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Outline

I Boolean networks

I Relevance networks

I Introduction to information theoretics concepts

I Aracne algorithm

I This lecture is based on a collection of articles listed at the end of the slides
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Boolean networks

I An (over-)simplified representation of a (biological) network system

I A generalization of binary cellular automata

I A directed graph where each node i is associated with binary state value xi and parent nodes
pa(xi ), i =, 1, . . . , n

I A deterministic update rule, i.e., Boolean function, fi (·) : B|pa(xi )| → B for each node xi
I Typically update rules f1, . . . , fn operate synchronously over time t = 0, 1, 2, . . .

xi (t) = fi (pa(xi )(t))

I Boolean networks can be considered as a special case of dynamic Bayesian networks
without stochasticity

I Parent variables used to predict xi (t) are the values at time point t − 1
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Boolean networks (2)Boolean networks: example

I The rule table:

gA(t + 1) := NOT (gD(t))

gE (t + 1) := gA(t)

gB(t + 1) := gA(t)

gC (t + 1) := gB(t)

gF (t + 1) := AND(gE (t), gB(t),

NOT (gD(t)))

gD(t + 1) := gB(t)

I The state vectors

[gi (0)]i = [1, 0, 0, 0, 0, 0]

[gi (1)]i = [1, 1, 0, 0, 1, 0]

[gi (2)]i = [1, 1, 1, 1, 1, 1]

[gi (3)]i = [0, 1, 1, 1, 1, 0]

[gi (4)]i = [0, 0, 1, 1, 0, 0]

[gi (5)]i = [0, 0, 0, 0, 0, 0]

Figure: An example of a Boolean network
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Boolean networks (2)

I Primary applications include coarse-scale modeling of gene regulatory networks and
signaling pathways

I Qualitative

I Best constructed from databases of known interactions or networks

I A Boolean network model can be easily used to study effects and propagation of
I External stimuli
I Gene/protein knock-down

at qualitative level

I Can handle genome/cell-wide networks

I Lack quantitative details and can thus be misleading (or at least results need to be
assessed with care)

I Some concepts related to Boolean networks
I Attractors, basins of attraction, criticality, sensitivity, reachability, etc.



5/ 31

Boolean networks (2)

I Primary applications include coarse-scale modeling of gene regulatory networks and
signaling pathways

I Qualitative

I Best constructed from databases of known interactions or networks

I A Boolean network model can be easily used to study effects and propagation of
I External stimuli
I Gene/protein knock-down

at qualitative level

I Can handle genome/cell-wide networks

I Lack quantitative details and can thus be misleading (or at least results need to be
assessed with care)

I Some concepts related to Boolean networks
I Attractors, basins of attraction, criticality, sensitivity, reachability, etc.



5/ 31

Boolean networks (2)

I Primary applications include coarse-scale modeling of gene regulatory networks and
signaling pathways

I Qualitative

I Best constructed from databases of known interactions or networks

I A Boolean network model can be easily used to study effects and propagation of
I External stimuli
I Gene/protein knock-down

at qualitative level

I Can handle genome/cell-wide networks

I Lack quantitative details and can thus be misleading (or at least results need to be
assessed with care)

I Some concepts related to Boolean networks
I Attractors, basins of attraction, criticality, sensitivity, reachability, etc.



6/ 31

Boolean networks (3)

Figure: A logical model of T cell activation from (Saez-Rodriguez et al., 2007)
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Boolean networks (4)siRNA screen + database integration

assembly interactions (5,161 proteins). While the median number
of interactions per protein is four in our global reconstruction, the
most highly connected proteins (HSP72, HSP75, EF1A, and
UBC7) take part in more than 500 interactions. The number of
proteins per protein complex assembly interaction gives a median
of two and a maximum of 99 (the subunits of the 26S proteasome
and the proteasome interacting proteins). Especially highly
connected biomolecules can be also found in metabolism. The
most connected metabolite, water, acts in 527 metabolic reactions
as a substrate and in 239 reactions as a product. Common energy
carriers, such as adenosine triphosphate (ATP) and nicotinamide

adenine dinucleotide (NADH), are among the other highly
connected metabolites. In median, metabolites participate in four
metabolic reactions as a substrate or a product.

Gene knockout damages
Based on our established global molecular interaction network

reconstruction we estimated damages caused by gene knockouts.
Typically, a gene knockout results in the blockage of the
corresponding transcription process, which results in the blockage
of the transcript, and so forth. Depending on the network
structure, the blockage may propagate further to metabolism and

Figure 1. Overview to the presented analysis. The RefRec reconstruction was integrated from selected databases. The reconstruction was
converted to a set of model alternatives which were used to assess the importance of different molecular –omes for accurate phenotype prediction
(from top to down: RefRec; RefRec with KEGG replaced by iND750; RefRec without a metabolic network; RefRec without a protein-protein interaction
network; RefRec without a metabolic network and a protein-protein interaction network). All the model alternatives were analyzed using a single
analysis workflow that first estimates gene knockout damages in mutant strains and then trains a computational classifier to predict the mutant
viability.
doi:10.1371/journal.pone.0010662.g001

RefRec Reconstruction

PLoS ONE | www.plosone.org 3 May 2010 | Volume 5 | Issue 5 | e10662

Figure 2. Structural details of RefRec. The entire reconstruction is visualized in top right where different types of molecular species are grouped
to layers (from top to down: genome, transcriptome, proteome, protein complexes, and metabolome) and interactions are depicted by the
connecting edges. Structural details are shown from each of the layers as follows: Ovals represent interactions and the other nodes represent
molecular species of different types. The Ensembl database provides source information for protein synthesis pathways. Two genes (labeled as G[N])
are transcribed to transcripts (Tr[N]) and further translated to proteins (P[N]). The KEGG database provides knowledge for the metabolic network
including metabolites / compounds (C[N]) and metabolic reactions. The enzymatic activity of proteins is described by the Swiss-Prot ENZYME database
that is used to connect the proteins to the metabolic reactions. The protein-protein interaction network including the protein complex assembly
interactions and the protein complexes / macromolecular complexes (M[N]) is based on the IntAct database. The IntAct database does not provide
information about enzymatic activity for protein complexes, and therefore protein complexes do not catalyze any interaction in the reconstruction. A
dashed arrow presents the control of an interaction by a molecular species. A solid arrow presents material flow.
doi:10.1371/journal.pone.0010662.g002

Table 2. Statistics about damage estimates for single gene knockouts.

Object type Analysis method Damage probability
Mean number of blocked
objects in a damage (+SD)

Gene B 1 1 (0)

Transcription B 1 1 (0)

Transcript B 1 1 (0)

Translation B 1 1 (0)

Protein B 0.99 1 (0)

Protein complex assembly interaction B 0.81 10.6 (26.7)

Protein complex B 0.81 10.6 (26.7)

Metabolic reaction (KEGG) B 0.1 4 (5.1)

Metabolite (KEGG) B 0.02 3 (2.8)

Metabolic reaction (iND750) FBA 0.05 12.2 (25.1)

Metabolite (iND750) FBA 0.04 10.8 (20.1)

Damages estimated using Boolean simulation (B) or flux balance analysis (FBA).
doi:10.1371/journal.pone.0010662.t002

RefRec Reconstruction

PLoS ONE | www.plosone.org 5 May 2010 | Volume 5 | Issue 5 | e10662

Aho et al., 2010

Figure: A comprehensive, logical model of yeast molecular network (Aho et al., 2010)
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Relevance networks

I A “quick and dirty” statistical approach to find similarly behaving molecules (genes,
proteins, etc.)

I Assume no prior information about the interactions in the network

I Measure similarity by correlation or mutual information, i.e. the similarity between
molecules’ abundance as random variables

I Relevance networks:
I Measure similarity of entities using correlation or mutual information
I Build a similarity matrix
I Propose interactions which have similarity value over a given threshold
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Covariance

I Expectation (the average value) of a discrete-valued or real-valued random variable X

E[X ] =
∑
i

p(xi )xi or

∫
p(x)xdx

I Co-variance as the measure of strength of dependency between two real-valued random
variables X and Y

cov(X ,Y ) = E[(X − E[X ])(Y − E[Y ])]

I Assume sample data of both X and Y : x = (x1, . . . , xn) and y = (y1, . . . , yn)

I Sample mean and sample covariance

mx =
1

n

n∑
i=1

xi and sxy =
1

n

n∑
i=1

(xi −mx)(yi −my )
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Covariance

I Given a data set, covariance tells us about dependencies

I Example on the right:

I Top: no co-variance between x and y , x has higher
variance than y , diagonal co-variance matrix with
inequal entries

I Middle: no co-variance between x and y , equal variance
for x and y , diagonal co-variance matrix with equal
entries

I Bottom: x and y co-vary, co-variance matrix will have
non-zero off-diagonal entries

Covariance

I Given a data set covariance tells
us about how the data lies with
respect the variables

I Example on the right:
I Top: no co-variance between x

and y, x has higher variance
than y, diagonal co-variance
matrix with inequal entries

I Middle: no co-variance between
x and y, equal variance for x and
y, diagonal co-variance matrix
with equal entries

I Bottom: x and y co-vary,
co-variance matrix will have
non-zero o↵-diagonal entries

I Note: Here x and y are again
genes, not variables!
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Correlation matrix and correlation network

I Correlation is computed from covariance by normalizing by the standard deviations σx and
σy

corr(x , y) =
cov(x , y)

σxσy
=

cov(x , y)√
cov(x , x)cov(y , y)

I For p variables x = (x1, . . . , xp), empirical correlation matrix R (size p-by-p) collects all
pairwise empirical correlations

rxixj =
sxixj√
sxixi sxjxj

I Correlation network for the data X (n measurements, p variables) is obtained from R by
defining a threshold 0 ≤ τ ≤ 1 and drawing an edge between vertex xi and xj if |rxixj | ≥ τ
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Correlation matrix and correlation network

I Different thresholds give different networks
I A large threshold gives high precision (predictions are correct), but low recall (most

interaction are not found)
I A smaller threshold has high recall (most interactions are revealed), but low precision

(many errors)

Thresholding

I Di↵erent thresholds give di↵erent networks

I A large threshold gives high precision (predictions are correct),
but low recall (most interaction are not found)

I A smaller threshold has high recall (most interactions are
revealed), but low precision (many errors)

Figure: From https://en.wikipedia.org/wiki/Correlation_and_dependence

https://en.wikipedia.org/wiki/Correlation_and_dependence
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Weakness of correlation

I Correlation measures linear dependency

Weakness of correlation thresholding

I Correlation
measures linear regression similarity between two sets of values.
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Weakness of correlation thresholding

I Obtaining the edges of the graph by thresholding the correlation (or covariance) matrix is
simple

I However, the method is sensitive in detecting spurious correlations that are due to other
(controlling) variables

I For example:
I Protein interactions z − x and z − y may be reflected as a correlation between x − y
I However, there may not be any physical interaction between them x and y

I Correlation is an inherently pairwise concept: adding variables to the data does not have
effect on correlation between existing vertices



15/ 31

Mutual information

I An alternative to correlation is mutual information (MI), which also measures the
statistical dependency between genes

I Measures how much the uncertainty in the variable A is reduced by knowing the variable B
I If A determines B completely (i.e. deterministic relationship), then MI is maximal
I If A is not related to B at all, then MI is zero

I Defined for random variables X and Y with either continuous or discrete values, with
proper probability distributions p(X = x) and p(Y = y)

I We will assume discrete-valued random variables for now
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Information and entropy

I Information content (in bits) of a data item (or a message) X = x with probability
distribution p(X = x) is I (X = x) = − log p(X = x), i.e., more unlikely an event is, more
information it contains

I I.e. a deterministic event has no information, unlikely event has high information
I Information thus measures uncertainty or “surprisal” of an event

I Entropy H(X ) is the expected information (i.e. expected uncertainty)

H(X ) = E[I (X )] = −
n∑

i=1

p(xi ) log p(xi )

I Entropy is thus the “average” uncertainty or suprisal we are going to see in a random
variable

I Entropy is highest with uniform distributions: i.e. no idea what values we are going to get
I Entropy is lowest with highly peaked distributions: we already know very well what values we

are going to get
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Entropy example

I A coin flip is a random variable X with two outcomes {tails, heads}
I A fair coin has probability distribution p(X = heads) = 0.5 and p(X = tails) = 0.5

I The entropy is thus:

E[I (“coin”)] = −p(heads) log p(heads)− p(tails) log p(tails)

= −0.5 · log(0.5)− 0.5 · log(0.5)

= 1 (with binary log)

I An unfair coin with p(X = heads) = 0.9 has entropy
E[I (“biased coin”)] = −0.9 · log(0.9)− 0.1 · log(0.1) ≈ 0.4
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Entropy example

I Entropies for biased coins
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Relative entropy

I The relative entropy is a measure between two distributions p(X ) and q(X )

I Better known as the Kullback-Leibler distance between two probability distributions

DKL(p||q) =
n∑

i=1

p(xi ) log
p(xi )

q(xi )

= Ep

[
log

p(X )

q(X )

]

I Relative entropy is non-negative and is zero iff p = q for all xi
I But relative entropy is not a distance measure because

I It is not symmetric: DKL(p||q) 6= DKL(q||p)
I It does not satisfy the triangle inequality
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Mutual information

I Mutual information (MI) is a measure of the amount of information that one random
variable Y contains about another random variable X

I Given both the joint distribution p(x , y) and the marginal distributions p(x) =
∑

y p(x , y)
and p(y) =

∑
x p(x , y), the mutual information I (X |Y ) is the relative entropy between

the joint distribution p(x , y) and the product distribution p(x)p(y)

I (X |Y ) = DKL(p(X ,Y )||p(X )p(Y ))

=
∑
x,y

p(x , y) log
p(x , y)

p(x)p(y)

I I (X |Y ) measures the similarity between p(X ,Y ) and p(X )p(Y )

I An illustration:
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Data processing inequality

I Consider three random variables that satisfy a Markov chain (directed graphical model)

X → Y → Z ,

i.e., p(x , y , z) = p(x)p(y |x)p(z |y)

I Now we have

p(x , z |y) =
p(x , y , z)

p(y)
=

p(x)p(y |x)p(z |y)

p(y)

=
p(x)p(y , x)p(z |y)

p(x)p(y)
=

p(x |y)p(y)p(z |y)

p(y)

= p(x |y)p(z |y)

I The above Markov chain is thus equivalent to a conditional independency

X → Y → Z iff X ,Z ⊥ Y
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Data processing inequality

I Consider three random variables that satisfy a Markov chain (directed graphical model)

X → Y → Z ,

I Data processing inequality theorem says that if X → Y → Z then

I (X |Y ) ≥ I (X |Z ) and I (Y |Z ) ≥ I (X |Z )

I Thus I (X |Z ) ≤ min (I (X |Y ), I (Y |Z ))
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Aracne algorithm

I Aracne algorithm (Margolin et al., 2006) uses the MI to find statistically dependent pairs
of variables/molecules/genes while removing redundant statistical correlations

I Aracne initialises the network G by adding an edge between variables xi and xj if
I (Xi |Xj) ≥ I0, where I0 is a threshold

I Aracne then examines all triplets of variables xi , xj and xk for which all three MI values
exceed I0 and removes the edge with the smallest MI

I All possible triplets are analyzed regardless of whether some variables have been
considered already in other triplets

I Does not depend on the order the variable triplets are processed
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Aracne algorithm

Figure: Illustration of the data processing inequality from (Margolis et al., 2006)
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Aracne algorithm

I We have derived the information theoretic measures assuming discrete-valued random
variables

I Real-world data is typically continuous

I The above information theoretic measures can be generalized to continuous-valued
variables by replacing the sums with integrals

I Integrals can be approximated by numerical integration

I Observed data may come from an unknown probability density

I In Aracne algorithm unknown densities are estimated using the Gaussian kernel density
estimation
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Kernel density estimator

I Assume observed data D = (x1, . . . , xN), where each xi = (xi1, . . . , xid)T ∈ Rd

I The Gaussian kernel density estimate is defined as

p(x|D) =
1

N

N∑
i=1

N (x|xi , σ2I ),

where I is the d-by-d identity matrix

I The only parameter that can be tuned is the so-called bandwidth σ2

I Aracne uses this non-parametric density estimator for each dimension k and pair of
dimensions k and l

I Notice that to process three variables Xi , Xj and Xk for removal of edges, MI needs to be
evaluated only for pairs of variables, i.e., only 2-D numerical integrals are needed
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Kernel density illustration
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Figure: Illustration of Gaussian kernel density estimation from (Murphy, 2012)
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Human B cell network: Aracne algorithm

I Data: 336 genome-wide expression profiles for perturbations of B cell phenotypes

I Focus on subnetwork around MYC gene

I Independent validation: MYC ChIP assay that measures binding of MYC protein on gene
promoters

I Provides direct experimental that MYC regulates a target gene
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Human B cell network: Aracne algorithm

Figure: MYC subnetwork inferred by Aracne from B cell expression data (Basso et al., 2005)
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Human B cell network: Aracne algorithm

Figure: MYC subnetwork inferred by Aracne from B cell expression data (Basso et al., 2005)
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