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» Boolean networks

> Relevance networks

» Introduction to information theoretics concepts
»

Aracne algorithm

v

This lecture is based on a collection of articles listed at the end of the slides



Boolean networks

> An (over-)simplified representation of a (biological) network system
> A generalization of binary cellular automata

> A directed graph where each node i is associated with binary state value x; and parent nodes
pa(x;), i =,1,...,n

> A deterministic update rule, i.e., Boolean function, fi(-) : B?**)| — B for each node x;

» Typically update rules fi, ..., f, operate synchronously over time t =0,1,2,...

xi(t) = fi(pa(xi)(t))



Boolean networks

> An (over-)simplified representation of a (biological) network system
> A generalization of binary cellular automata

> A directed graph where each node i is associated with binary state value x; and parent nodes
pa(x;), i =,1,...,n

> A deterministic update rule, i.e., Boolean function, fi(-) : B?**)| — B for each node x;

» Typically update rules fi, ..., f, operate synchronously over time t =0,1,2,...

xi(t) = fi(pa(xi)(t))

» Boolean networks can be considered as a special case of dynamic Bayesian networks
without stochasticity

» Parent variables used to predict x;(t) are the values at time point t — 1



Boolean networks (2)
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» The rule table:
» The state vectors

ga(t +1) := NOT (gn(t))

[&(0)]; = [1,0,0,0,0,0]
ge(t+1) :gA( ) [&(1)]; = [1,1,0,0,1,0]
ge(t+1) 1= ga(t) [gi(2)] =[1,1,1,1,1,1]
gc(t+1) = gg(t) [g(3)]; = [0,1,1,1,1,0]
gr(t+1) := AND(ge(t), g(t), [g(4)]: = [0,0,1,1,0,0]

NOT (gp(t))) [&i(5)]; = [0,0,0,0,0,0]

go(t+1) = ga(t)

Figure: An example of a Boolean network
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» Primary applications include coarse-scale modeling of gene regulatory networks and
signaling pathways
> Qualitative

» Best constructed from databases of known interactions or networks
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» Qualitative
» Best constructed from databases of known interactions or networks

» A Boolean network model can be easily used to study effects and propagation of

» External stimuli
> Gene/protein knock-down

at qualitative level
» Can handle genome/cell-wide networks

» Lack quantitative details and can thus be misleading (or at least results need to be
assessed with care)



Boolean networks (2)

>

Primary applications include coarse-scale modeling of gene regulatory networks and
signaling pathways
> Qualitative

» Best constructed from databases of known interactions or networks

A Boolean network model can be easily used to study effects and propagation of

» External stimuli
> Gene/protein knock-down

at qualitative level
Can handle genome/cell-wide networks
Lack quantitative details and can thus be misleading (or at least results need to be
assessed with care)
Some concepts related to Boolean networks
> Attractors, basins of attraction, criticality, sensitivity, reachability, etc.



Boolean networks (3)

Bip1]

jiis
=3
-
gﬁ

L
e
[

Figure: A logical model of T cell activation from (Saez-Rodriguez et al., 2007)



Boolean networks (4)
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logical model of yeast molecular network (Aho et al., 2010)



Relevance networks

> A “quick and dirty" statistical approach to find similarly behaving molecules (genes,
proteins, etc.)

» Assume no prior information about the interactions in the network



Relevance networks

> A “quick and dirty" statistical approach to find similarly behaving molecules (genes,
proteins, etc.)

» Assume no prior information about the interactions in the network

» Measure similarity by correlation or mutual information, i.e. the similarity between
molecules’ abundance as random variables

» Relevance networks:

> Measure similarity of entities using correlation or mutual information
> Build a similarity matrix
> Propose interactions which have similarity value over a given threshold



Covariance

> Expectation (the average value) of a discrete-valued or real-valued random variable X

E[X] = Zp(x,-)x,- or /p(x)xdx

i

» Co-variance as the measure of strength of dependency between two real-valued random
variables X and Y
cov(X,Y) = E[(X = E[X])(Y — E[Y])]



Covariance

> Expectation (the average value) of a discrete-valued or real-valued random variable X

E[X] = Zp(x,-)x,- or /p(x)xdx

i

» Co-variance as the measure of strength of dependency between two real-valued random
variables X and Y

cov(X, Y) = E[(X = E[X])(Y — E[Y])]
> Assume sample data of both X and Y: x = (x1,...,x,) and y = (y1,...,¥n)
» Sample mean and sample covariance

n

1o 1
my = . ;x,- and s, = EZ(X,’ —my)(yi —my)

i=1



Covariance

» Given a data set, covariance tells us about dependencies
» Example on the right: 40y

> Top: no co-variance between x and y, x has higher
variance than y, diagonal co-variance matrix with *
inequal entries

> Middle: no co-variance between x and y, equal variance
for x and y, diagonal co-variance matrix with equal
entries o

> Bottom: x and y co-vary, co-variance matrix will have
non-zero off-diagonal entries




Correlation matrix and correlation network

» Correlation is computed from covariance by normalizing by the standard deviations o, and
Oy

corr(x, y) = cov(x,y) cov(x,y)

Ox0y B \/cov(x, x)cov(y,y)




Correlation matrix and correlation network

» Correlation is computed from covariance by normalizing by the standard deviations o, and

Oy
cov(x cov(x
corr(x,y) = (x.¥) = (x:)
0x0y \/cov(x, x)cov(y, y)
» For p variables x = (xi, ..., Xp), empirical correlation matrix R (size p-by-p) collects all
pairwise empirical correlations
Sxix;
rx,-xj- =

V/ Sxix; S



Correlation matrix and correlation network

» Correlation is computed from covariance by normalizing by the standard deviations o, and

Oy
cov(x,y) cov(x,y)
corr(x,y) = =
0x0y \/cov(x, x)cov(y, y)
» For p variables x = (xi, ..., Xp), empirical correlation matrix R (size p-by-p) collects all
pairwise empirical correlations
Sxix;
rX,'Xj -
V/ Sxix; S

» Correlation network for the data X (n measurements, p variables) is obtained from R by
defining a threshold 0 < 7 <1 and drawing an edge between vertex x; and x; if |rX,.Xj| >



Correlation matrix and correlation network

» Different thresholds give different networks
> A large threshold gives high precision (predictions are correct), but low recall (most

interaction are not found)
> A smaller threshold has high recall (most interactions are revealed), but low precision

(many errors)

Figure: From https://en.wikipedia.org/wiki/Correlation_and_dependence


https://en.wikipedia.org/wiki/Correlation_and_dependence

Weakness of correlation

> Correlation measures linear dependency
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Weakness of correlation thresholding

>

Obtaining the edges of the graph by thresholding the correlation (or covariance) matrix is
simple

However, the method is sensitive in detecting spurious correlations that are due to other
(controlling) variables

For example:

> Protein interactions z — x and z — y may be reflected as a correlation between x — y
> However, there may not be any physical interaction between them x and y

Correlation is an inherently pairwise concept: adding variables to the data does not have
effect on correlation between existing vertices



Mutual information

» An alternative to correlation is mutual information (MI), which also measures the
statistical dependency between genes
> Measures how much the uncertainty in the variable A is reduced by knowing the variable B
> If A determines B completely (i.e. deterministic relationship), then Ml is maximal
» |f A is not related to B at all, then MI is zero



Mutual information

» An alternative to correlation is mutual information (MI), which also measures the
statistical dependency between genes

> Measures how much the uncertainty in the variable A is reduced by knowing the variable B
> If A determines B completely (i.e. deterministic relationship), then Ml is maximal
» |f A is not related to B at all, then MI is zero
» Defined for random variables X and Y with either continuous or discrete values, with
proper probability distributions p(X = x) and p(Y = y)

» We will assume discrete-valued random variables for now



Information and entropy

> Information content (in bits) of a data item (or a message) X = x with probability
distribution p(X = x) is [(X = x) = — log p(X = x), i.e., more unlikely an event is, more
information it contains
> l.e. a deterministic event has no information, unlikely event has high information
> Information thus measures uncertainty or “surprisal” of an event
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Information and entropy

> Information content (in bits) of a data item (or a message) X = x with probability
distribution p(X = x) is [(X = x) = — log p(X = x), i.e., more unlikely an event is, more
information it contains
> l.e. a deterministic event has no information, unlikely event has high information
> Information thus measures uncertainty or “surprisal” of an event

» Entropy H(X) is the expected information (i.e. expected uncertainty)

H(X) = E[I(X)] = — Z p(x:) log p(x;)

» Entropy is thus the “average” uncertainty or suprisal we are going to see in a random
variable
> Entropy is highest with uniform distributions: i.e. no idea what values we are going to get
> Entropy is lowest with highly peaked distributions: we already know very well what values we
are going to get



Entropy example

» A coin flip is a random variable X with two outcomes {tails, heads}
» A fair coin has probability distribution p(X = heads) = 0.5 and p(X = tails) = 0.5
» The entropy is thus:

E[/(“coin”)] = —p(heads)log p(heads) — p(tails) log p(tails)
—0.5 - log(0.5) — 0.5 - log(0.5)
= 1 (with binary log)

» An unfair coin with p(X = heads) = 0.9 has entropy
E[/("biased coin”)] = —0.9 - log(0.9) — 0.1 - log(0.1) ~ 0.4



Entropy example

» Entropies for biased coins
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Relative entropy

> The relative entropy is a measure between two distributions p(X) and g(X)

» Better known as the Kullback-Leibler distance between two probability distributions

RN ) log PO
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Relative entropy

> The relative entropy is a measure between two distributions p(X) and g(X)

» Better known as the Kullback-Leibler distance between two probability distributions

" () log P
Dxr(pllg) = ;p( ol B o)
p(X)
e {log q(X)}

> Relative entropy is non-negative and is zero iff p = g for all x;
» But relative entropy is not a distance measure because

> It is not symmetric: Dk (p|lq) # Dkwr(ql|p)
> It does not satisfy the triangle inequality



Mutual information

» Mutual information (MI) is a measure of the amount of information that one random
variable Y’ contains about another random variable X

> Given both the joint distribution p(x, y) and the marginal distributions p(x) = >_  p(x,y)
and p(y) = >, p(x,y), the mutual information /(X|Y') is the relative entropy between
the joint distribution p(x, y) and the product distribution p(x)p(y)

I(X]Y) = Dkun(p(X,Y)llp(X)p(Y))
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Mutual information

» Mutual information (MI) is a measure of the amount of information that one random
variable Y’ contains about another random variable X

> Given both the joint distribution p(x, y) and the marginal distributions p(x) = >_  p(x,y)
and p(y) = >, p(x,y), the mutual information /(X|Y') is the relative entropy between
the joint distribution p(x, y) and the product distribution p(x)p(y)

I(X]Y) = Dkun(p(X,Y)llp(X)p(Y))

P(x, )
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» [(X|Y) measures the similarity between p(X, Y) and p(X)p(Y)

» An illustration:



Data processing inequality
» Consider three random variables that satisfy a Markov chain (directed graphical model)
X=>Y—>/Z

i.e., p(x,y,z) = p(x)p(y|x)p(zly)
» Now we have

p(x,y,z) _ p(x)plylx)p(zly)

plx.zly) = ply) p(y)
_ P()p(y, x)p(zly) _ pxly)p(y)p(zly)
p(x)p(y) p(y)
= p(xly)p(zly)

» The above Markov chain is thus equivalent to a conditional independency

X—=Y—=>Ziff X, ZLY



Data processing inequality
» Consider three random variables that satisfy a Markov chain (directed graphical model)
X=>Y—>/Z
» Data processing inequality theorem says that if X — Y — Z then
I(X|Y) > I(X|Z) and I(Y]|Z)> I(X|2)

> Thus /(X]Z) < min (I(X]Y),1(Y|Z))



Aracne algorithm

> Aracne algorithm (Margolin et al., 2006) uses the MI to find statistically dependent pairs
of variables/molecules/genes while removing redundant statistical correlations



Aracne algorithm

> Aracne algorithm (Margolin et al., 2006) uses the MI to find statistically dependent pairs
of variables/molecules/genes while removing redundant statistical correlations

> Aracne initialises the network G by adding an edge between variables x; and Xx; if
1(Xi|X;) > Iy, where Iy is a threshold

> Aracne then examines all triplets of variables x;, x; and x, for which all three MI values
exceed Iy and removes the edge with the smallest Ml

» All possible triplets are analyzed regardless of whether some variables have been
considered already in other triplets

» Does not depend on the order the variable triplets are processed



Aracne algorithm

Figure: Illustration of the data processing inequality from (Margolis et al., 2006)



Aracne algorithm

» We have derived the information theoretic measures assuming discrete-valued random
variables

» Real-world data is typically continuous

» The above information theoretic measures can be generalized to continuous-valued
variables by replacing the sums with integrals

» Integrals can be approximated by numerical integration



Aracne algorithm

>

We have derived the information theoretic measures assuming discrete-valued random
variables

Real-world data is typically continuous

The above information theoretic measures can be generalized to continuous-valued
variables by replacing the sums with integrals

Integrals can be approximated by numerical integration

» Observed data may come from an unknown probability density

In Aracne algorithm unknown densities are estimated using the Gaussian kernel density
estimation



Kernel density estimator

v

Assume observed data D = (xy,...,xy), where each x; = (x1,..., %)’ € R?

v

The Gaussian kernel density estimate is defined as

p(x|D) = NZN(X|X,,O’ 1),

where [ is the d-by-d identity matrix

v

The only parameter that can be tuned is the so-called bandwidth o2

v

Aracne uses this non-parametric density estimator for each dimension k and pair of
dimensions k and /

> Notice that to process three variables X;, X; and Xi for removal of edges, M| needs to be
evaluated only for pairs of variables, i.e., only 2-D numerical integrals are needed



Kernel density illustration

gauss, h=1.000 gauss, h=2.000

Figure: Illustration of Gaussian kernel density estimation from (Murphy, 2012)



Human B cell network: Aracne algorithm

» Data: 336 genome-wide expression profiles for perturbations of B cell phenotypes
» Focus on subnetwork around MYC gene

» Independent validation: MYC ChIP assay that measures binding of MYC protein on gene
promoters

> Provides direct experimental that MYC regulates a target gene



Human B cell network: Aracne algorithm

Figure: MYC subnetwork inferred by Aracne from B cell expression data (Basso et al., 2005)



Human B cell network: Aracne algorithm
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