Lecture 10

Topics: Double integrals - polar coordinates, general changes of variables, center of mass

- Introduced polar coordinates. Showed geometrically that dA = r dr d theta
- Examples of double integrals in polar coordinates, including
 - Showed where the normlaization factor of sqrt(pi) comes from in the definition of the "normal distribution" in the following way. We computed the integral from -infity to -infinity of exp(-x^2) by relating it ot the double integral over the whole xy-plane of exp(-x^ 2 -y^2). This later calculation can be done in polar coordinates but is impossible to do directly in cartesian coordinates.
- Disucssed changes of variable in general and that the change in area of a small piece is given by multiplication by the absolute value of the determinant of the Jacobian matrix. This was obtained from the area of a parallelogram and computing its area using the cross product.
- Introduced the concept of center of mass. In the one variable case, starting with the case of discrete masses and using a Riemann sum, we derived the integral formula for center of mass. Derived the center of mass formula in 2D. An example will be given next class.

Where to find this material:

- Adams and Essex 14.4, 14.7
- Corral, 3.5, 3.6
- Guichard, 15.2, 15.3 15.7
- Active Calculus. 11.4, 11.5, 11.9

