CS-E5885 Modeling biological networks Boolean networks and relevance networks as models of biological networks

Harri Lähdesmäki

Department of Computer Science Aalto University

February 12, 2021

Outline

- ► Boolean networks
- ► Relevance networks
- ▶ Introduction to information theoretics concepts
- ► Aracne algorithm
- ▶ This lecture is based on a collection of articles listed at the end of the slides

Boolean networks

- ► An (over-)simplified representation of a (biological) network system
- A generalization of binary cellular automata
 - A directed graph where each node i is associated with binary state value x_i and parent nodes $pa(x_i)$, i = 1, ..., n
 - ▶ A deterministic update rule, i.e., Boolean function, $f_i(\cdot) : \mathbb{B}^{|pa(x_i)|} \to \mathbb{B}$ for each node x_i
 - lacktriangle Typically update rules f_1,\ldots,f_n operate synchronously over time $t=0,1,2,\ldots$

$$x_i(t) = f_i(\operatorname{pa}(x_i)(t))$$

Boolean networks

- ► An (over-)simplified representation of a (biological) network system
- A generalization of binary cellular automata
 - A directed graph where each node i is associated with binary state value x_i and parent nodes $pa(x_i)$, i = 1, ..., n
 - ▶ A deterministic update rule, i.e., Boolean function, $f_i(\cdot) : \mathbb{B}^{|\text{pa}(x_i)|} \to \mathbb{B}$ for each node x_i
 - ▶ Typically update rules f_1, \ldots, f_n operate synchronously over time $t = 0, 1, 2, \ldots$

$$x_i(t) = f_i(\operatorname{pa}(x_i)(t))$$

- Boolean networks can be considered as a special case of dynamic Bayesian networks without stochasticity
- ▶ Parent variables used to predict $x_i(t)$ are the values at time point t-1

► The rule table:

$$g_A(t+1) := NOT(g_D(t))$$

 $g_E(t+1) := g_A(t)$
 $g_B(t+1) := g_A(t)$
 $g_C(t+1) := g_B(t)$
 $g_F(t+1) := AND(g_E(t), g_B(t), NOT(g_D(t)))$
 $g_D(t+1) := g_B(t)$

► The state vectors

$$\begin{split} [g_i(0)]_i &= [1,0,0,0,0,0] \\ [g_i(1)]_i &= [1,1,0,0,1,0] \\ [g_i(2)]_i &= [1,1,1,1,1,1] \\ [g_i(3)]_i &= [0,1,1,1,1,0] \\ [g_i(4)]_i &= [0,0,1,1,0,0] \\ [g_i(5)]_i &= [0,0,0,0,0,0,0] \end{split}$$

Figure: An example of a Boolean network

- ▶ Primary applications include coarse-scale modeling of gene regulatory networks and signaling pathways
 - Qualitative
- ▶ Best constructed from databases of known interactions or networks

- Primary applications include coarse-scale modeling of gene regulatory networks and signaling pathways
 - Qualitative
- Best constructed from databases of known interactions or networks
- ▶ A Boolean network model can be easily used to study effects and propagation of
 - External stimuli
 - Gene/protein knock-down
 - at qualitative level
- ► Can handle genome/cell-wide networks
- Lack quantitative details and can thus be misleading (or at least results need to be assessed with care)

- Primary applications include coarse-scale modeling of gene regulatory networks and signaling pathways
 - Qualitative
- Best constructed from databases of known interactions or networks
- A Boolean network model can be easily used to study effects and propagation of
 - External stimuli
 - Gene/protein knock-down
 - at qualitative level
- ► Can handle genome/cell-wide networks
- Lack quantitative details and can thus be misleading (or at least results need to be assessed with care)
- Some concepts related to Boolean networks
 - Attractors, basins of attraction, criticality, sensitivity, reachability, etc.

Figure: A logical model of T cell activation from (Saez-Rodriguez et al., 2007)

Figure: A comprehensive, logical model of yeast molecular network (Aho et al., 2010)

Relevance networks

- ► A "quick and dirty" statistical approach to find similarly behaving molecules (genes, proteins, etc.)
- ▶ Assume no prior information about the interactions in the network

Relevance networks

- ► A "quick and dirty" statistical approach to find similarly behaving molecules (genes, proteins, etc.)
- Assume no prior information about the interactions in the network
- Measure similarity by correlation or mutual information, i.e. the similarity between molecules' abundance as random variables
- ► Relevance networks:
 - Measure similarity of entities using correlation or mutual information
 - Build a similarity matrix
 - ▶ Propose interactions which have similarity value over a given threshold

Covariance

▶ Expectation (the average value) of a discrete-valued or real-valued random variable X

$$\mathbb{E}[X] = \sum_{i} p(x_i)x_i \text{ or } \int p(x)xdx$$

Co-variance as the measure of strength of dependency between two real-valued random variables X and Y

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Covariance

▶ Expectation (the average value) of a discrete-valued or real-valued random variable X

$$\mathbb{E}[X] = \sum_{i} p(x_i)x_i \text{ or } \int p(x)xdx$$

 Co-variance as the measure of strength of dependency between two real-valued random variables X and Y

$$cov(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

- Assume sample data of both X and Y: $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$
- Sample mean and sample covariance

$$m_{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
 and $s_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - m_{x})(y_{i} - m_{y})$

Covariance

- ▶ Given a data set, covariance tells us about dependencies
- Example on the right:
 - ► Top: no co-variance between x and y, x has higher variance than y, diagonal co-variance matrix with inequal entries
 - Middle: no co-variance between x and y, equal variance for x and y, diagonal co-variance matrix with equal entries
 - ▶ Bottom: x and y co-vary, co-variance matrix will have non-zero off-diagonal entries

lacktriangle Correlation is computed from covariance by normalizing by the standard deviations σ_x and σ_y

$$\operatorname{corr}(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\operatorname{cov}(x,y)}{\sqrt{\operatorname{cov}(x,x)\operatorname{cov}(y,y)}}$$

lacktriangle Correlation is computed from covariance by normalizing by the standard deviations σ_x and σ_y

$$\operatorname{corr}(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\operatorname{cov}(x,y)}{\sqrt{\operatorname{cov}(x,x)\operatorname{cov}(y,y)}}$$

For p variables $\mathbf{x} = (x_1, \dots, x_p)$, empirical correlation matrix R (size p-by-p) collects all pairwise empirical correlations

$$r_{x_i x_j} = \frac{s_{x_i x_j}}{\sqrt{s_{x_i x_i} s_{x_j x_j}}}$$

lacktriangle Correlation is computed from covariance by normalizing by the standard deviations σ_{x} and σ_{y}

$$\operatorname{corr}(x,y) = \frac{\operatorname{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\operatorname{cov}(x,y)}{\sqrt{\operatorname{cov}(x,x)\operatorname{cov}(y,y)}}$$

For p variables $\mathbf{x} = (x_1, \dots, x_p)$, empirical correlation matrix R (size p-by-p) collects all pairwise empirical correlations

$$r_{\mathsf{x}_i\mathsf{x}_j} = \frac{\mathsf{s}_{\mathsf{x}_i\mathsf{x}_j}}{\sqrt{\mathsf{s}_{\mathsf{x}_i\mathsf{x}_i}\mathsf{s}_{\mathsf{x}_j\mathsf{x}_j}}}$$

▶ Correlation network for the data X (n measurements, p variables) is obtained from R by defining a threshold $0 \le \tau \le 1$ and drawing an edge between vertex x_i and x_j if $|r_{x_ix_j}| \ge \tau$

- ▶ Different thresholds give different networks
- ► A large threshold gives high precision (predictions are correct), but low recall (most interaction are not found)
- ► A smaller threshold has high recall (most interactions are revealed), but low precision (many errors)

Figure: From https://en.wikipedia.org/wiki/Correlation_and_dependence

Weakness of correlation

► Correlation measures linear dependency

Weakness of correlation thresholding

- ▶ Obtaining the edges of the graph by thresholding the correlation (or covariance) matrix is simple
- However, the method is sensitive in detecting spurious correlations that are due to other (controlling) variables
- ► For example:
 - Protein interactions z x and z y may be reflected as a correlation between x y
 - ightharpoonup However, there may not be any physical interaction between them x and y
- ► Correlation is an inherently pairwise concept: adding variables to the data does not have effect on correlation between existing vertices

Mutual information

- An alternative to correlation is mutual information (MI), which also measures the statistical dependency between genes
 - ▶ Measures how much the uncertainty in the variable *A* is reduced by knowing the variable *B*
 - ▶ If A determines B completely (i.e. deterministic relationship), then MI is maximal
 - ▶ If A is not related to B at all, then MI is zero

Mutual information

- ▶ An alternative to correlation is mutual information (MI), which also measures the statistical dependency between genes
 - ▶ Measures how much the uncertainty in the variable *A* is reduced by knowing the variable *B*
 - ▶ If A determines B completely (i.e. deterministic relationship), then MI is maximal
 - ▶ If A is not related to B at all, then MI is zero
- ▶ Defined for random variables X and Y with either continuous or discrete values, with proper probability distributions p(X = x) and p(Y = y)
- ▶ We will assume discrete-valued random variables for now

Information and entropy

- ▶ Information content (in bits) of a data item (or a message) X = x with probability distribution p(X = x) is $I(X = x) = -\log p(X = x)$, i.e., more unlikely an event is, more information it contains
 - ▶ I.e. a deterministic event has no information, unlikely event has high information
 - ▶ Information thus measures uncertainty or "surprisal" of an event

Information and entropy

- Information content (in bits) of a data item (or a message) X = x with probability distribution p(X = x) is $I(X = x) = -\log p(X = x)$, i.e., more unlikely an event is, more information it contains
 - ▶ I.e. a deterministic event has no information, unlikely event has high information
 - ▶ Information thus measures uncertainty or "surprisal" of an event
- ▶ Entropy H(X) is the expected information (i.e. expected uncertainty)

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

Information and entropy

- Information content (in bits) of a data item (or a message) X = x with probability distribution p(X = x) is $I(X = x) = -\log p(X = x)$, i.e., more unlikely an event is, more information it contains
 - ▶ I.e. a deterministic event has no information, unlikely event has high information
 - ▶ Information thus measures uncertainty or "surprisal" of an event
- ▶ Entropy H(X) is the expected information (i.e. expected uncertainty)

$$H(X) = \mathbb{E}[I(X)] = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$$

- Entropy is thus the "average" uncertainty or suprisal we are going to see in a random variable
 - ▶ Entropy is highest with uniform distributions: i.e. no idea what values we are going to get
 - ► Entropy is lowest with highly peaked distributions: we already know very well what values we are going to get

Entropy example

- ▶ A coin flip is a random variable *X* with two outcomes {tails, heads}
- A fair coin has probability distribution p(X = heads) = 0.5 and p(X = tails) = 0.5
- ► The entropy is thus:

$$\mathbb{E}[I(\text{"coin"})] = -p(\text{heads}) \log p(\text{heads}) - p(\text{tails}) \log p(\text{tails})$$

$$= -0.5 \cdot \log(0.5) - 0.5 \cdot \log(0.5)$$

$$= 1 \text{ (with binary log)}$$

An unfair coin with p(X = heads) = 0.9 has entropy $\mathbb{E}[I(\text{"biased coin"})] = -0.9 \cdot \log(0.9) - 0.1 \cdot \log(0.1) \approx 0.4$

Entropy example

► Entropies for biased coins

Relative entropy

- ▶ The relative entropy is a measure between two distributions p(X) and q(X)
- ▶ Better known as the Kullback-Leibler distance between two probability distributions

$$D_{\mathrm{KL}}(p||q) = \sum_{i=1}^{n} p(x_i) \log \frac{p(x_i)}{q(x_i)}$$
$$= \mathbb{E}_p \left[\log \frac{p(X)}{q(X)} \right]$$

Relative entropy

- ▶ The relative entropy is a measure between two distributions p(X) and q(X)
- Better known as the Kullback-Leibler distance between two probability distributions

$$D_{\mathrm{KL}}(p||q) = \sum_{i=1}^{n} p(x_i) \log \frac{p(x_i)}{q(x_i)}$$
$$= \mathbb{E}_p \left[\log \frac{p(X)}{q(X)} \right]$$

- Relative entropy is non-negative and is zero iff p = q for all x_i
- But relative entropy is not a distance measure because
 - ▶ It is not symmetric: $D_{\mathrm{KL}}(p||q) \neq D_{\mathrm{KL}}(q||p)$
 - It does not satisfy the triangle inequality

Mutual information

- Mutual information (MI) is a measure of the amount of information that one random variable Y contains about another random variable X
- ▶ Given both the joint distribution p(x, y) and the marginal distributions $p(x) = \sum_{y} p(x, y)$ and $p(y) = \sum_{x} p(x, y)$, the mutual information I(X|Y) is the relative entropy between the joint distribution p(x, y) and the product distribution p(x)p(y)

$$I(X|Y) = D_{KL}(p(X,Y)||p(X)p(Y))$$
$$= \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

Mutual information

- Mutual information (MI) is a measure of the amount of information that one random variable Y contains about another random variable X
- ▶ Given both the joint distribution p(x, y) and the marginal distributions $p(x) = \sum_y p(x, y)$ and $p(y) = \sum_x p(x, y)$, the mutual information I(X|Y) is the relative entropy between the joint distribution p(x, y) and the product distribution p(x)p(y)

$$I(X|Y) = D_{KL}(p(X,Y)||p(X)p(Y))$$
$$= \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

- ▶ I(X|Y) measures the similarity between p(X,Y) and p(X)p(Y)
- ► An illustration:

Data processing inequality

► Consider three random variables that satisfy a Markov chain (directed graphical model)

$$X \rightarrow Y \rightarrow Z$$
,

i.e.,
$$p(x, y, z) = p(x)p(y|x)p(z|y)$$

▶ Now we have

$$p(x,z|y) = \frac{p(x,y,z)}{p(y)} = \frac{p(x)p(y|x)p(z|y)}{p(y)}$$

$$= \frac{p(x)p(y,x)p(z|y)}{p(x)p(y)} = \frac{p(x|y)p(y)p(z|y)}{p(y)}$$

$$= p(x|y)p(z|y)$$

▶ The above Markov chain is thus equivalent to a conditional independency

$$X \rightarrow Y \rightarrow Z$$
 iff $X, Z \perp Y$

Data processing inequality

► Consider three random variables that satisfy a Markov chain (directed graphical model)

$$X \rightarrow Y \rightarrow Z$$
,

▶ Data processing inequality theorem says that if $X \to Y \to Z$ then

$$I(X|Y) \ge I(X|Z)$$
 and $I(Y|Z) \ge I(X|Z)$

▶ Thus $I(X|Z) \le \min(I(X|Y), I(Y|Z))$

► Aracne algorithm (Margolin et al., 2006) uses the MI to find statistically dependent pairs of variables/molecules/genes while removing redundant statistical correlations

- ► Aracne algorithm (Margolin et al., 2006) uses the MI to find statistically dependent pairs of variables/molecules/genes while removing redundant statistical correlations
- Aracne initialises the network G by adding an edge between variables x_i and x_j if $I(X_i|X_j) \ge I_0$, where I_0 is a threshold
- Aracne then examines all triplets of variables x_i , x_j and x_k for which all three MI values exceed I_0 and removes the edge with the smallest MI
- ► All possible triplets are analyzed regardless of whether some variables have been considered already in other triplets
 - Does not depend on the order the variable triplets are processed

Figure: Illustration of the data processing inequality from (Margolis et al., 2006)

- ▶ We have derived the information theoretic measures assuming discrete-valued random variables
- ▶ Real-world data is typically continuous
- ► The above information theoretic measures can be generalized to continuous-valued variables by replacing the sums with integrals
- ▶ Integrals can be approximated by numerical integration

- We have derived the information theoretic measures assuming discrete-valued random variables
- Real-world data is typically continuous
- ► The above information theoretic measures can be generalized to continuous-valued variables by replacing the sums with integrals
- ▶ Integrals can be approximated by numerical integration
- Observed data may come from an unknown probability density
- In Aracne algorithm unknown densities are estimated using the Gaussian kernel density estimation

Kernel density estimator

- ▶ Assume observed data $\mathcal{D} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$, where each $\mathbf{x}_i = (x_{i1}, \dots, x_{id})^T \in \mathbb{R}^d$
- ▶ The Gaussian kernel density estimate is defined as

$$p(\mathbf{x}|\mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} \mathcal{N}(\mathbf{x}|\mathbf{x}_i, \sigma^2 I),$$

where I is the d-by-d identity matrix

- \blacktriangleright The only parameter that can be tuned is the so-called bandwidth σ^2
- Aracne uses this non-parametric density estimator for each dimension k and pair of dimensions k and l
 - Notice that to process three variables X_i , X_j and X_k for removal of edges, MI needs to be evaluated only for pairs of variables, i.e., only 2-D numerical integrals are needed

Kernel density illustration

Figure: Illustration of Gaussian kernel density estimation from (Murphy, 2012)

Human B cell network: Aracne algorithm

- ▶ Data: 336 genome-wide expression profiles for perturbations of B cell phenotypes
- ► Focus on subnetwork around MYC gene
- ▶ Independent validation: MYC ChIP assay that measures binding of MYC protein on gene promoters
 - ▶ Provides direct experimental that MYC regulates a target gene

Human B cell network: Aracne algorithm

Figure: MYC subnetwork inferred by Aracne from B cell expression data (Basso et al., 2005)

Human B cell network: Aracne algorithm

Figure: MYC subnetwork inferred by Aracne from B cell expression data (Basso et al., 2005)

References

- ▶ Aho, T., et al, Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network, *PLoS ONE*, 5(5):e10662, 2010.
- ▶ Basso K, et al., Reverse engineering of regulatory networks in human B cells. *Nat Genet*. 2005, 37(4):382-90.
- Margolin AA et al., ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context, BMC Bioinformatics, 7(Suppl 1):S7, 2006.
- Murphy K (2012) Machine learning: a probabilistic perspective, MIT Press.
- ▶ Saez-Rodriguez, J., et al. (2007) A logical model provides insights into T cell receptor signaling. *PLoS Computational Biology*, 3(8): e163.