Lecture 10

Topics: Double integrals - polar coordinates, general changes of variables, center of mass

- Introduced polar coordinates. Showed geometrically that $\mathrm{dA}=\mathrm{rdr} \mathrm{d}$ theta
- Examples of double integrals in polar coordinates, including
- Showed where the normlaization factor of sqrt(pi) comes from in the definition of the "normal distribution" in the following way. We computed the integral from -infity to -infinity of $\exp \left(-x^{\wedge} 2\right)$ by relating it ot the double integral over the whole $x y$-plane of $\exp \left(-x^{\wedge}\right.$ $2-y^{\wedge} 2$). This later calculation can be done in polar coordinates but is impossible to do directly in cartesian coordinates.
- Disucssed changes of variable in general and that the change in area of a small piece is given by multiplication by the absolute value of the determinant of the Jacobian matrix. This was obtained from the area of a parallelogram and computing its area using the cross product.
- Introduced the concept of center of mass. In the one variable case, starting with the case of discrete masses and using a Riemann sum, we derived the integral formula for center of mass. Derived the center of mass formuila in 2D. An example will be given next class.

Where to find this material:

- Adams and Essex 14.4, 14.7
- Corral, 3.5, 3.6
- Guichard, 15.2, 15.315 .7
- Active Calculus. 11.4, 11.5, 11.9

Fix Δr and $\Delta \theta$
Note that $\triangle A$ changes with r

METHOD
(2)

$$
\begin{aligned}
& \Delta A_{i}=\frac{\Delta \theta}{2 \pi}\left[\pi\left(r_{i}+\Delta r\right)^{2}-\pi r_{i}^{2}\right] \\
&=r_{i} \Delta r \Delta \theta+\frac{1}{2} \Delta \theta \Delta r^{2} \\
& \approx r_{i} \Delta r \Delta \theta \\
& \text { integration "dA=rdrd者 }\binom{\text { see HW 5,Q2 }}{r=\mid \text { Jacobian| }}
\end{aligned}
$$

Examples
(1) Area of a disk of radius a

$$
\begin{aligned}
\text { Area } & =\iint_{R} 1 \frac{d A}{} \\
\text { cords } & =\int_{0}^{2 \pi} \int_{0}^{a} 1 \overparen{r d r d \theta}
\end{aligned}
$$

R : $-a \leqslant x \leq a$
$\operatorname{lin} \sum 1 \Delta A_{i}$

$$
-\sqrt{a^{2}-x^{2}} \leq y \leq \sqrt{a^{2}-x^{3}}=\left.\int_{0}^{2 \pi} \frac{1}{2} r^{2}\right|_{0} ^{a} d \theta
$$

In polar coords

$$
R: 0 \leqslant 0 \leqslant 2 \pi
$$

$$
=\left.\frac{1}{2} a^{2} \theta\right|_{0} ^{2 \pi}
$$

$$
0 \leqslant r \leqslant a
$$

$$
y=\frac{1}{2} a^{2} \times 2 \pi
$$

$=\pi a^{2}$ as expected
(2) $\int_{-\infty}^{\infty} e^{-x^{2}} d x \quad y=e^{-x^{2}}$

I' $=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ why?

Note $\int e^{-x^{2}} d x$ can not be expressed in terms of elementary functions
TRICK!!

$$
\begin{aligned}
& \iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A \quad e^{A+B}=e^{A} e^{B} \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} d y d x \\
&= \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{-x^{2}} e^{-y^{2}} d y\right) d x \\
&= \int_{-\infty}^{\infty} e^{-x^{2}}\left(\int_{-\infty}^{\infty} e^{-y^{2}} d y\right) d x \\
&=\left(\int_{-\infty}^{\infty} e^{\left.-y^{2} d y\right)}\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)\right. \\
&= I^{2} I \\
& I
\end{aligned}
$$

Examples (2)
We now compute $\iint_{\mathbb{R}} e^{-x^{2}-y^{2}} d A \frac{\text { using })}{\text { polar concord }}$
$\mathbb{R}^{2}: \begin{aligned} & 0 \leqslant \theta \leqslant 2 \pi ; \quad x^{2}+y^{2}=r^{2} \\ & 0 \leqslant r<\infty\end{aligned}$
polar coors

So, $\iint_{\mathbb{R}} e^{-x^{2}-y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2}} r d r d \theta$ [substitute $u=-r^{2}$

$$
=2 \pi \lim _{b \rightarrow \infty}-\left.\frac{1}{2} e^{-r^{2}}\right|_{0} ^{b}
$$

$$
=\pi\left(1-\lim _{b \rightarrow \infty} e^{-b^{2}}\right)
$$

$$
\therefore \quad \int_{-\infty}^{\infty} e^{-x^{2}}=\sqrt{\pi}
$$

NoteOThis is why there is a $\frac{1}{\sqrt{\pi}}$ in the definition of the
"normal distribution" $\int_{-\infty}^{\infty} \frac{1}{\sqrt{\pi}} e^{-x^{2}} d x=1$
(2) We can not evaluate $\int_{-\infty}^{x_{0}} e^{-x^{2}} d x$

Aside

In general, the normal distribution.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x
$$

Recall Change of variables (substitution)

$$
\begin{aligned}
& \int \sin \left(t^{2}\right) 2 t d t=\int \sin (s) d s \\
& s=s(t)=t^{2}, \frac{d s}{d t}=2 t \text { or " } d s=2 t d t
\end{aligned}
$$

Change of variables continued

$$
\begin{aligned}
& \vec{a}=\left\langle\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right), 0\right\rangle \Delta u \\
& \vec{b}=\left\langle\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right), \frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right), 0\right\rangle \Delta v
\end{aligned}
$$

Area \approx Area of the parallelogram

$$
=\|\vec{a} \times \vec{b}\|
$$

$$
=\left|\begin{array}{ccc}
i & j & k \\
x_{u}\left(u_{0}, v_{v}\right) & y_{u}\left(u_{0}, v_{0}\right) & 0 \\
x_{v}\left(u_{0}, v_{0}\right) & y_{v}\left(u_{0}, v_{0}\right) & 0
\end{array}\right|
$$

$$
=\left\|\left\langle 0,0, \quad x_{u} y_{v}-x_{v} y_{u}\right\rangle\right\| \Delta u \Delta v
$$

$$
=\left|x_{u} y_{v}-x_{v} y_{u}\right| \Delta u \Delta v
$$

$$
=\left|\begin{array}{ll}
x_{u}\left(u_{0}, v_{0}\right) & y_{u}\left(u_{0}, v_{0}\right) \\
x_{v}\left(u_{0}, v_{0}\right) & y_{v}\left(u_{0}, v_{0}\right)
\end{array}\right| \Delta u \Delta v
$$

$$
=\left|J_{F}\left(u_{0}, V_{0}\right)\right| \Delta u \Delta v
$$

Conclusion

$$
F(u, v)=(x(u, v), y(u, v)): \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

\square
$|J| \Delta u \Delta v$

$$
\iint_{R} h(x, y) d A^{\prime \prime} d x d y
$$

$$
=\iint_{R^{\prime}} h(x(u, v), y(u, v))\left|J_{F}(u, v)\right| d A
$$

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|^{d u d v}
$$

Example Polar coords. $F(r, \theta)=(r \cos \theta, r \sin \theta)$

$$
\left|\left|\bar{J}_{F}(r, \theta)\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\right.
$$

More of the change of variables formula (NOT COVERED IN)

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

$A: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$
$\vec{x} \longmapsto A \vec{x}$
This is a linear transformation:
(1) $A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}$
(2) $A(c \vec{x})=c A \vec{x}$

How does A transform a rectangle?

FACT (check using the cross product as before
Area is changed by a factor of $\operatorname{det}(A)=|A|$
Given

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}
$$

then the linear approximation at $\left(u_{0}, v_{0}\right)$ is

$$
J_{F}\left(u_{0}, v_{0}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\left(J_{A C O B / A N}\right)
$$

It changes area by a factor $\operatorname{det}(J)$

Note. This is true in any dimension

Center of mass

Aim: Find a formula for the center of mass of 2-dimensional regions (lamina) with density $\rho(x, y) _$units. MASS/AREA

First, the dimensional case:

Balance occurs when

$$
m_{1} x_{1}=m_{2} x_{2} \quad \begin{gathered}
\text { "TORQUE" } \\
\\
\text { "MT Moment" }
\end{gathered}
$$

Discrete masses

$$
\begin{aligned}
\text { Total mass }^{2} M & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} \rho\left(x_{i}\right) \Delta x_{i} \\
& =\int_{0}^{L} \rho(x) d x
\end{aligned}
$$

$$
\begin{aligned}
\text { Total moment } & =\lim _{N \rightarrow \infty} \sum_{i=1}^{N} x_{i} \rho\left(x_{i}\right) \Delta x_{i} \\
& =\int_{0}^{L} x \rho(x) d x \\
\bar{x} & =\frac{\int_{0}^{L} x \rho(x) d x}{M}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \text { mass }=\Delta m_{i j} \approx \rho\left(x_{i}, y_{j}\right) \Delta A_{i j} \\
& \text { Total mass }=M=\iint_{R} \rho(x, y) d A
\end{aligned}
$$

$\begin{aligned} & \Delta \text { moment about } \\ & \text { the x-axis }\end{aligned}=\Delta m_{i j} \cdot y_{j}$
$\begin{aligned} & \text { Total moment about } \\ & \text { the } x \text {-axis }\end{aligned}=M_{R}=\iint_{R} y \stackrel{\Gamma}{\rho(x, y) d A}$
Total moment about $=M_{y}=\iint_{R} x \rho(x, y) d A$
the y-axis

$$
\begin{aligned}
& \bar{x}=M_{y} / M \\
& \bar{y}=M_{X} / M
\end{aligned}
$$

Center of mass $=(\bar{x}, \bar{y})$

Note. We do not discuss the moment of inertia. This is the $2^{\text {nd }}$ moment: dist t^{2} mass

