
CS-C2160 Theory of Computation

Lecture 6: The Parsing Problem, Parse Trees and Recursive-Descent
Parsing

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

2/69

Topics:

The parsing problem and parse trees

Recursive-descent parsing

LL(1) grammars

* Excursion: Attribute grammars

* Excursion: Parsing tools in the Scala language

* Supplement: General definition of LL(1) grammars

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

3/69

Recap: Context-free grammars
Example:

A (simplified) grammar for arithmetic expressions in a C-like program-
ming language:

E → T | E + T

T → F | T ∗ F

F → a | (E ) | f (L )

L → ε | L′

L′ → E | E , L′

Deriving the string f (a+a)∗a in the grammar:

E ⇒ T ⇒ T ∗F ⇒ F ∗F
⇒ f (L)∗F ⇒ f (L′)∗F ⇒ f (E)∗F
⇒ f (E+T)∗F ⇒ f (T +T)∗F ⇒ f (F+T)∗F
⇒ f (a+T)∗F ⇒ f (a+F)∗F ⇒ f (a+a)∗F
⇒ f (a+a)∗a. CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

4/69

The Parsing Problem and Parse Trees



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

5/69

6.1 The parsing problem and parse trees

We want to solve the following problem:

Given a context-free grammar G and a string x. Is x ∈ L(G)?

An algorithm (program) that solves the problem is called a parser.

There are many alternative solution techniques, especially when the
grammar G is of some (practically relevant) special form.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

6/69

Derivations and parse trees
Example:

Recall the grammar Gexpr:

E → T | E + T

T → F | T ∗ F

F → a | (E )

Some derivations of string a+a in the grammar are:
(i) E ⇒ E+T ⇒ T +T ⇒ F+T

⇒ a+T ⇒ a+F ⇒ a+a
(ii) E ⇒ E+T ⇒ E+F ⇒ T +F

⇒ F+F ⇒ F+a ⇒ a+a
(iii) E ⇒ E+T ⇒ E+F ⇒ E+a

⇒ T +a ⇒ F+a ⇒ a+a

The underlines denote which non-terminal variable is substituted in
which step.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

7/69

A derivation is a leftmost derivation if in each step the substitution
is applied to the leftmost available non-terminal variable. (To
emphasise this, we may use the symbol ⇒

lm
instead of⇒.)

Derivation (i) on the previous slide is a leftmost derivation.

Rightmost derivations (symbol ⇒
rm

) are defined similarly.

Derivation (iii) on the previous slide is a rightmost derivation.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

8/69

Let G = (V,Σ,R,S) be a context-free grammar.
A parse tree for G is an ordered tree τ where:

I The nodes in τ are labeled with elements from V ∪Σ∪{ε} so that
(i) non-leaf nodes are labeled with elements in V and (ii) the root
is labeled with the start variable S.

I If A is the label of a non-leaf node and X1, . . . ,Xk are the labels of
its (ordered) children, then A→ X1 . . .Xk is a production in R.

The string (“sentential form”) represented by a parse tree is
obtained by listing the labels of its leaf nodes in preorder (“from
left to right”).



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

9/69

Let G = (V,Σ,R,S) be a context-free grammar.
A parse tree for G is an ordered tree 1 τ where:

I The nodes in τ are labeled with elements from V ∪Σ∪{ε} so that
(i) non-leaf nodes are labeled with elements in V and (ii) the root
is labeled with the start variable S.

I If A is the label of a non-leaf node and X1, . . . ,Xk are the labels of
its (ordered) children, then A→ X1 . . .Xk is a production in R.

The string (“sentential form”) represented by a parse tree is
obtained by listing the labels of its leaf nodes in preorder (“from
left to right”).

1In an ordered tree the children of each node have a fixed left-to-right ordering.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

10/69

Example:

A parse tree for string a+a in grammar Gexpr:

a

E

E + T

T F

F a

A derivation for the string:

E ⇒ E+T ⇒ T +T ⇒ F+T
⇒ a+T ⇒ a+F ⇒ a+a

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

11/69

A parse tree can be constructed from a derivation

S = γ0⇒ γ1⇒ ·· · ⇒ γn = γ

as follows:
1. The root of the tree is labeled with S. If n = 0, the tree has no

other nodes; otherwise
2. if the first step in the derivation applies rule S→ X1X2 . . .Xk, the

root has k child nodes whose labels from left to right are
X1,X2, . . . ,Xk;

3. if the next step applies rule Xi→ Y1Y2 . . .Yl, then the ith child
node of the root has l children, whose labels from left to right are
Y1,Y2, . . . ,Yl; and so on.

We observe that if τ is the parse tree constructed from derivation
S⇒∗ γ, then the string represented by τ is γ.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

12/69

Let τ be a parse tree representing a string γ.

We get a leftmost derivation for γ by traversing the nodes of τ in
preorder (“from root to leaves, from left to right”) and expanding
the non-terminal variables encountered as indicated in the tree.

A rightmost derivation can be obtained similarly by traversing τ in
postorder (“from root to leaves, from right to left”).

By constructing a parse tree from a leftmost derivation and then
retrieving the leftmost derivation from the tree, one obtains the
original leftmost derivation. The same holds for rightmost
derivations.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

13/69

Example:

Retrieving a leftmost derivation for string a+a from a parse tree.

Leftmost derivation:

E1E2T2F1a1 + T1F2a2

Parse tree: Nodes in preorder:

+

E1

E2 T1

T2 F2

F1

a1

a2

E ⇒
lm

E + T ⇒
lm

T + T ⇒
lm

F + T

⇒
lm

a+ T ⇒
lm

a+ F ⇒
lm

a+ a

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

14/69

Lemma 6.1
Let G = (V,Σ,P,S) be a context-free grammar.

Each string γ that can be derived in G has a parse tree that
represents γ.

For each parse tree τ that represents a string x ∈ L(G) there is a
unique leftmost derivation S⇒

lm

∗x and a unique rightmost

derivation S⇒
rm

∗x.

Corollary 6.2

Each string x ∈ L(G) has a leftmost and a rightmost derivation.

That is: parse trees, leftmost derivations and rightmost derivations are
in one-to-one correspondence.
When solving the parsing problem “Is x ∈ L(G)?”, one usually also
produces a parse tree (or equivalently a leftmost/rightmost derivation)
for x if the answer is “yes”.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

15/69

Ambiguity

Example
Let us consider the following grammar for simple arithmetic
expressions:

G′expr = {E→ E+E, E→ E ∗E, E→ a, E→ (E)}.

In this grammar, e.g. string a+a∗a has two parse trees:

∗

a

+E

E

E

EE ∗

a a

EE

a a

E

E

E

a+

A context-free grammar G is ambiguous if some string x ∈ L(G)
has two different parse trees.
Otherwise the grammar is unambiguous.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

16/69

Ambiguity is usually an unwanted property in computer science
because it means that a string has two alternative
“interpretations”.

A context-free language for which all the grammars are
ambiguous is called an inherently ambiguous language.

As an example, the grammar G′expr is ambiguous while Gexpr is
unambiguous. The language Lexpr = L(G′expr) is not inherently
ambiguous because it also has an unambiguous grammar Gexpr

generating it.

On the other hand, e.g. the language

{aibjck | i = j or j = k}

is inherently ambiguous. (The proof of this result is rather
complicated and hence omitted here.)



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

17/69

Recursive-Descent Parsing

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

18/69

6.2 Recursive-descent parsing

One method to search for a leftmost derivation (or parse tree) for
a string x in a grammar G is to (i) start from the start variable of G
and then (ii) generate systematically and recursively all the
possible leftmost derivations (parse trees), (iii) comparing as one
proceeds the derived terminal symbols to the ones in the target
string x.

If a conflict (= non-match between derived and target symbol) is
found, the search backtracks its most recent production rule
choice and tries the next available rule.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

19/69

Example:

Let us consider the following grammar G:

E → T + E | T − E | T

T → a | (E )

Recursive-descent parsing for the string a−a:

E ⇒ T +E ⇒ a+T [conflict; backtrack]
⇒ (E)+T [conflict; backtrack]

⇒ T−E ⇒ a−E ⇒ a−T +E ⇒ a−a+E
[conflict; backtrack]

⇒ a− (E)+E
[conflict; backtrack]
⇒ a−T−E ⇒ a−a−E
[conflict; backtrack]

⇒ a− (E)−E
[conflict; backtrack]
⇒ a−T ⇒ a−a [OK!] CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

20/69

This parsing method can be made efficient if the grammar has
the property that at each step the next symbol in the input string
uniquely determines which rule is to be applied when expanding
the leftmost non-terminal variable.

A grammar that has this property is called an LL(1) grammar.

As an example, we can “factor” the productions of the variable E
in the grammar G above and get an equivalent grammar G′:

E → T E′

E′ → +E | −E | ε
T → a | (E )

Parsing the string a−a in G′ (at each step, the symbol
determining the next rule is marked above the “yields” symbol):

E⇒
lm

TE′
a⇒
lm

aE′
−⇒
lm

a−E⇒
lm

a−TE′
a⇒
lm

a−aE′
ε⇒
lm

a−a.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

21/69

For an LL(1) grammar, it is easy to write a parser program as a set of
recursive procedures. As an example, here is a Python
implementation of a parser for the grammar G′:
from sys impor t e x i t , s t d i n
def e r r o r ( s ) : p r i n t ( s ) ; e x i t ( 1 )
def e ( ) :

p r i n t ( "E −> TE ’ " )
t ( ) ; eprime ( )

def eprime ( ) :
g loba l next
i f next=="+" :

p r i n t ( "E ’ −> +E" )
next= s t d i n . read ( 1 )
e ( )

e l i f next=="−" :
p r i n t ( "E ’ −> −E" )
next= s t d i n . read ( 1 )
e ( )

e lse : p r i n t ( "E −>" )

Continues on the next slide...

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

22/69

def t ( ) :
g l oba l next
i f next==" a " :

p r i n t ( "T −> a " )
next= s t d i n . read ( 1 )

e l i f next==" ( " :
p r i n t ( "T −> (E) " )
next= s t d i n . read ( 1 )
e ( )
i f next != " ) " : e r r o r ( " ) expected . " )
next= s t d i n . read ( 1 )

e lse : e r r o r ( "T cannot s t a r t w i th %s "%(next ) )

next= s t d i n . read ( 1 )
e ( )

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

23/69

When processing string a-(a+a), the program outputs the following
lines:

E → TE’
T → a
E’ → -E
E → TE’
T → (E)
E → TE’
T → a
E’ → +E
E → TE’
T → a
E’ →
E’ →

The output corresponds to the leftmost derivation

E ⇒ TE′⇒ aE′⇒ a−E⇒ a−TE′

⇒ a− (E)E′⇒ a− (TE′)E′

⇒ a− (aE′)E′⇒ a− (a+E)E′

⇒ a− (a+TE′)E′⇒ a− (a+aE′)E′

⇒ a− (a+a)E′⇒ a− (a+a).

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

24/69

LL(1) Grammars



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

25/69

6.3 LL(1) grammars
Let us next consider the general form of LL(1) grammars.

LL(1) ≈ “parse input from Left to right and produce a Leftmost
derivation, using 1 token lookahead”.
Here “1 token lookahead” means that one only considers the next
symbol in the target string at a time.

For instance, the grammar

S → A b | C d

A → a A | ε
C → c C | ε

is an LL(1) grammar, even though the right-hand sides of the
productions don’t always start with a terminal symbol.

The precise definition of LL(1) grammars is discussed on the
supplementary slides at the end of this lecture.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

26/69

6.3 LL(1) grammars
Let us next consider the general form of LL(1) grammars.

LL(1) ≈ “parse input from Left to right and produce a Leftmost
derivation, using 1 token lookahead”.
Here “1 token lookahead” means that one only considers the next
symbol in the target string at a time.

For instance, the grammar

S → A b | C d

A → a A | ε
C → c C | ε

is an LL(1) grammar, even though the right-hand sides of the
productions don’t always start with a terminal symbol.

The precise definition of LL(1) grammars is discussed on the
supplementary slides at the end of this lecture.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

27/69

6.3 LL(1) grammars
Let us next consider the general form of LL(1) grammars.
LL(1) ≈ “parse input from Left to right and produce a Leftmost
derivation, using 1 token lookahead”.
Here “1 token lookahead” means that one only considers the next
symbol in the target string at a time. 2

For instance, the grammar

S → A b | C d

A → a A | ε
C → c C | ε

is an LL(1) grammar, even though the right-hand sides of the
productions don’t always start with a terminal symbol.
The precise definition of LL(1) grammars is discussed on the
supplementary slides at the end of this lecture.

2There are also more general notions of ”LL(k)” and “LR(k)” grammars.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

28/69

Left recursion
Left recursion is a problem for recursive-descent parsing.

Definition 6.1
A grammar G = (V,Σ,P,S) is left recursive if one can derive from
some variable A with one or more steps the string Aα, where
α ∈ (V ∪Σ)?.

Example:

The grammar Gexpr

E → E + T | T

T → T ∗ F | F

F → a | (E )

is left recursive because E⇒ E+T and T⇒ T ∗F.
This kind of left recursion that occurs in a single step is called immediate
left recursion.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

29/69

Left recursion may result in infinite, non-terminating recursion in
the parsing process.

Example:

In the grammar Gexpr

E → E + T | T

T → T ∗ F | F

F → a | (E )

recursive-descent parsing may start producing the non-terminating
derivation

E⇒
lm

E+T⇒
lm

E+E+T⇒
lm
...

without ever producing a terminal symbol in the beginning of the derived
string.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

30/69

Example:

Also the grammar

S → A S a | b

A → B B | d A

B → b | ε

is left recursive because e.g. S⇒ ASa⇒ BBSa⇒ BSa⇒ Sa.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

31/69

Eliminating immediate left recursion
Immediate left recursion of form

A → A β1 | ... | A βn | α1 | ... | αm

can be eliminated by translating it into right recursion

A → α1 A′ | ... | αm A′

A′ → β1 A′ | ... | βn A′ | ε

Now a derivation of form

A⇒ Aβ1⇒ Aβ2β1⇒ α1β2β1

can be “simulated” with the derivation

A⇒ α1A′⇒ αβ2A′⇒ α1β2β1A′⇒ α1β2β1

(Also non-immediate, generic left recursion can be eliminated, see e.g.
section 4.3 in the book Aho, Sethi, Ullman: “Compilers — Principles,
Techniques, and Tools”.)

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

32/69

Example:

Eliminating immediate left recursion in the grammar Gexpr

E → E + T | E − T | T

T → T ∗ F | F

F → a | (E )

results in the grammar

E → T E′

E′ → +T E′ | −T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

33/69

Left factoring

Another problematic grammar feature for recursive-descent
parsing are productions that start with the same symbol.

As an example, consider statements in the C++ language:

stmt → selection-stmt | iteration-stmt | ...
selection-stmt → if (expr ) then stmt |

if (expr ) then stmt else stmt |
switch (expr ) stmt

where iteration-stmt and others don’t start with the if symbol.

+ Based only on the current if symbol in the input string, one
cannot decide whether the first or the second production for the
variable selection-stmt should be applied.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

34/69

Common prefixes of form

A → α β1 | ... | α βn | γ

can be “left factored” as follows:

A → α A′ | γ
A′ → β1 | ... | βn

Example:

Left factoring the C++ if-then-else structure

selection-stmt → if (expr ) then stmt |
if (expr ) then stmt else stmt |
switch (expr ) stmt

results in

selection-stmt → if (expr ) then stmt selection-stmt′ |
switch (expr ) stmt

selection-stmt′ → else stmt | ε

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

35/69

* Excursion: Attribute Grammars

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

36/69

Attribute grammars are a technique for associating simple
semantic rules to context-free grammars.

Each node in a parse tree, labelled with grammar symbol X, is
considered an object “of type X”. The fields in an object of type X
are called attributes of X and denoted as X.s, X.t etc. Each node
“object” has its own “instances” of the attribute.

The productions A→ X1 . . .Xk of the grammar are associated
with evaluation rules that describe how the values of the
respective attribute instances are computed from those in the
parent and child nodes.

The evaluation rules can in principle be arbitrary functions, as
long as their parameters only involve locally available information.
More precisely, the evaluation rules associated with a production
A→ X1 . . .Xk can only mention attributes of the symbols
A,X1, . . . ,Xk.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

37/69

Example: Evaluating signed integers

Each node of type X in the parse tree is associated with an attribute
instance X.v, whose value will be the numeric value of the string derived
from X. In particular, the value of the instance v in the root node will be
the numeric value of the whole string represented by the tree.

Productions: Evaluation rules:
I → +U I.v := U.v
I → −U I.v := −U.v
I → U I.v := U.v
U → D U.v := D.v
U → UD U1.v := 10∗U2.v+D.v
D → 0 D.v := 0
· · ·
D → 9 D.v := 9

In the evaluation rule associated with production U→ UD, the different
instances of variable symbol U are distinguished by the use of indices.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

38/69

The “attributed parse tree” for string “-319”:

·v = 9

·v = −319

·v = 3

·v = 31

·v = 319

U

U

U

I

13− 9

D D D·v = 3 ·v = 1

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

39/69

An attribute t is synthetic if the evaluation rule in each production
A→ X1 . . .Xk mentioning t is of form

A.t := f (A,X1, . . . ,Xk).

In this case, the value of a t attribute instance depends only on
the values of the attribute instances in the node itself and in its
child nodes.

Other forms of attributes are called inherited.

Synthetic attributes are preferable, because their values can be
evaluated in a single bottom-up traversal of the parse tree.

Of course, one can also use inherited attributes, as long as one
ensures that there are no dependency cycles in their evaluation
rules.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

40/69

Example
Evaluating signed integers by using an inherited “position multiplier”
attribute and a synthetic “value” attribute:

Productions: Evaluation rules:

I → +U U.s := 1, I.v := U.v
I → −U U.s := 1, I.v := −U.v
I → U U.s := 1, I.v := U.v
U → D U.v := (D.v)∗ (U.s)
U → UD U2.s := 10∗ (U1.s),

U1.v := U2.v+(D.v)∗ (U1.s)
D → 0 D.v := 0
...
D → 9 D.v := 9



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

41/69

For the string “-319” we get the following attributed parse tree:

·v = 9

·v = −319

·v = 300

·v = 310

·s = 100

·s = 10

·s = 1
·v = 319

913−

U

U

U

I

D D D·v = 3 ·v = 1

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

42/69

The values of attribute instances can often be computed
“on-the-fly” without explicitly constructing the parse tree.

Example

Example. A program that transforms arithmetic expressions from infix
notation to postfix notation.
We associate to our grammar Gexpr one synthetic, string-valued at-
tribute pf . The value of attribute instance X.pf in each parse tree node
of type X will be the postfix version of the infix-notation string derived
from the node.

Productions: Evaluation rules:
E → T +E E1.pf := (T.pf )̂(E2.pf )̂(′+′)
E → T E.pf := T.pf
T → F ∗T T1.pf := (F.pf )̂(T2.pf )̂(′∗′)
T → F T.pf := F.pf
F → a F.pf := ′a′

F → (E) F.pf := E.pf

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

43/69

A recursive-descent parser for Gexpr that also evaluates the values of
attribute instances on-the-fly during parsing:

from sys impor t s t d i n
def e r r o r ( s ) : p r i n t ( s ) ; e x i t ( 1 )
def e ( ) : # E −> T + E | T

g loba l next
pf1= t ( )
i f next=="+" :

next= s t d i n . read ( 1 )
r e t u r n pf1+e ( )+ "+ " # E1 . p f := T . p f E2 . p f +

e lse : r e t u r n pf1 # E. p f := T . p f
def t ( ) : # T −> F * T | F

g loba l next
pf1= f ( )
i f next==" * " :

next= s t d i n . read ( 1 )
r e t u r n pf1+ t ( )+ " * " # T1 . p f := F . p f T2 . p f *

else : r e t u r n pf1 # T . p f := F . p f

Continues on the next slide...

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

44/69

def f ( ) : # F −> a | (E)
g loba l next
i f next==" a " :

next= s t d i n . read ( 1 )
r e t u r n " a " # F . p f := a

e l i f next==" ( " :
next= s t d i n . read ( 1 )
p f=e ( )
i f next != " ) " : e r r o r ( " ) expected . " )
next= s t d i n . read ( 1 )
r e t u r n p f # F . p f := E . p f

e lse : e r r o r ( "F cannot s t a r t w i th t h i s . " )

next= s t d i n . read ( 1 )
p r i n t ( e ( ) )



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

45/69

* Excursion: Parsing Tools in the Scala Language

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

46/69

A library suitable for (restricted) recursive-descent parsing is
included in the standard Scala language distribution

Regular expressions can also be included in the grammar rules.

References:

Chapter 31 in book “Programming in Scala, First Edition”

Parsers trait

The abstract Parser class

The RegexParsers trait

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

47/69

A parser and evaluator for simple arithmetic expressions:

import u t i l . pars ing . combinator . _

object parser extends RegexParsers {
val i n t e g e r = " [0−9]+ " . r / / Regular expression

def expr : Parser [ B i g I n t ] = ( / / E −> T + E | T
term~"+ "~expr ^^ { case t~"+ "~e => t + e }

| term ^^ { case t => t } )
def term : Parser [ B i g I n t ] = / / T −> F * T | T

rep1sep ( fac to r , " * " ) ^^ { f a c t o r s => f a c t o r s . product }
def f a c t o r : Parser [ B i g I n t ] = ( / / F −> i n t e g e r | ( E )

i n t e g e r ^^ { case i n t S t r i n g => B i g I n t ( i n t S t r i n g ) }
| " ( " ~> expr <~ " ) " ^^ { case e => e } )

def parse ( i npu t : S t r i n g ) : ( Option [ B i g I n t ] , S t r i n g ) = {
pa rseA l l ( expr , i np u t ) match {

case Success ( value , _ ) => ( Option ( value ) , " success " )
case f => (None , f . t o S t r i n g )

}
}

}

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

48/69

With well-formed input we get the expected result:

scala > parser . parse ( "123+4*5" )
res0 : ( Option [ B i g I n t ] , S t r i n g ) = (Some(143) , success )

while an erroneous input gives an error message:

scala > parser . parse ("123++4*5")
res1 : ( Option [ B i g I n t ] , S t r i n g ) =
(None , [ 1 . 5 ] f a i l u r e : ‘ ( ’ expected but ‘+ ’ found

123++4*5
^ )



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

49/69

A classic textbook on these topics:
I Aho, Sethi, Ullman: Compilers — Principles, Techniques, and

Tools

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

50/69

* Supplement: General Definition of LL(1) Grammars

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

51/69

* Supplement: General definition of LL(1) grammars

In the following we will formally define LL(1) grammars
To do this, we need two auxiliary sets

I FIRST describes which terminal symbols can appear as the first
symbols in the strings derivable from a non-terminal variable

I FOLLOW describes which terminal symbols can follow a
non-terminal variable in any of the derivations

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

52/69

We also need the auxiliary concept of a nullable non-terminal
variables

Definition 6.2
A non-terminal variable A is nullable if A⇒∗ ε.

Example:

In the grammar

S → A S a | b

A → B B | d A

B → b | ε

the variables A and B are nullable because

A⇒ BB⇒ B⇒ ε
B⇒ ε



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

53/69

FIRST-sets
For each non-terminal variable A we define the set FIRST(A) of
terminal symbols (incl. ε is A is nullable) that can be the first
symbols in strings derivable from A:

FIRST(A)= {a ∈ Σ |A⇒∗ aγ for some γ ∈ (V ∪Σ)?}∪{ε |A⇒∗ ε}
Example:

In the grammar

S → A b | C d

A → a A | ε
C → c C | ε

FIRST(C) = {c,ε} as C⇒ cC ja C⇒ ε
FIRST(A) = {a,ε} as A⇒ aA ja A⇒ ε
FIRST(S) = {a,b,c,d} as

I S⇒ Ab⇒ aAb and S⇒ Ab⇒ b
I S⇒ Cd⇒ cCd and S⇒ Cd⇒ d CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

54/69

Example:

In the grammar

S → A S a | b

A → B B | d A

B → b | ε

we have

FIRST(S) = {b,d} as S⇒ b and S⇒ ASa⇒ dASa

FIRST(A) = {b,d,ε} koska A⇒ BB⇒ bB, A⇒ dA and
A⇒ BB⇒ B⇒ ε
FIRST(B) = {b,ε} as B⇒ b and B⇒ ε.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

55/69

FIRST-sets (for both terminal symbols and non-terminal variables) can
be computed inductively:

If a is a terminal symbol (i.e. a ∈ Σ), then FIRST(a) = {a}
If X→ ε is a production, then ε ∈ FIRST(X)

If X→ X1X2...Xk is a production, a terminal symbol
a ∈ FIRST(Xi) for some 1≤ i≤ k and ε ∈ FIRST(Xj) for all
1≤ j < i, then a ∈ FIRST(X)

If X→ X1X2...Xk is a production and ε ∈ FIRST(Xj) for all
1≤ j≤ k, then ε ∈ FIRST(X)

It holds that ε ∈ FIRST(A) if and only if A is nullable.

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

56/69

Example:

For the grammar

S → A b | C d

A → a A | ε
C → c C | ε

FIRST(a) = {a}, FIRST(b) = {b}, FIRST(c) = {c},
FIRST(d) = {d}
ε ∈ FIRST(C) as C→ ε is a production

c ∈ FIRST(C) as C→ cC is a production

ε ∈ FIRST(A) as A→ ε is a production

a ∈ FIRST(A) as A→ aA is a production

a ∈ FIRST(S) as S→ Ab is a production and a ∈ FIRST(A)

b ∈ FIRST(S) as S→ Ab is a production, ε ∈ FIRST(A) and
b ∈ FIRST(b)

c,d ∈ FIRST(S) with similar argumentation



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

57/69

We expand FIRST to strings over V ∪Σ so that we can study
which symbols can occur as first ones when deriving strings from
the right hand sides of productions
Let us define this expansion inductively: FIRST(X1...Xk) is the
smallest subset of Σ∪{ε} for which the following conditions hold:

I ε ∈ FIRST(ε)
I a ∈ FIRST(a) for each a ∈ Σ
I If x ∈ Σ, x ∈ FIRST(Xi) for some 1≤ i≤ k and ε ∈ FIRST(Xj) for

all 1≤ j < i, then x ∈ FIRST(X1...Xk)
I If ε ∈ FIRST(Xj) for all 1≤ j≤ k, then ε ∈ FIRST(X1...Xk)

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

58/69

Example:

Consider again the grammar

S → A b | C d

A → a A | ε
C → c C | ε

Now

FIRST(A) = {a,ε} and FIRST(b) = {b}
FIRST(C) = {c,ε} and FIRST(d) = {d}
FIRST(S) = {a,b,c,d}
FIRST(Ab) = {a,b}
FIRST(Cd) = {c,d}

+ in the beginning of the parsing, based only on the first symbol in
the string, we can decide whether the production S→ Ab or S→ Cd
should be applied

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

59/69

Example:

For the grammar

E → E + T | T

T → T ∗ F | F

F → a | (E )

we have

FIRST(F) = {a,(}
FIRST(T) = {a,(}
FIRST(E) = {a,(}
FIRST(E+T) = {a,(}

+ by applying either E⇒ E + T or E⇒ T we can get a to be the
first terminal symbol in the derived string

+ based on the first symbol in the string only, the parser cannot
decide which production should be used

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

60/69

Example:

Grammar:

E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )

FIRST-sets:

FIRST(E) = {a,(}
FIRST(E′) = {+,ε}
FIRST(T) = {a,(}
FIRST(T ′) = {∗,ε}
FIRST(F) = {a,(}

Consider parsing the string a∗a+a

E⇒ TE′⇒ FT ′E′⇒ aT ′E′

Should we now use the production T ′⇒∗F T ′ or T ′⇒ ε? Why?



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

61/69

Example:

A small “if-then-else” grammar
after left factoring:

S → s | if C then S S′

S′ → else S | ε
C → c

FIRST-sets:

FIRST(S) = {s, if}
FIRST(S′) = {else,ε}
FIRST(C) = {c}
FIRST(elseS) = {else}
FIRST(ε) = {ε}

Making leftmost derivation for the string ifc thenifc thenselses:

S ⇒ ifC thenSS′

⇒ ifc thenSS′

⇒ ifc thenifC thenSS′ S′

⇒ ifc thenifc thenSS′ S′

⇒ ifc thenifc thensS′ S′

Should we now use the production S′→ elseS or S′→ ε?
CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

62/69

FOLLOW-sets
For nullable productions the FIRST-set includes the symbol ε
How should we interpret this when deciding which production to
take next?
Let us define for each non-terminal variable A the set
FOLLOW(A) of terminal symbols (incl. a special symbol $
describing the end of the string) that may follow A in some
derivation:

I c ∈ FOLLOW(A) if c ∈ Σ and S⇒∗ αAcβ for some
α,β ∈ (V ∪Σ)?

I $ ∈ FOLLOW(A) if S⇒∗ αA for some α ∈ (V ∪Σ)?

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

63/69

Example:

Grammar:

E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )

FIRST-sets:

FIRST(F) = {a,(}
FIRST(T ′) = {∗,ε}
FIRST(T) = {a,(}
FIRST(E′) = {+,ε}
FIRST(E) = {a,(}

Now
FOLLOW(E) = FOLLOW(E′) = {$,)} as

I E is the start variable, E⇒∗ (E)T ′E′ and E→ TE′

FOLLOW(T) = FOLLOW(T ′) = {+,$,)} as
I E⇒ TE′⇒ T +TE′, E⇒ TE′⇒ T and T⇒ FT ′

FOLLOW(F) = {+,∗,$,)} as
I E⇒ TE′⇒ FT ′E′⇒ F ∗FT ′E′
I T⇒ FT ′⇒ F (“what follows F, also follows T”)

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

64/69

Example:

Grammar:

E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )

FIRST-sets:

FIRST(F) = {a,(}
FIRST(T ′) = {∗,ε}
FIRST(T) = {a,(}
FIRST(E′) = {+,ε}
FIRST(E) = {a,(}

As

FOLLOW(E) = FOLLOW(E′) = {$,)}
FOLLOW(T) = FOLLOW(T ′) = {+,$,)}
FOLLOW(F) = {+,∗,$,)}

we know that when making the leftmost derivation for a∗a+a

E⇒ TE′⇒ FT ′E′⇒ aT ′E′

we should apply the production T ′⇒∗F T ′ instead of T ′⇒ ε because
the non-terminal variable T ′ cannot be followed by the symbol ∗ in any
derivation.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

65/69

Example:

A simple “if-then-else” grammar
after left factoring:

S → s | if C then S S′

S′ → else S | ε
C → c

FOLLOW-sets:

FOLLOW(S) = {$,else}
FOLLOW(S′) = {$,else}
FOLLOW(C) = {then}

Building a leftmost derivation for ifc thenifc thenselses:

S ⇒ ifC thenSS′

⇒ ...

⇒ ifc thenifc thensS′ S′

Now

else ∈ FIRST(elseS)

as well as S′→ ε and else ∈ FOLLOW(S′)

+ based only on the first symbol else, one cannot decide whether
S′→ elseS or S′→ ε should be applied CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

66/69

Computing FOLLOW-sets inductively
FOLLOW-sets are the smallest sets that fulfill the following conditions:

If S is the start variable, then $ ∈ FOLLOW(S)

If A→ αBβ is a production and a terminal symbol a ∈ FIRST(β),
then a ∈ FOLLOW(B)

If A→ αB is a production and a ∈ FOLLOW(A), then
a ∈ FOLLOW(B)

If A→ αBβ is a production, ε ∈ FIRST(β) and
a ∈ FOLLOW(A), then a ∈ FOLLOW(B)

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

67/69

Example:

Grammar:

E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )

FIRST-sets:

FIRST(F) = {a,(}
FIRST(T ′) = {∗,ε}
FIRST(T) = {a,(}
FIRST(E′) = {+,ε}
FIRST(E) = {a,(}

Now

$ ∈ FOLLOW(E) as E is the start symbol

) ∈ FOLLOW(E) as F→ (E ) is a production

$,) ∈ FOLLOW(E′) as E→ TE′ is a production

+ ∈ FOLLOW(T) as E′→+TE′ and + ∈ FIRST(E′)

and so on...

CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

68/69

Finally, we build a two-dimensional parsing table M, where each
set-valued cell M(A,a) includes all those productions that can be
applied when the current non-terminal variable is A and the next input
string symbol is a:

If A→ α is a production and the terminal symbol a ∈ FIRST(α),
then A→ α ∈M(A,a)

If A→ α is a production, ε ∈ FIRST(α) and b ∈ FOLLOW(A),
then A→ α ∈M(A,b)

Definition 6.3
A grammar is an LL(1) grammar if its parsing table contains at most
production in each cell.



CS-C2160 Theory of Computation / Lecture 6

Aalto University / Dept. Computer Science

69/69

Example:

Let us consider again the grammar

E → T E′

E′ → +T E′ | ε
T → F T ′

T ′ → ∗F T ′ | ε
F → a | (E )

The parsing table is

a + ∗ ( ) $
E E→ T E′ E→ T E′

E′ E′→+T E′ E′→ ε E′→ ε
T T→ F T ′ T→ F T ′

T ′ T ′→ ε T ′→∗F T ′ T ′→ ε T ′→ ε
F F→ a F→ (E )


