5.8± 6.3); there are 202 PD phonations. This database
comprises six or seven sustained vowel “ahh. . .” phonations
from each speaker, recorded at a comfortable frequency and
amplitude.

The phonations were recorded in an IAC sound-treated booth
with a head-mounted microphone (AKG C420), which was
placed at 8-cm distance from the subject’s mouth. The voice
signals were sampled at 44.1 kHz with 16 bits resolution, and
were recorded directly to computer using CSL 4300B hardware
(Kay Elemetrics).

TABLE I
BREAKDOWN OF THE 132 DYSPHONIA MEASURES USED IN THIS STUDY

III. METHODS

The aim of this study is to analyze the speech signals, extract
features, and to attempt to map these features to the response
(PD versus healthy control).

A. Extracting Features From the Speech Signals

We use the dysphonia measures rigorously defined in [11].
The rationale, background, and algorithms used to compute
these features are also explained in detail in that paper. Here, we
summarize these algorithms. For convenience, Table I lists the
extracted features, grouped together into algorithmic “families”
of features that share common attributes, along with a brief
description of the properties of the speech signals that these
algorithms aim to characterize.

Typical examples of features are jitter and shimmer [14], [15].
The motivation for these features is that the vocal fold vibration
pattern is nearly periodic in healthy voices, whereas this peri-
odic pattern is considerably disturbed in pathological cases [15].
Therefore, PWP are expected to exhibit relatively large values
of jitter and shimmer compared to healthy controls. Different
studies use slightly different definitions of jitter and shimmer,
for example, by normalizing the measure over a different range
of vocal fold cycles (time interval between successive vocal fold
collisions). For that reason, here we investigate many variations
of these algorithms which we collectively refer to as jitter and
shimmer variants [11].
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Building on the concept of irregular vibration of the vocal
folds, earlier studies have proposed the recurrence period den-
sity entropy (RPDE), the pitch-period entropy (PPE), the glottis
quotient (GQ), and F0-related measures [5], [11]. GQ attempts
to detect vocal fold cycle durations [17]. Then, we work directly
on the variations of the estimated cycle durations to obtain the
GQ measures. RPDE quantifies the uncertainty in estimation
of the vocal fold cycle duration using the information theoretic
concept of entropy. PPE uses the log-transformed linear predic-
tion residual of the fundamental frequency in order to smooth
normal vibrato (normal, small, periodic perturbations of the vo-
cal fold cycle durations which are present in both healthy and PD
voices [15]), and measures the impaired control of fundamental
frequency (F0) during sustained phonation. The F0-related mea-
sures (such as the standard deviation of the F0 estimates) include
the difference in the measured F0 with the expected, healthy F0
in the population for age- and gender-matched controls [15].

The second general family of dysphonia measures quantifies
noise, or produces a SNR estimate. The physiological motiva-
tion for these measures is that pathological voices exhibit in-
creased aeroacoustic noise because of the creation of excessive
turbulence due to incomplete vocal fold closure. Such measures
include the harmonic-to-noise ratio (HNR), detrended fluctu-
ation analysis (DFA), glottal to noise excitation (GNE), vocal
fold excitation ratio (VFER), and empirical mode decomposi-
tion excitation ratio (EMD-ER). GNE and VFER analyze the
full frequency range of the signal in bands of 500 Hz [11]. Addi-
tionally, we have created SNR measures using energy, nonlinear
energy (Teager–Kaiser energy operator) and entropy concepts
whereby the frequencies below 2.5 kHz are treated as “signal”,
and everything above 2.5 kHz is treated as “noise” [11]. EMD-
ER has a similar justification: the Hilbert–Huang transform [18]
decomposes the original signal into components, where the ini-
tial components are the high-frequency constituents (in practice
equivalent to noise), and the later components constitute useful
information (actual signal).

Finally, mel-frequency cepstral coefficients (MFCC) have
long been used in speaker identification and recognition ap-
plications, but have shown promise in recent biomedical voice
assessments [11], [19], [20]. They are aimed at detecting subtle
changes in the motion of the articulators (tongue, lips), which
are known to be affected in PD [8].

Overall, applying the 132 dysphonia measures to the 263
NCVS speech signals, gave rise to a 263 × 132 feature matrix.
There were no missing entries in the feature matrix.

B. Preliminary Statistical Survey of Dysphonia Features

In order to gain a preliminary understanding of the statistical
properties of the features, we computed the Pearson correlation
coefficient and the mutual information I(x,y), where the vector
x contains the values of a single feature for all phonations, and
y is the associated response. As in [11], we normalize I(x,y)
by dividing through I(y,y) for presentation purposes. The larger
the value of the normalized mutual information, the stronger
the statistical association between the feature and the response.
We used the KDE Toolbox by Ihler and Mandel for the compu-

tation of the mutual information [21]. The mutual information
is computed via the evaluation of the marginal entropies H(x),
H(y) and the joint entropy H(x,y). The entropies are computed
by evaluating the mean log-likelihood of the density estimates
(the densities are computed using kernel density estimation with
Gaussian kernels) [21].

C. Feature Selection

With the large number of dysphonia features of this study,
we cannot expect the feature space to be uniformly populated
by only 263 phonations, and the risk of overfitting arises. Many
classification algorithms are fairly robust to the inclusion of po-
tentially noisy or irrelevant features, and their predictive power
may or may not be severely affected; however, reducing the num-
ber of features often improves the model’s predictive power for
hold-out data. A reduced feature subset also facilitates infer-
ence, enabling one to gain insights into the problem via analysis
of the most predictive features [22], [23].

Exhaustive search through all possible feature subsets is com-
putationally intractable, a problem which has led to the devel-
opment of feature selection (FS) algorithms which offer a rapid,
principled approach to reduction of the number of features. FS
is a topic of extensive research, and we refer to Guyon et al. [23]
for further details.

Here, we have compared four efficient FS algorithms: 1)
least absolute shrinkage and selection operator (LASSO) [24],
2) minimum redundancy maximum relevance (mRMR) [25],
3) RELIEF [26], and 4) local learning-based feature selection
(LLBFS) [27]. LASSO penalizes the absolute value of the co-
efficients in a linear regression setting; this leads to some coef-
ficients that are shrunk to zero, which effectively means that the
features associated with those coefficients are eliminated. The
LASSO has been shown to have oracle properties (correctly
identifying all the “true” features contributing toward predict-
ing the response) in sparse settings when the features are not
highly correlated [28]. However, when the features are corre-
lated, some noisy features (not contributing toward predicting
the response) may still be selected [29]. Moreover, some useful
features toward predicting the response amongst the correlated
features may be discarded [22]. The mRMR algorithm uses a
heuristic criterion to set a tradeoff between maximizing rele-
vance (association strength of features with the response) and
minimizing redundancy (association strength between pairs of
features). It is a greedy algorithm (selecting one feature at a
time), which takes into account only pairwise redundancies and
neglects complementarity (joint association of features toward
predicting the response). RELIEF is a feature-weighting algo-
rithm, which promotes features that contribute to the separation
of samples from different classes. It is conceptually related to
margin maximization algorithms, and has been linked to the k-
nearest-neighbor classifier [30]. Contrary to mRMR, RELIEF
uses complementarity as an inherent part of the FS process.
Finally, LLBFS aims to decompose the intractable, exhaustive
combinatorial problem of FS into a set of locally linear problems
through local learning. The original features are assigned fea-
ture weights that denote their importance to the classification
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problem, and the features with the maximal weights are then
selected. LLBFS was conceived as an extension of RELIEF
and relies on kernel density estimation and margin maximiza-
tion concepts [27]. Overall, all four FS algorithms have shown
promising results in machine learning applications over a wide
range of different applications.

The feature subsets were selected using a cross-validation
(CV) approach (see Section III-E), using only the training data
at each CV iteration. We repeated the CV process a total of ten
times, where each time the M features (M = 132) for each FS
algorithm appear in descending order of selection. Ideally, this
feature ordering would be identical for all ten CV iterations,
but in practice it is not. Hence, we need to have a strategy to
select the features that appeared most often under each of the FS
algorithms, to identify four feature subsets, one subset for each
FS algorithm. Specifically, for each FS algorithm, we create
an empty set S which will contain the indices of the features
selected, and apply the following voting scheme. Feature indices
are incrementally included, one at a time, in S. For each step
K (K is a scalar taking values 1, . . . , M), we find the indices
corresponding to the features selected in the 1, . . . , K search
steps for all the ten CV repetitions. Then, we select the index
which appears most frequently amongst these 10 × K elements
and which is also not already included in S. This index is now
included as the Kth element in S. Ties are resolved by including
the lowest index number. This entire process is repeated for each
of the four FS algorithms. There is one final implementation
issue that we need to address: contrary to the other three FS
algorithms, LASSO may remove features in subsequent stages
during its incremental FS search. Therefore, for LASSO, we
repeated the tenfold CV process independently for each Kth
step, interrogating the algorithm to provide the best-K features
prior to the voting scheme explained before.

Once the final selected feature subset S was decided for each
FS algorithm, these features were input into the classifier in
the subsequent mapping phase to obtain the final healthy/PD
predictions from the dysphonia measures.

D. Mapping Selected Dysphonia Features to the Response

The preliminary correlation analysis of the features against
the response presented before provides an indication of the as-
sociation strength of each feature with the response. However,
ultimately our aim is to develop a functional relationship f(X)
= y, which maps the dysphonia features X = (x1 , . . . ,xM ),
where M is the number of features, to the response y. That is, we
need a binary classifier that will use the dysphonia measures to
discriminate healthy controls from PWP.

We compared two widely used statistical machine-learning
algorithms here: random forests (RF), and support vector ma-
chines (SVM) [22]. RF is an ensemble technique, weighting
the output of a large number of tree-structured prediction func-
tions f (we used 500 trees). RF has a single tuning parameter:
the number of features over which to search to construct each
branch of each tree. However, this classifier has been found to
be very robust to the choice of this parameter [32]. Following
the suggestion of Breiman [32], we used the default setting (the

square root of the number of input features), but also compared
the results using half this default number (i.e. the square root
of the number of input features, divided by two), and double
this number (i.e. the square root of the number of input features,
multiplied by two).

SVMs attempt to construct an optimal separating hyperplane
in the feature space, between the two classes in this binary deci-
sion problem by maximizing a geometric margin between points
from the two classes. In practical applications, data often cannot
be linearly separated; in those cases, SVMs can use the kernel
trick to transform the data into a higher dimensional space, and
construct the separating hyperplane in that space [22]. There is
extensive research, beyond the scope of this study, on how to
work with nonlinearly separable data (see [22] and references
therein). In general, this classifier requires the specification of
some internal parameters, and SVMs are known to be partic-
ularly sensitive to the values of these parameters [22]. Here,
we used the LIBSVM implementation [33] and followed the
suggestions of the developers of that implementation [34]: we
linearly scaled each of the input features to lie in the range
[–1, 1], and used a Gaussian, radial basis function kernel. The
determination of the optimal values of the kernel parameter γ
and the penalty parameter C was decided using a grid search of
possible values. We selected the pair (C,γ) that gave the low-
est CV misclassification error (see Section III-E for details of
CV scheme). Specifically, we searched over the grid (C,γ) de-
fined by the product of the sets C = [2−5 , 2−13 , . . . , 215 ], and
γ = [2−15 , 2−13 , . . . , 23]. Once the optimal parameter pair (C,γ)
was determined, we trained and tested the classifier using these
parameters.

E. Classifier Validation

Validation in this context aims at an estimate of the general-
ization performance of the classification based on the dysphonia
features, when presented with novel, previously unseen data.
The tacit statistical assumption is that the new, unseen data will
have a similar joint distribution to the data used to train the
classifier. Most studies achieve this validation using either CV
or bootstrap techniques [22].

In this study, we used a tenfold CV scheme, where the original
data (263 phonations) were split into two subsets: a training
subset consisting of 90% of the data (237 phonations), and a
testing subset consisting of 10% of the data (26 phonations).
The process was repeated a total of 100 times, where in each
repetition the original dataset was randomly permuted prior to
splitting into training and testing subsets. On each repetition,
we computed the mean absolute classification error MAE =
1/N

∑
i∈Q |ŷi − yi |, where ŷi is the predicted response, yi is

the actual response for each ith entry in the training or testing
subset, N is the number of phonations in the training or testing
subset, and Q contains the indices of that set. Errors over the
100 CV repetitions were averaged. Then, the performance of
the model is (1 − MAE) · 100%.
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TABLE II
STATISTICAL ANALYSIS OF THE DYSPHONIA FEATURES

IV. RESULTS

A. Preliminary Statistical Survey

Table II presents the ten dysphonia features most strongly
associated with the response, sorted according to the absolute
correlation coefficient value. It is interesting to note that some
of the nonlinear dysphonia measures (RPDE, DFA) appear to be
quite strongly associated with the response, and exhibit statisti-
cally significant (p < 0.001) correlation, but the more recently
proposed VFER measures, and MFCCs, are more strongly as-
sociated. These findings give some initial confidence that the
binary classification task of this study has a good chance of
success. The statistical correlations between pairs of dysphonia
measures (correlation matrix) appear in the online supplemen-
tary material.

B. Classification Stage: Mapping Dysphonia Features
to the Response

Table III summarizes comparable classification results in the
literature, and those in the present study. All the studies cited in
Table III used the exact feature data matrix computed in Little
et al. [5], which comprised 31 subjects (195 phonations) and 22
features. FS was conducted in all of these studies before mapping
those (selected) features to the response. Our results are obtained
using a larger database with 43 subjects (263 phonations), and
a much larger number of features (132) based on the algorithms
described in Tsanas et al. [11]. For a fair comparison with the
original study of Little et al. [5], we have also applied the cross-
validated classification algorithms of this paper to the optimal
feature subset selected in that study.

To date, the best results, across a wide range of classification
algorithms, had a reported accuracy of around 93%, when using
the same feature data as calculated in [5] (see Table III). Using
the 132 features in this study with SVM leads to a noticeable

TABLE III
CLASSIFICATION ACCURACY OF STUDIES IN THE LITERATURE AND THIS PAPER

Fig. 1. Comparison of out-of-sample mean performance results with confi-
dence intervals (one standard deviation around the quoted mean performance)
using the features selected by each of the four-feature selection algorithms.
These results are computed using tenfold CV with 100 repetitions. For clarity,
we present here only the first 30 steps.

improvement in accuracy (97.7%) over these existing studies.
However, these studies used considerably fewer features (at
most 22). Therefore, this improved result could be affected by
overfitting, and further accuracy gains may occur with fewer
features. Thus, we computed the out of sample MAE results
using the features selected by the four FS algorithms as the
number of features is varied (see Fig. 1). In this way, we found
that the globally optimal feature size (minimum MAE) is 22
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TABLE IV
SELECTED FEATURE SUBSETS AND CLASSIFICATION PERFORMANCE

using RELIEF, but this is not a practically useful improvement
over the MAE when using only ten features. Following the
principle of parsimony then, we choose the least number of
features giving the most accurate results according to mean
performance (%). Therefore, our subsequent results use only
the first ten features (see Table IV) for each FS algorithm (the
features are presented in descending order of selection).

The SVM also outperforms RF in this reduced feature space
(for example, using the ten features from RELIEF in Table IV,
RF achieves only 93.5% accuracy compared to 98.6% accu-
racy with SVM). We remark that reducing the original 132-
dimensional feature space can lead to an improvement in out-of-
sample performance accuracy with both SVM and RF. Overall,
these findings suggest that we can estimate whether someone
has PD or is healthy from a single phonation, with almost 99%
accuracy using only ten dysphonia features, a considerable im-
provement over previous results.

Finally, we examine whether the out-of-sample results using
different FS algorithms (see Table IV) are statistically signif-
icantly different. Specifically, we compared the distributions
of the classification errors obtained using RELIEF against the
distributions of classification errors with the alternative FS ap-
proaches (Mann–Whitney rank sum test). In all three cases, the
test rejected the null hypothesis of equal medians (p < 0.001);
hence, the classification results using RELIEF-selected features
are statistically significantly better from the results obtained
using the other FS algorithms.

V. DISCUSSION

Decision support tools in biomedical applications are gener-
ating considerable research interest not least because of their
potential to improve healthcare provision. In this study, we have
applied an extensive range of classical and novel speech signal
processing algorithms for vocal pathology assessment in order
to investigate how to discriminate PWP from healthy controls
using sustained vowel phonations. This binary discrimination
problem has attracted interest in recent years, with the best re-
sults reporting approximately 93% classification accuracy on
a subset of 22 features. Here, we demonstrated that we can
achieve almost 99% accuracy using ten dysphonia measures.
Compared to previous studies in this application, we have used
an expanded speech database (which included all the 195 phona-
tions in the original database and 68 additional phonations), and
introduced many recently proposed dysphonia measures, which
have not been previously used in this application (all the dys-
phonia measures in this study were computed anew using the
algorithms described in [11]). As in previous studies, we have
used nonlinear SVMs for mapping features to the response, and
also investigated RF.

A novel contribution in this paper is to use four different FS
algorithms to find a small subset of only ten features from the
original 132. This led to an informative feature subset for the bi-
nary classification task of this study, which may also tentatively
suggest the most detectable characteristics of voice impairment
in PD. All FS algorithms coped relatively well with the task, but
RELIEF provided the subset with the lowest classification error.
Recent research has demonstrated that RELIEF may work very
well, in practice, in this kind of application because, internally, it
incorporates a (nonlinear, nearest-neighbor) classifier [30]. The
presence of highly correlated features (see the Excel file in the
online supplementary material) indicates that LASSO may not
be in its optimal setting (sparse environment with low feature
correlations) to perform well. Thus, LASSO may be selecting
some noisy features, which may not assist the discrimination of
the two classes. Recently, we have found that feature comple-
mentarity may be a required aspect of FS in a related applica-
tion [31]. Therefore, mRMR, which does not take into account
feature complementarity, may also not be the most appropriate
algorithm in this application. These insights may help explain
why RELIEF and LLBFS appear to work better in this domain.

One interesting new finding is that of all the families of mea-
sures tested here, MFCCs and SNR measures (VFER, HNR,
GNE) appear to be consistently selected (see Table IV). The
pathophysiological importance of SNR measures is well known:
it is most likely the effect of amplified aeroacoustic noise due
to increased airflow turbulence, ultimately generated by incom-
plete vocal fold closure. However, the selection of MFCCs is
somewhat surprising, because these measures are mainly sensi-
tive to insufficient control in the steady placement of the articu-
lators, which amplify specific acoustic resonances and attenuate
others in the vocal tract. This may indicate that more research
into the effect of PD on vocal tract articulatory impairment,
even for sustained phonations, is required. By design, MFCCs
are not highly correlated (see the correlation matrix in the online
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supplementary material), and provide complementary informa-
tion regarding characteristics of the speech signal. Combined
with the fact that some MFCCs are relatively highly correlated
with the response (see Table II), provides a highly plausible ex-
planation for why RELIEF tends to select these features. Com-
pared to the original study of Little et al. [5] where the selected
feature subset comprised HNR, RPDE, DFA, and PPE, RELIEF
consistently selected the new dysphonia measures presented
here. LLBFS (the FS algorithm which resulted in the second
best performance) selected RPDE, HNR, and DFA with lower
rank (7–9) compared to the new features described here. These
findings justify the higher classification accuracy obtained in
this study in comparison to previous studies.

In our experiments, SVM has a clear edge over RF for this
particular application (see Table III). We also verified Breiman’s
observation [32] that modifying the RF tuning parameter (the
number of features over which to search to construct each branch
of each tree) does not produce markedly different results in the
overall RF classification accuracy. Some empirical studies have
compared SVM and RF with no clear verdict about overall su-
periority of either approach [39], although it is well established
that both classifiers perform well in general [22]. It would be in-
teresting to investigate the reasons that RF perform noticeably
worse than SVM in this application. As Statnikov et al. [40]
remark, this undertaking is not straightforward, and requires ex-
tensive empirical and theoretical studies to explain the perfor-
mance differences observed across different studies for SVMs
and RF [36]. Moreover, it may be worth taking into account the
confidence of the classifiers’ decisions. Both SVMs and RF can
be arranged to produce probabilistic outputs, and it would be
possible to introduce an additional “Don’t know” class if the
probability of the class assignments was below some prespeci-
fied threshold. In a practical setting, assigning probabilities to an
automatic decision support tool would aid clinicians in deciding
upon further actions.

It has recently been suggested that it may be useful to partition
the data according to gender in a similar application (mapping
the dysphonia measures to a clinical metric that quantifies av-
erage Parkinson’s disease symptom severity [11]). Here, this
would require an entirely different dysphonia feature subset
and classifier for males versus females. However, reducing the
available data by splitting the original dataset into two subsets
diminishes the statistical power of the performance evaluations.
When we attempted data partitioning according to gender with
this data, we obtained reduced performance accuracy. We em-
phasize that with more data, it is possible that partitioning (which
may or may not be limited to gender partitioning) could lead
to interesting insights. For example, data partitioning by gender
could provide insight into the most useful features for males
versus females with regard to the discrimination of PWP from
healthy controls, as in Tsanas et al. [11].

We envisage this study as a step toward the larger goal of tech-
nologies for diagnostic decision support in PD. The algorithms
in this study appear to be very effective for discriminating PWP
from healthy controls on the basis of extensive CV tests. Con-
ceptually, CV provides an estimate of the performance of the
model on new data, assuming that the new dataset is drawn from

the same distribution as the dataset used to train the classifier.
Therefore, the findings of this study might need to be further val-
idated using independent datasets before this technology could
be used as a diagnostic decision support tool. We are working
toward collecting new datasets toward this aim. Furthermore, we
remark that the healthy subjects in this study did not have any
pathological vocal symptoms when assessed by expert speech
scientists. A study involving a cohort of subjects with PD-like
vocal symptoms, but without PD, would further validate the ap-
plicability of these findings. Although running speech has been
used in other studies [7], the collection of sustained vowels in
controlled circumstances reduces intraspeaker variability and
confounding linguistic factors, and may lead to better results.
Nevertheless, future studies could investigate the combination
of both approaches, extracting information from both sustained
vowels and running speech. It would be interesting to use a
very large database including voices from diverse disorders,
where the use of sophisticated dysphonia measures might help
determine the underlying pathology amongst a wide set of pos-
sible diagnoses. Also, the data in this study are collected in an
acoustically controlled environment; we are currently working
to extend these findings to more realistic acoustic setups, which
would extend the proposed technology for use in more practical
settings. Finally, future work could incorporate additional infor-
mation from physical models of voice production mechanisms,
for example to improve the accuracy of jitter, shimmer and HNR
estimates using glottal source signals obtained from the voice
recordings.
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