CS-E4075 Special course on Gaussian processes: Session #11 Dynamical models

Harri Lähdesmäki

Aalto University

harri.lahdesmaki@aalto.fi

Monday 15.02.2021

Outline

- Motivation
- Multi-output Gaussian processes
- Discrete-time dynamical GP models
 - Application 1: Model-based reinforcement learning with GPs
- Discrete-time dynamical GPs models: noisy data
- Continuous-time dynamical models with kernels and GPs

Robotics:

- Many real-world problems involve a dynamical system
- For many real-world systems the dynamics are unknown
- $\rightarrow\,$ We would like learn a dynamical system from observed data
- Dynamics of many real-world systems can be controlled
- → We would like to use our learned proxy dynamics to control the system

Video prediction:

Previous frame

Current frame

Multi-output Gaussian processes

- In this lecture we will consider dynamical models in a high dimensional space (d > 1)
- Consider a multi-output (vector-valued) function $f : \mathbb{R}^{p} \to \mathbb{R}^{d}$ where d > 1, denoted as

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_d(\mathbf{x}) \end{pmatrix}$$

• We denote that **f** follows a multi-output Gaussian process prior as

$$\mathbf{f}(\mathbf{x}) \sim GP(\boldsymbol{\mu}(\mathbf{x}), \boldsymbol{K}(\mathbf{x}, \mathbf{x}'| \theta)),$$

where $\mu(\mathbf{x}) \in \mathbb{R}^d$ is the mean (which we assume as **0**) and $K(\mathbf{x}, \mathbf{x}'|\theta)$ is a matrix-valued positive definite cross-covariance function (CCF)

The (*i*, *j*) entry of the *d*-by-*d* matrix *K*(**x**, **x**'|θ) defines the covariance between the output dimensions (*i*, *j*) for any inputs **x**, **x**'

$$[\boldsymbol{K}(\mathbf{x},\mathbf{x}'| heta)]_{i,j} = \operatorname{cov}(f_i(\mathbf{x}),f_j(\mathbf{x}')| heta)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Multi-output Gaussian processes: CCFs

- The CCF can have a number of different structures
 - Independent
 - Implicit/Linear model of coregionalization
 - Full cross-covariance
- Here we assume multi-output GPs that factorize across the output dimensions, which is equivalent to diagonal CCF

$$\boldsymbol{K}(\mathbf{x},\mathbf{x}'|\theta) = \operatorname{diag}\left(k_1(\mathbf{x},\mathbf{x}'|\theta),\ldots,k_d(\mathbf{x},\mathbf{x}'|\theta)\right)$$

The dimension specific scalar-valued covariance functions k_i(**x**, **x**'|θ_i) can be any valid kernels and are often assumed to be shared across output dimensions

$$K(\mathbf{x}, \mathbf{x}'|\theta) = k(\mathbf{x}, \mathbf{x}'|\theta) \cdot I_d$$

 We assume (unless stated otherwise) the squared exponential (SE) covariance functions with input dimension specific length-scales (thus, θ = (σ_f, ℓ₁, ..., ℓ_d))

$$\mathcal{K}(\mathbf{x},\mathbf{x}'| heta) = \sigma_f^2 \exp\left(-rac{1}{2}\sum_{j=1}^d rac{(x_j - x_j')^2}{\ell_j^2}
ight) \cdot I_d$$

(日)

Multi-output Gaussian processes: joint Gaussian

- Consider a finite collection of inputs $X = (\mathbf{x}_1, \dots, \mathbf{x}_N)$
- By the definition of GPs, the function values evaluated at *X* have a joint multivariate Gaussian distribution

$$\mathbf{f}(X) = \begin{pmatrix} \mathbf{f}(\mathbf{x}_1) \\ \vdots \\ \mathbf{f}(\mathbf{x}_N) \end{pmatrix} \in \mathbb{R}^{Nd} \text{ and } p(\mathbf{f}(X)) = \mathcal{N}(\mathbf{f}(X)|\mathbf{0}, \mathbf{K}_{XX}(\theta))$$

where

$$\boldsymbol{K}_{XX}(\theta) = \begin{pmatrix} \boldsymbol{K}(\mathbf{x}_1, \mathbf{x}_1 | \theta) & \boldsymbol{K}(\mathbf{x}_1, \mathbf{x}_2 | \theta) & \cdots & \boldsymbol{K}(\mathbf{x}_1, \mathbf{x}_N | \theta) \\ \boldsymbol{K}(\mathbf{x}_2, \mathbf{x}_1 | \theta) & \boldsymbol{K}(\mathbf{x}_2, \mathbf{x}_2 | \theta) & \cdots & \boldsymbol{K}(\mathbf{x}_2, \mathbf{x}_N | \theta) \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{K}(\mathbf{x}_N, \mathbf{x}_1 | \theta) & \boldsymbol{K}(\mathbf{x}_N, \mathbf{x}_2 | \theta) & \cdots & \boldsymbol{K}(\mathbf{x}_N, \mathbf{x}_N | \theta) \end{pmatrix} \in \mathbb{R}^{Nd \times Nd}$$

For the multi-output GP prior that factorizes across dimensions, we can also write simply as

$$p(\mathbf{f}(X)) = \prod_{i=1}^{d} p(f_i(X))$$

Discrete-time dynamical models

• Consider a discrete-time, stochastic dynamical system with states $\mathbf{x}_t \in \mathbb{R}^d$, for t = 0, 1, 2, ...

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t) + \mathbf{w}_t,$$

where $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^d$ is an unknown transition function and \mathbf{w}_t is the i.i.d. system noise $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

Alternatively we can write

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t+1}|\mathbf{f}(\mathbf{x}_t), \Sigma)$$

• The system is first-order Markovian

Discrete-time dynamical models

• Consider a discrete-time, stochastic dynamical system with states $\mathbf{x}_t \in \mathbb{R}^d$, for t = 0, 1, 2, ...

$$\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t) + \mathbf{w}_t,$$

where $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^d$ is an unknown transition function and \mathbf{w}_t is the i.i.d. system noise $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \Sigma)$

Alternatively we can write

$$p(\mathbf{x}_{t+1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t+1}|\mathbf{f}(\mathbf{x}_t), \Sigma)$$

- The system is first-order Markovian
- Assume a collection of N time-series trajectories of length T + 1, D = {x⁽ⁿ⁾_{0:T}}^N_{n=1}, where the measurements are the true system states x without any measurement noise
- The data *D* can be presented as $N \cdot T$ state transition pairs $(\mathbf{x}_{t}^{(n)}, \mathbf{x}_{t+1}^{(n)})$ (or input-output pairs)

$$X = \left(\mathbf{x}_{0}^{(1)}, \dots, \mathbf{x}_{T-1}^{(1)}, \dots, \mathbf{x}_{0}^{(N)}, \dots, \mathbf{x}_{T-1}^{(N)}\right) \in \mathbb{R}^{d \times NT}$$
$$\mathbf{y} = \left(\mathbf{x}_{1}^{(1)^{T}}, \dots, \mathbf{x}_{T}^{(1)^{T}}, \dots, \mathbf{x}_{1}^{(N)^{T}}, \dots, \mathbf{x}_{T}^{(N)^{T}}\right)^{T} \in \mathbb{R}^{dNT \times 1}$$

イロト イボト イヨト イヨト

Discrete-time dynamical GP models

- We are interested in learning the underlying dynamical model which is completely unknown
 - We do not have a parametric form for f
- We can assign the multi-output GP prior for f

$$\mathbf{f}(\mathbf{x}) \sim GP(oldsymbol{\mu}(\mathbf{x}),oldsymbol{K}(\mathbf{x},\mathbf{x}'| heta))$$

 We can learn an estimate of the unknown transition function from *D* by maximizing the marginal likelihood w.r.t. GP hyperparameters (and the system noise parameter Σ if unknown)

$$\ln p(\mathbf{y}|\theta) = -\frac{NT}{2} - \frac{1}{2}\ln |\mathbf{K}_{\mathbf{y}}| - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{y},$$

where

$$\mathbf{K}_{\mathbf{y}} = \mathbf{K}_{XX}(\theta) + I_{NT} \otimes \Sigma$$

Discrete-time dynamical GP models

- We are interested in learning the underlying dynamical model which is completely unknown
 - We do not have a parametric form for **f**
- We can assign the multi-output GP prior for f

$$\mathbf{f}(\mathbf{x}) \sim GP(oldsymbol{\mu}(\mathbf{x}),oldsymbol{K}(\mathbf{x},\mathbf{x}'| heta))$$

 We can learn an estimate of the unknown transition function from *D* by maximizing the marginal likelihood w.r.t. GP hyperparameters (and the system noise parameter Σ if unknown)

$$\ln p(\mathbf{y}|\theta) = -\frac{NT}{2} - \frac{1}{2}\ln |\mathbf{K}_{\mathbf{y}}| - \frac{1}{2}\mathbf{y}^{\mathsf{T}}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{y},$$

where

$$\mathbf{K}_{\mathbf{y}} = \mathbf{K}_{XX}(\theta) + I_{NT} \otimes \Sigma$$

• If the output dimensions of the GP are a priori independent, dimensions do not contain any shared parameters (i.e., $\mathbf{K}(\mathbf{x}, \mathbf{x}'|\theta) = \text{diag}(k_1(\mathbf{x}, \mathbf{x}'|\theta_1), \dots, k_d(\mathbf{x}, \mathbf{x}'|\theta_d)))$, and the covariance of the system noise is also diagonal, then it can be seen that the learning factorizes across dimensions

・ロト ・ 同ト ・ ヨト ・ ヨト

Discrete-time dynamical GP models: illustration

Monday 15.02.2021 9 / 45

・ロト ・日子・ ・ ヨト・

Discrete-time dynamical GP models: predictions

 After learning the dynamics model with (X, y), the standard GP predictive distributions can be used to compute the transition function prediction for a new input state x*

$$p(\mathbf{f}(\mathbf{x}^*)|X, \mathbf{y}, \mathbf{x}^*) = \mathcal{N}(\mathbf{f}(\mathbf{x}^*)|\boldsymbol{\mu}(\mathbf{x}^*), \boldsymbol{\Sigma}(\mathbf{x}^*)),$$

where $\mu(\mathbf{x}^*)$ and $\Sigma(\mathbf{x}^*)$ are the standard prediction equations

$$\mu(\mathbf{x}^*) = \mathbf{K}_{\mathbf{x}^*X}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{y}$$

$$\Sigma(\mathbf{x}^*) = \mathbf{K}_{\mathbf{x}^*\mathbf{x}^*} - \mathbf{K}_{\mathbf{x}^*X}\mathbf{K}_{\mathbf{y}}^{-1}\mathbf{K}_{X\mathbf{x}^*}$$

• Thus, given a state at time t, x_t, our estimate of the one time-step prediction p(x_{t+1}|X, y, x_t) is obtained by combining the above equations with the system noise w_t:

$$\rho(\mathbf{x}_{t+1}|\mathbf{x}_t) = \rho(\mathbf{x}_{t+1}|X, \mathbf{y}, \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t+1}|\boldsymbol{\mu}(\mathbf{x}_t), \boldsymbol{\Sigma}(\mathbf{x}_t) + \boldsymbol{\Sigma})$$

Discrete-time dynamical GP models: long-term predictions

- Given a state distribution at time t, p(xt), we are often interested in making long-term predictions for the state evolution xt+1,..., xt+H
- Given $p(\mathbf{x}_t)$, the prediction equation for a single time step can be written

$$p(\mathbf{x}_{t+1}) = \int p(\mathbf{x}_{t+1}|\mathbf{x}_t) p(\mathbf{x}_t) d\mathbf{x}_t,$$

where $p(\mathbf{x}_{t+1}|\mathbf{x}_t) = p(\mathbf{x}_{t+1}|X, \mathbf{y}, \mathbf{x}_t)$

- For long-term predictions $p(\mathbf{x}_{t+1}), \ldots, p(\mathbf{x}_{t+H})$, we can iteratively make one time-step predictions
- The above integral cannot be solved analytically but can be approximated by Monte Carlo sampling
 - Draw \mathbf{x}_{t+1} from $p(\mathbf{x}_{t+1})$, then with \mathbf{x}_{t+1} fixed draw $p(\mathbf{x}_{t+2}|X, \mathbf{y}, \mathbf{x}_{t+1})$, etc.
 - This will give a realization from $p(\mathbf{x}_{t+1}, \mathbf{x}_{t+2}, \dots, \mathbf{x}_{t+H})$

(日)

Discrete-time dynamical GP models: prediction illustration

- An illustration of long term predictions
- Uncertainty accumulates

State space

Figure from (Gadd et al, 2021)

Discrete-time dynamical GP models: alternative model variants

• Deterministic dynamic model

 $\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t)$

• Time differential model

 $\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t) + \mathbf{w}_t,$

where the GP prior for ${\bf f}$ now has a zero mean

 Time differential model with irregular sampling times (t₀, t₁, ..., t_N) (also called gradient matching)

$$\mathbf{x}(t_{i+1}) = \mathbf{x}(t_i) + \Delta t_i \cdot \mathbf{f}(\mathbf{x}(t_i)) + \mathbf{w}(t_i),$$

where $\Delta t_i = t_{i+1} - t_i$

Discrete-time dynamical GP models: alternative model variants

• Deterministic dynamic model

 $\mathbf{x}_{t+1} = \mathbf{f}(\mathbf{x}_t)$

• Time differential model

 $\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t) + \mathbf{w}_t,$

- where the GP prior for ${\bf f}$ now has a zero mean
- Time differential model with irregular sampling times (*t*₀, *t*₁, ..., *t*_N) (also called gradient matching)

$$\mathbf{x}(t_{i+1}) = \mathbf{x}(t_i) + \Delta t_i \cdot \mathbf{f}(\mathbf{x}(t_i)) + \mathbf{w}(t_i),$$

where $\Delta t_i = t_{i+1} - t_i$

• Control model with an external control variate $\mathbf{a}_t \in \mathbb{R}^k$

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, \mathbf{a}_t) + \mathbf{w}_t,$$

where $\mathbf{f}: \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$

Deep GP model

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \underbrace{\mathbf{f}_L \circ \mathbf{f}_{L-1} \dots \mathbf{f}_1(\mathbf{x}_t)}_{\text{deep GP with } L \text{ layers}} + \mathbf{w}_t$$

Higher-order models

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, \dots, \mathbf{x}_{t-1}) + \mathbf{w}_t,$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Application 1: Model-based reinforcement learning with GPs

- Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning for control and sequencial decision making
- Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a pre-defined objective
- An example: learn to control a robot via trial-and-error to make the robot to complete a task

(日)

Application 1: Model-based reinforcement learning with GPs

- Reinforcement learning (RL) provides a principled framework for data-driven autonomous learning for control and sequencial decision making
- Through trial-and-error, controls are chosen with the goal of completing a task or maximizing a pre-defined objective
- An example: learn to control a robot via trial-and-error to make the robot to complete a task
- Standard RL methods are typically implemented with neural networks that require lots of trial-and-errors to complete a task
- Model-based reinforcement learning (MBRL) provides a solution to achieve sample efficiency, i.e., learn an accurate model / complete a task with little data

 \rightarrow MBRL with GPs

イロト イボト イヨト イヨト

MBRL with GPs: learning a dynamics model / emulator

• Assume the control model with an external control variate $\mathbf{a}_t \in \mathbb{R}^k$

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, \mathbf{a}_t) + \mathbf{w}_t$$

and the GP prior for $\mathbf{f} : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$

 An estimate of the Markovian transition function f emulates the real-world system and can be used to predict the outcome / next state given the current state x_t and control action a_t

• • • • • • • • • • • • • •

MBRL with GPs: learning a dynamics model / emulator

• Assume the control model with an external control variate $\mathbf{a}_t \in \mathbb{R}^k$

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \mathbf{f}(\mathbf{x}_t, \mathbf{a}_t) + \mathbf{w}_t$$

and the GP prior for $\mathbf{f} : \mathbb{R}^d \times \mathbb{R}^k \to \mathbb{R}^d$

- An estimate of the Markovian transition function f emulates the real-world system and can be used to predict the outcome / next state given the current state x_t and control action a_t
- Assume that noise-free data has been collected from the real-world system, which can be
 presented as a collection of triplets (or input x_t, a_t and output x_{t+1} pairs)

$$D = \{(\mathbf{x}_t, \mathbf{a}_t, \mathbf{x}_{t+1})\}_{t=0}^T$$

 The discrete-time dynamical GP model can be learned again by maximizing the marginal likelihood as described abnove

・ロト ・ 同ト ・ ヨト ・ ヨト

MBRL with GPs: objective function

- In RL setting we typically have a pre-defined reward function *r*(**x**, **a**)
 - Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
 - Reward may also penalize large control actions
- For brevity, denote the *H*-step ahead control actions as $(\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H}) = \mathbf{a}_{t:t+H}$
- The objective function can be defined as the expected reward over a time horizon H

$$R(\mathbf{a}_{t:t+H}) = \sum_{\tau=t}^{t+H} \int r(\mathbf{x}_{\tau+1}, \mathbf{a}_{\tau}) p(\mathbf{x}_{\tau+1} | \mathbf{x}_{\tau}, \mathbf{a}_{\tau}) d\mathbf{x}_{\tau+1},$$

where the prediction equation $p(\mathbf{x}_{\tau+1}|\mathbf{x}_{\tau}, \mathbf{a}_{\tau})$ is now augmented with the control \mathbf{a}_{τ}

(日)

MBRL with GPs: objective function

- In RL setting we typically have a pre-defined reward function *r*(**x**, **a**)
 - Reward is high for that part of the state space where we want the system to end-up, and low elsewhere
 - Reward may also penalize large control actions
- For brevity, denote the *H*-step ahead control actions as $(\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H}) = \mathbf{a}_{t:t+H}$
- The objective function can be defined as the expected reward over a time horizon H

$$R(\mathbf{a}_{t:t+H}) = \sum_{\tau=t}^{t+H} \int r(\mathbf{x}_{\tau+1}, \mathbf{a}_{\tau}) \rho(\mathbf{x}_{\tau+1} | \mathbf{x}_{\tau}, \mathbf{a}_{\tau}) d\mathbf{x}_{\tau+1},$$

where the prediction equation $p(\mathbf{x}_{\tau+1}|\mathbf{x}_{\tau}, \mathbf{a}_{\tau})$ is now augmented with the control \mathbf{a}_{τ}

- The integral cannot be solved in closed-form but can be approximated by sampling trajectories (=long-term predictions) from the dynamics model **f** with Monte Carlo
- The goal is to choose control actions a_{t:t+H} so that the objective function over a time horizon H is maximized

$$\hat{\mathbf{a}}_{t:t+H} = \arg \max R(\mathbf{a}_{t:t+H})$$

イロン イロン イヨン イヨン 三日

MBRL with GPs: illustration

• An illustration of MBRL with GPs: maximization of the reward / objective function

State space

Figure from (Gadd et al, 2021)

	 	200	 	
2	L 81			

MBRL with GPs: open-loop control

- How to find an optimal action sequence â_{t:t+H}?
- Cross-entropy method
 - Initialize m and v
 - 2 Sample k = 1, ..., K action sequences

$$\mathbf{a}_{t:t+H}^{(k)} \sim \mathcal{N}(\mathbf{m}, \operatorname{diag} \mathbf{v})$$

- For each action sequence a^(k)_{t:t+H} sample p = 1,..., P trajectories x^(k,p)_{t+1},..., x^(k,p)_{t+H+1} using the GP surrogate of the dynamics model f
- For each action sequence approximate the expected long term reward over horizon H as

$$\hat{R}(\mathbf{a}_{t:t+H}^{(k)}) = \sum_{\tau=t}^{t+H} \frac{1}{P} \sum_{p=1}^{P} r(\mathbf{x}_{\tau+1}^{(k,p)}, \mathbf{a}_{\tau}^{(k,p)})$$

Return the current best action sequence, or update m and v using the mean and variance of the top performing action sequences and go back to step 2

・ロト ・ 同ト ・ ヨト ・ ヨト

MBRL with GPs: model predictive control with feedback

- MBRL with GPs is typically implemented as a model predictive control (MPC) method with feedback (closed-loop) control
- Once the optimal control sequence at time t is found â_{t:t+H}, only the first control action â_t is applied to the real-world system
- The system transitions from the current state x_t to a state x_{t+1}
- After a single step ahead we update the data D ← D ∪ {(x_t, a_t, x_{t+1})} and re-train the GP dynamics model
- The MPC then re-optimizes the actions â_{t+1:t+H+1} and this closed-loop MPC continues by iteratively learning dynamics and re-optimizing the action sequence

イロト イボト イヨト イヨト

MBRL with GPs: CartPole example

- CartPole example (with a wall on right)
- Measurements of the system state include
 - Position and velocity of the cart
 - Angle and angular velocity of the pole
- Desired states are on right with the pole at up-right position
- Visualizations of the GPs based learning at an early and a later learning stage

< <p>I

→ ∢ ⊒

MBRL with GPs: CartPole example (2)

Comparison of shallow and deep GP model variants with L = 1,..., 3 on the (modified) CartPole example

$$\mathbf{x}_{t+1} = \mathbf{x}_t + \underbrace{\mathbf{f}_L \circ \mathbf{f}_{L-1} \dots \mathbf{f}_1(\mathbf{x}_t, \mathbf{a}_t)}_{\text{dece OB with } t \text{ lower}} + \mathbf{w}_t$$

Figure from (Gadd et al, 2021)

・ロト ・日子・ ・ ヨト・

Dynamical GP models with explicit basis functions

э

Application 2: Gene regulatory network inference with GPs

э

メロトメ 日本 メヨトメヨト

Discrete-time dynamical GP models: noisy data

- Previous models / methods assumed noise-free data
- If the states x_t cannot be measured exactly, then our model should account for measurement uncertainty: e.g. y_t = x_t + n_t, where n_t denotes additive measurement noise, e.g. n_t ~ N(0, σ²_vI_d)

• • • • • • • • • • • •

Discrete-time dynamical GP models: noisy data

- Previous models / methods assumed noise-free data
- If the states x_t cannot be measured exactly, then our model should account for measurement uncertainty: e.g. y_t = x_t + n_t, where n_t denotes additive measurement noise, e.g. n_t ~ N(0, σ²_vI_d)
- More generally, we can consider a model where the dynamics x_t are embedded in a low-dimensional latent space and possibly high-dimensional observations y_t are conditional on x_t

$$egin{array}{rcl} \mathbf{x}_t &=& \mathbf{f}(\mathbf{x}_{t-1}) + \mathbf{w}_t \ \mathbf{y}_t &=& \mathbf{g}(\mathbf{x}_t) + \mathbf{n}_t, \end{array}$$

where $\mathbf{g} : \mathbb{R}^d \to \mathbb{R}^D$ and $\mathbf{n}_t \sim N(\mathbf{0}, \sigma_{\mathbf{v}}^2 I_D)$

- Traditional auto-regressive methods assume linear mappings for f and g
- If the underlying model is non-linear but unknown, we can assign multi-output GP prior for both f and g
- ightarrow We retrieve a model that is called Gaussian process dynamical model (GPDM) (Wang et al., 2005)

4 D K 4 B K 4 B K 4 B K

Gaussian process dynamical model: inference

- Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the latent variables evolve according to discrete-time dynamical GP model
- Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth dynamical GP model for the latent GPLVM embeddings

< □ > < 同 > < 三 > < 三

Gaussian process dynamical model: inference

- Gaussian process dynamical model (GPDM) can be understood as a GPLVM model where the latent variables evolve according to discrete-time dynamical GP model
- Fitting the GPDM involves simultaneously solving the GPLVM as well as inferring smooth dynamical GP model for the latent GPLVM embeddings
- Lets denote data Y = [y₁,..., y_T]^T, latent embedding X = [x₁,..., x_T]^T, and hyperparameters of the latent GP (f) and embedding GP (g) as θ_f and θ_g
- The learning involves maximizing

$$p(\boldsymbol{X}, \theta_{f}, \theta_{g} | \boldsymbol{Y}) \propto \underbrace{p(\boldsymbol{Y} | \boldsymbol{X}, \theta_{g})}_{\text{latent embedding}} \underbrace{p(\boldsymbol{X} | \theta_{f})}_{\text{dynamics}} p(\theta_{f}) p(\theta_{g})$$

 Derivation of the exact expression for p(X, θ_f, θ_g|Y) is similar with the derivation of the GPLVM (see (Wang et al., 2005) for details)

イロト イポト イヨト イヨト 二日

Gaussian process dynamical model: comparison to other methods

• An illustration of the GPDM and comparison against other methods

Figure from http://gregorygundersen.com/blog/2020/07/24/gpdm/

Gaussian process dynamical model: illustration on CMU mocap data

• An illustration of the GPDM on the high-dimensional CMU mocap walking data

Figure from (Wang et al., 2005)

Updated motivation

- Many real-world problems involve a continuous-time dynamical system
- For many real-world systems the dynamics are unknown
- → We would like learn a continuous-time dynamical system from observed data
- Dynamics of many real-world systems can be controlled
- → We would like to use our learned continuous-time proxy dynamics to control the system

Robotics:

Video prediction:

Previous frame

Current frame

A D F A B F A B F A B

Some ODE models can be built from first principles (e.g. Leibniz at 1690)

$$y(s) = s^{2}$$
$$dy^{2} = 4y(dx^{2} + dy^{2})$$
$$\frac{dx}{dy} = \frac{\sqrt{1 - 4y}}{2\sqrt{y}}$$

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

э

・ロト ・四ト ・ヨト ・ヨト

Updated motivation

Some ODE models can be built from first principles (e.g. Leibniz at 1690)

Gene regulatory network models

Motion capture (100's of joints)

Video prediction (1M pixels over 100K frames)

Previous frame

Current frame

イロト イロト イヨト イヨト

 $y(s) = s^2$ $dy^2 = 4y(dx^2 + dy^2)$ _ dv $2\sqrt{y}$

https://en.wikipedia.org/ wiki/File:Tautochrone_curve.gif

Ordinary differential equations (ODEs)

• An ordinary differential equation (ODE) system defined by differential field / drift function

$$\frac{d\mathbf{x}_t}{dt} := \dot{\mathbf{x}}_t = \mathbf{f}(\mathbf{x}_t)$$

where

$$\dot{\mathbf{x}}_t, \mathbf{x}_t \in \mathbb{R}^D, \qquad \mathbf{f}: \mathbb{R}^D \to \mathbb{R}^D$$

Ordinary differential equations (ODEs)

• An ordinary differential equation (ODE) system defined by differential field / drift function

$$\frac{d\mathbf{x}_t}{dt} := \dot{\mathbf{x}}_t = \mathbf{f}(\mathbf{x}_t)$$

where

$$\dot{\mathbf{x}}_t, \mathbf{x}_t \in \mathbb{R}^D, \qquad \mathbf{f}: \mathbb{R}^D o \mathbb{R}^D$$

• Given an initial state \mathbf{x}_0 and (possible) parameters θ , ODE solution $\mathbf{x}_t := \mathbf{x}(t, \theta, \mathbf{x}_0)$ indexed by $t \in \mathcal{T} = \mathbb{R}_+$ is

$$\mathbf{x}_t = \mathbf{x}_0 + \int_0^t \dot{\mathbf{x}}_{ au} d au = \mathbf{x}_0 + \int_0^t \mathbf{f}(\mathbf{x}_{ au}) d au$$

Interested in cases where f is completely unknown and is to be estimated from noisy data

(日)

Black-box ODEs

- We are interested in cases where *f* is completely unknown and we are given only noisy observations at $T = (t_1, ..., t_N)$:
 - $\begin{aligned} \mathbf{y}_t &= \mathbf{x}_t + \varepsilon_t \\ \varepsilon_t &\sim \mathcal{N}(\mathbf{0}, \Omega) \\ \Omega &= \operatorname{diag}(\omega_1^2, \dots, \omega_D^2) \end{aligned}$

Black-box ODEs

- We are interested in cases where *f* is completely unknown and we are given only noisy observations at $T = (t_1, ..., t_N)$:
 - $\begin{array}{lll} \boldsymbol{y}_t &=& \boldsymbol{x}_t + \boldsymbol{\varepsilon}_t \\ \boldsymbol{\varepsilon}_t &\sim& \mathcal{N}(\boldsymbol{0}, \Omega) \\ \Omega &=& \mathrm{diag}(\omega_1^2, \dots, \omega_D^2) \end{array}$

Input data

Black-box ODEs

- We are interested in cases where *f* is completely unknown and we are given only noisy observations at $T = (t_1, ..., t_N)$:
 - $\begin{array}{lll} \boldsymbol{y}_t &=& \boldsymbol{x}_t + \boldsymbol{\varepsilon}_t \\ \boldsymbol{\varepsilon}_t &\sim& \mathcal{N}(\boldsymbol{0}, \Omega) \\ \Omega &=& \operatorname{diag}(\omega_1^2, \dots, \omega_D^2) \end{array}$

Input data

Initial state x₀
 Observations v(t)

-2

ลิ 0

-1

-2

-3

× 0

-2

0

イロト イロト イヨト イヨト

Harri Lähdesmäki

x1 0

3 4

1

6

2

O Obs. state w

Obs. state y₂(t)

O Initial state x.

Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

• As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

$$\boldsymbol{f}(\boldsymbol{x}) \sim \mathcal{GP}(\boldsymbol{0}, \mathcal{K}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{x}')), \qquad \mathcal{K}_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{x}') = \sigma_{f}^{2} \exp\left(-\frac{1}{2} \sum_{j=1}^{D} \frac{(x_{j} - x_{j}')^{2}}{\ell_{j}^{2}}\right) \cdot I_{D}$$

with kernel parameters $\theta = (\sigma_f, \ell_1, \dots, \ell_D)$ that defines prior mean and covariance

$$\mathbb{E}[\mathbf{f}(\mathbf{x})] = \mathbf{0} \\ \operatorname{cov}[\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{x}')] = \mathcal{K}_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{x}')$$

Nonparametric ODE (npODE) Model (Heinonen et al., 2018)

• As before, we set a vector-valued Gaussian process (GP) prior over the D-dimensional vector field

$$f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, \mathcal{K}_{\theta}(\mathbf{x}, \mathbf{x}')), \qquad \mathcal{K}_{\theta}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2} \sum_{j=1}^{D} \frac{(x_j - x'_j)^2}{\ell_j^2}\right) \cdot I_D$$

with kernel parameters $\theta = (\sigma_f, \ell_1, \dots, \ell_D)$ that defines prior mean and covariance

$$\mathbb{E}[\mathbf{f}(\mathbf{x})] = \mathbf{0}$$

$$\operatorname{cov}[\mathbf{f}(\mathbf{x}), \mathbf{f}(\mathbf{x}')] = K_{\theta}(\mathbf{x}, \mathbf{x}')$$

By GP definition

$$X = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \in \mathbb{R}^{n \times D}$$

$$\mathbf{f}(X) = (\mathbf{f}(\mathbf{x}_1)^T, \dots, \mathbf{f}(\mathbf{x}_n)^T)^T \in \mathbb{R}^{nD \times 1}$$

$$p(\mathbf{f}(X)) = \mathcal{N}(\mathbf{f}(X)|\mathbf{0}, \mathbf{K}_{\theta}(X, X))$$

$$\mathbf{K}_{\theta}(X, X) = (\mathcal{K}(\mathbf{x}_i, \mathbf{x}_j))_{i,j=1}^n \in \mathbb{R}^{nD \times nD}$$

• • • • • • • • • • • •

Inducing points, kernel interpolation, integration

Introduce:

Inducing points and vectors

$$Z = (\mathbf{z}_1, \dots, \mathbf{z}_M)^T \in \mathbb{R}^{M \times D}$$
$$U = (\mathbf{u}_1, \dots, \mathbf{u}_M)^T = (\mathbf{f}(\mathbf{z}_1), \dots, \mathbf{f}(\mathbf{z}_M))^T \in \mathbb{R}^{M \times D}$$

Image: A mathematical states and the states and

Inducing points, kernel interpolation, integration

Introduce:

Inducing points and vectors

$$Z = (\mathbf{z}_1, \dots, \mathbf{z}_M)^T \in \mathbb{R}^{M \times D}$$
$$U = (\mathbf{u}_1, \dots, \mathbf{u}_M)^T = (\mathbf{f}(\mathbf{z}_1), \dots, \mathbf{f}(\mathbf{z}_M))^T \in \mathbb{R}^{M \times D}$$

• For any $\mathbf{x} \in \mathbb{R}^{D}$, we obtain vector field by GP "posterior" predictions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}|Z, U) \triangleq \mathbf{K}_{\theta}(\mathbf{x}, Z) \mathbf{K}_{\theta}(Z, Z)^{-1} \operatorname{vec}(U)$$

• • • • • • • • • • •

Inducing points, kernel interpolation, integration

Introduce:

• Inducing points and vectors

$$Z = (\mathbf{z}_1, \dots, \mathbf{z}_M)^T \in \mathbb{R}^{M \times D}$$
$$U = (\mathbf{u}_1, \dots, \mathbf{u}_M)^T = (\mathbf{f}(\mathbf{z}_1), \dots, \mathbf{f}(\mathbf{z}_M))^T \in \mathbb{R}^{M \times D}$$

• For any $\bm{x} \in \mathbb{R}^{\mathcal{D}},$ we obtain vector field by GP "posterior" predictions

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}|Z, U) \triangleq \mathbf{K}_{\theta}(\mathbf{x}, Z) \mathbf{K}_{\theta}(Z, Z)^{-1} \operatorname{vec}(U)$$

• • • • • • • • • •

• We can integrate
$$\mathbf{x}_t = \mathbf{x}_0 + \int_0^t \mathbf{f}(\mathbf{x}_\tau | Z, U) d\tau$$

Changing an inducing vector

 Inducing vectors and kernel hyperparameters completely specify the vector field / initial value problem

Monday 15.02.2021 36 / 45

э

Posterior

• The posterior is then

$$p(U, \textbf{\textit{x}}_{0}, \theta, \Omega | \textbf{\textit{Y}}, \textbf{\textit{Z}}) \propto \underbrace{p(\textbf{\textit{Y}} | \textbf{\textit{U}}, \textbf{\textit{Z}}, \textbf{\textit{x}}_{0}, \theta, \Omega)}_{\text{likelihood}} \underbrace{p(U | \textbf{\textit{Z}}, \theta)}_{\text{GP prior}} p(\theta) p(\Omega) = \mathcal{L},$$

Harri Lähdesmäki

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語:

Posterior

• The posterior is then

$$p(U, \mathbf{x}_0, \theta, \Omega | Y, Z) \propto \underbrace{p(Y | U, Z, \mathbf{x}_0, \theta, \Omega)}_{\text{likelihood}} \underbrace{p(U | Z, \theta)}_{\text{GP prior}} p(\theta) p(\Omega) = \mathcal{L},$$

where

$$p(Y|U, Z, \mathbf{x}_{0}, \theta, \Omega) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_{i} | \mathbf{x}_{t_{i}}, \Omega)$$
$$= \prod_{i=1}^{N} \mathcal{N}(\mathbf{y}_{i} \mid \underbrace{\mathbf{x}_{0} + \int_{0}^{t_{i}} \mathbf{f}_{U}(\mathbf{x}_{\tau}) d\tau}_{\mathbf{x}_{U}(t_{i})}, \Omega)$$
$$p(U|Z, \theta) = \mathcal{N}(vec(U) | \mathbf{0}, \mathbf{K}_{\theta}(Z, Z))$$

Remark: $\Omega = \operatorname{diag}(\omega_1^2 \dots, \omega_D^2)$

2

イロト イヨト イヨト イヨト

Model estimation with gradients

We can seek the MAP solution

$$U_{ ext{MAP}}, extbf{x}_{0, ext{MAP}}, heta_{ ext{MAP}}, \Omega_{ ext{MAP}} = rgmax_{U, extbf{x}_{0}, heta,\Omega} \log \mathcal{L}$$

or aim sampling the posterior

• Gradient descent or HMC sampling both need computing the gradients of the likelihood

$$\frac{dp(y_i|\mathbf{x}_0, U, \Omega)}{dU} = \underbrace{\frac{d\mathcal{N}(\mathbf{y}_i|\mathbf{x}_U(t_i), \Omega)}{d\mathbf{x}_U(t_i)}}_{\text{easy}} \underbrace{\frac{d\mathbf{x}_U(t_i)}{dU}}_{\text{hard}}$$

which requires computing sensitivities

$$\frac{d\mathbf{x}_{U}(t)}{dU} = \frac{d}{dU} \left(\mathbf{x}_{0} + \int_{0}^{t} \mathbf{f}_{U}(\mathbf{x}(\tau)) d\tau \right) \equiv S(t)$$

イロト イヨト イヨト イ

• Lets consider the time derivative of S(t)

$$\dot{S}(t) = \frac{d}{dt} \frac{d\mathbf{x}_U(t)}{dU} = \frac{d}{dU} \frac{\overbrace{d\mathbf{x}_U(t)}^{\dot{\mathbf{x}} \triangleq \mathbf{f}}}{dt} = \frac{d\mathbf{f}(\mathbf{x}_U(t), U)}{dU}$$

¹Recall that the derivative of a composite function f(g(x)) is f'(g(x))g'(x)

Gaussian processes

• Lets consider the time derivative of S(t)

$$\dot{S}(t) = \frac{d}{dt} \frac{d\mathbf{x}_U(t)}{dU} = \frac{d}{dU} \frac{\overbrace{d\mathbf{x}_U(t)}^{\dot{\mathbf{x}} \triangleq \mathbf{f}}}{\underbrace{d\mathbf{x}_U(t)}_{dt}} = \frac{d\mathbf{f}(\mathbf{x}_U(t), U)}{dU}$$

• Total derivative of the right hand side¹

$$\underbrace{\frac{\dot{s}(t)}{dt}\frac{d\mathbf{x}_{U}(t)}{dU}}_{\frac{d}{dt}\frac{d}{dU}} = \underbrace{\frac{J(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t),U)}}_{\frac{\partial}{\mathbf{x}}\frac{d}{dU}} \underbrace{\frac{S(t)}{dU}}_{\frac{d}{dU}} + \underbrace{\frac{R(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t),U)}}_{\frac{\partial}{\partial}U}$$

¹Recall that the derivative of a composite function f(g(x)) is f'(g(x))g'(x)

・ロト ・日下・ ・ ヨト・

• Lets consider the time derivative of S(t)

$$\dot{S}(t) = \frac{d}{dt} \frac{d\mathbf{x}_U(t)}{dU} = \frac{d}{dU} \frac{\overbrace{d\mathbf{x}_U(t)}^{\dot{\mathbf{x}} \triangleq \mathbf{f}}}{\underbrace{d\mathbf{x}_U(t)}_{dt}} = \frac{d\mathbf{f}(\mathbf{x}_U(t), U)}{dU}$$

• Total derivative of the right hand side¹

$$\underbrace{\frac{\dot{s}(t)}{dt}\frac{d\mathbf{x}_{U}(t)}{dU}}_{\frac{d}{dt}\frac{d\mathbf{x}_{U}(t)}{dU}} = \underbrace{\frac{J(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t),U)}}_{\frac{\partial}{\mathbf{x}}\frac{d\mathbf{x}_{U}(t)}{dU}} + \underbrace{\frac{R(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t),U)}}_{\frac{\partial}{\partial}U}$$

• Sensitivities form another ODE system!

¹Recall that the derivative of a composite function f(g(x)) is f'(g(x))g'(x)

• • • • • • • • • • • •

• Lets consider the time derivative of S(t)

$$\dot{S}(t) = \frac{d}{dt} \frac{d\mathbf{x}_U(t)}{dU} = \frac{d}{dU} \frac{\overbrace{d\mathbf{x}_U(t)}^{\dot{\mathbf{x}} \triangleq \mathbf{f}}}{\frac{d\mathbf{x}_U(t)}{dt}} = \frac{d\mathbf{f}(\mathbf{x}_U(t), U)}{dU}$$

• Total derivative of the right hand side¹

$$\underbrace{\frac{\dot{s}(t)}{dt}\frac{d\mathbf{x}_{U}(t)}{dU}}_{\frac{d}{dt}\frac{d}{dU}} = \underbrace{\frac{J(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t), U)}}_{\frac{\partial \mathbf{x}}{\partial \mathbf{x}}\frac{\mathbf{f}(t)}{dU}} + \underbrace{\frac{H(t)}{\partial \mathbf{f}(\mathbf{x}_{U}(t), U)}}_{\frac{\partial U}{\partial U}}$$

- Sensitivities form another ODE system!
- Analytical forms for J(t) and R(t) are available (recall: $\mathbf{f}(x) = \mathbf{K}_{\theta}(\mathbf{x}, Z)\mathbf{K}_{\theta}(Z, Z)^{-1}\operatorname{vec}(U)$)

$$J(t) = \frac{\partial \mathbf{K}_{\theta}(\mathbf{x}, Z)}{\partial \mathbf{x}} \mathbf{K}_{\theta}(Z, Z)^{-1} \operatorname{vec}(U) \qquad \qquad R(t) = \mathbf{K}_{\theta}(\mathbf{x}, Z) \mathbf{K}_{\theta}(Z, Z)^{-1}$$

¹Recall that the derivative of a composite function f(g(x)) is f'(g(x))g'(x)

Efficient integration in parallel

• We solve two ODE systems efficiently in parallel

$$\begin{split} \mathbf{S}(t) &= \mathbf{S}_0 + \int_0^t \left(J(\tau) \mathbf{S}(\tau) + \mathbf{R}(\tau) \right) d\tau \\ \mathbf{x}_t &= \mathbf{x}_0 + \int_0^t \mathbf{f}(\mathbf{x}_\tau) d\tau \end{split}$$

Image: A mathematical states and the states and

where
$$S(0) = 0$$
 and $\mathbf{x}_0 = \hat{\mathbf{x}}_0$.

Efficient integration in parallel

• We solve two ODE systems efficiently in parallel

$$egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$$

where S(0) = 0 and $\mathbf{x}_0 = \hat{\mathbf{x}}_0$.

Partial derivative wrt. σ_f (finite diff.) and Ω (easy);
 (ℓ₁,..., ℓ_D) as part of model selection

Noncentral Parameterisation

• Latent re-parameterisation of the posterior using Cholesky decomposition:

$$L_{\theta}L_{\theta}^{\mathsf{T}} = K_{\theta}(Z, Z)$$
$$U = L_{\theta}\widetilde{U}$$
$$\widetilde{U} \sim \mathcal{N}(\mathbf{0}, I)$$
$$\nabla_{\widetilde{U}}\log \mathcal{L} = L_{\theta}^{\mathsf{T}} \nabla_{U}\log \mathcal{L}$$

Simulated Dynamics

- Three simulated differential systems:
 - Van der Pol (VDP)
 - FitzHugh-Nagumo (FHN), and
 - Lotka-Volterra (LV) oscillators
- Data specs:
 - 5 time series for training
 - 25 data points in each time series
 - 1 cycle of VDP&FHN, 1.7 cycle of LV
 - Added noise variance: 0.12

Model fit and predictions

npODE of the CMU mocap walking data

Harri Lähdesmäki

Gaussian processes

Monday 15.02.2021 44 / 45

References

- Gadd C, Heinonen M, Lähdesmäki, Kaski S, Sample-efficient reinforcement learning using deep Gaussian processes, https://arxiv.org/abs/2011.01226
- Heinonen M, Yildiz C, Mannerström H, Intosalmi J, Lähdesmäki H, Learning unknown ODE models with Gaussian processes, In *Proceedings of the 35th International Conference on Machine Learning (ICML), PMLR* 80:1959-1968, 2018.
- Wang JM, Fleet DJ, Hertzmann A, Gaussian process dynamical models, In Proc. *NIPS*, pp. 1441-1448, 2005.

・ロト ・ 同ト ・ ヨト ・ ヨト