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Overview

Main goal: To solve a system of equations A.
Take a similar system of equations B for which solutions
are known.
Deform the solutions of B to the solutions of A.
This approach is called homotopy continuation.
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Definitions

A system of polynomial equations is called square if the
number of equations is equal to the number of variables,
i.e., the system has the form

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

We will first consider square systems and later explain how
the results can be extended to general systems.

A solution z∗ ∈ CN is called isolated if it is the only solution
in an open ball centered at z∗.
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Intuition

Consider a square system

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

We want to find a finite set S of solutions of this system
containing every isolated solution of f (z) = 0.

1 Build and solve a start system g(z).
g(z) is related to f (z): it usually has the same degrees
It should be easy to solve g(z)
The solutions of g(z) are called the startpoints

2 Construct a homotopy between f (z) and g(z).
Homotopy is a parametrized family of equations that
specializes to f (z) and g(z) for different parameter values
The simplest homotopy is H(z, t) = tg(z) + (1− t)f (z),
where t is a new parameter
H(z,1) = g(z) and H(z,0) = f (z)
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Intuition

3 Follow the solution paths from t = 1 to t = 0.
Predictor-corrector methods are used most of the way
Close to t = 0 more powerful endgames are used
Some paths could approach infinity as t → 0; these paths
are called divergent
Other paths can merge at t = 0
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Example

We want to solve f (z) = 0 for the polynomial

f (z) = −2z3 − 5z2 + 4z + 1.

This particular example can be solved by the cubic formula. We
consider it to illustrate the steps of the homotopy continuation.

1 Start system
Any cubic polynomial with three distinct roots that can be
solved easily.
We take g(z) = z3 + 1.
The roots of g(z) are z = −e2kπi/3, where k = 0,1,2,3.

2 Homotopy
We choose linear homotopy h(z, s) = sg(z) + (1− s)f (z).
h(z,1) = g(z) and h(z,0) = f (z)
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Example

3 Follow the solution paths
The variable s is complex, so there are infinitely many
paths from 1 to 0.
Although the real line segment [0,1] seems like a natural
choice, it can be problematic.
Instead consider the following family of circular arcs: Let
γ ∈ C\R. Then

q(t) =
γt

γt + (1− t)
, t ∈ [0,1]

connects s = 1 to s = 0.

Figure: Plots are for six different values of γ.
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Circular arcs

Figure: Plots are for six different values of γ.

Following one of the arcs gives the homotopy
h(z,q(t)) = 0.
Substituting and clearing the denominators gives

H(z, t) = γtg(z) + (1− t)f (z).

Choosing γ = 0.40 + 0.77i gives three solution paths that
never intersect.
From V(g) we get V(f ) = {−3.0942,−0.2028,0.7969}.
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Example
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Choice of γ

If γ is chosen randomly in C, then with probability one the
homotopy defines three smooth paths.
To see this, we consider the behavior of h(z, s) = 0 as s
varies.
For most s∗ ∈ C, h(z, s∗) = 0 is a cubic equation with three
distinct roots.
For a few s∗ there are only two distinct solutions.
The use of circular arcs to obtain a path between s = 1
and s = 0 and choosing γ randomly is known as the
“gamma trick”.
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NumericalAlgebraicGeometry in Macaulay2
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Homotopy

Definition

Given two continuous functions f ,g : CN → CN , a homotopy is
a continuous function

H(z, t) : CN × [0,1]→ CN

satisfying H(z,0) = f (z) and H(z,1) = g(z).

For homotopy continuation, the homotopy H is obtained
from composing the family of systems H(z; s) with a path
s = q(t).
H(z; s) : CN × U → CN , where U ⊆ CM is an open set, H
is polynomial in z and analytic in s
q : [0,1]→ U is a differentiable map
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Path tracking

Definition
Path tracking is the numerical process of approximating the
paths from startpoints to endpoints.

Path tracking gives approximations of the solutions of
H(z,0) = 0 from the known solutions of H(z,1) = 0.
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Good homotopy
A good homotopy for

f (z) :=


f1(z1, . . . , zN )

.

.

.
fN (z1, . . . , zN )

 = 0

and a set of D distinct solutions S1 of g(z) is a system of
infinitely differentiable functions

H(z, t) =


H1(z1, . . . , zN , t)

.

.

.
HN (z1, . . . , zN , t)

 = 0

such that

1 for any t ∈ [0,1], H(z, t) is a system of polynomials;
2 for any w ∈ S1, there is a smooth map pj(t) : (0,1]→ CN

satisfying pj(1) = w ;
3 the associated paths do not cross;
4 for each t∗ ∈ (0,1] the points pj(t∗) are smooth isolated

solutions of H(z, t∗).
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Good homotopy

Definition
We say that the above homotopy is a good homotopy for the
system

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0

if one can choose D distinct solutions S1 of g(z) = H(z,1) such
that the set

S0 =

{
z ∈ CN : ‖z‖2 <∞ and z = lim

t→0
pj(t)

}
contains every isolated solution of f (z) = 0.
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Bezout’s theorem

Theorem (Bezout’s theorem)
Assume that the system of polynomial equations

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

has finitely many solutions in CN . Let di = deg fi . Then the
system f has at most d1 · · · dN solutions.

For general systems of polynomial equations the number
of solutions equals this bound.
The Bernstein–Kushnirenko Theorem gives better upper
bounds for special systems, but it is more complicated.
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Bezout’s theorem
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Total-degree homotopies

We construct a good homotopy

H(z, t) = (1− t)

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

+ γt

g1(z1, . . . , zN)
...

gN(z1, . . . , zN)

 = 0

as follows:

Let di = deg fi .
Choose polynomials g1, . . . ,gN such that they have
degrees d1, . . . ,dN , the system g(z) = 0 is easy to solve
and it has exactly D := d1d2 · · · dN solutions.
For example, one can take gi(z) = zdi

i − 1.
In this case, the solution set of g(z) = 0 is given by{(

e(j1/d1)2πi , . . . ,e(jN/dN)2πi
)

: 0 ≤ ji ≤ di for i = 1, . . . ,N
}
.
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Total-degree homotopies

Choose a random complex number γ 6= 0.
In practice γ is chosen in a small band around the unit
circle.
If γ is chosen randomly, then with probability one we get a
good homotopy.
Total-degree homotopies are the simplest of all
homotopies. Alternatively, one can use more special
degree bounds.
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Path tracking

Assume that we have:
a family of functions on CN

H(z; q) =

H1(z1, . . . , zN ; q1 . . . ,qM)
...

HN(z1, . . . , zN ; q1 . . . ,qM)

 = 0

such that Hi is a polynomial in z ∈ CN and analytic in
q ∈ CM ;

differentiable maps φ : t ∈ [0,1]→ q ∈ CM and
ψ : t ∈ [0,1]→ z ∈ CN satisfying

1 H(ψ(t), φ(t)) = 0 for t ∈ (0,1] and
2 the Jacobian of H with respect to z1, . . . , zN has rank N for

the points (ψ(t), φ(t)) with t ∈ (0,1].

We construct H and φ in such a way that ψ exists and
ψ(1) = p0. The objective is to compute p∗ = ψ(0).
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Path tracking

Assume that M = 1 and q1 = t . Denote ψ(t) by z(t).

Differentiating H(z(t), t) = 0 with respect to t gives

∂H(z(t), t)
∂t

+
N∑

i=1

∂H(z(t), t)
∂zi

dzi(t)
dt

= 0 with z(1) = p0.

Let JH(z, t) denote the Jacobian matrix of H with respect
to the variables z

JH :=
∂H
∂z

:=


∂H1
∂z1

· · · ∂H1
∂zN

...
. . .

...
∂HN
∂z1

· · · ∂HN
∂zN


evaluated at (z, t) and let z(t) = [z1(t), . . . , zN(t)]T denote
the solution of the above differential equation.
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Path tracking

Using this notation, the above differential equation
becomes

∂H(z(t), t)
∂t

+ JH(z(t), t) · dz(t)
dt

= 0.

Since JH(z(t), t) is invertible on the path, this is equivalent
to

dz(t)
dt

= −[JH(z(t), t)]−1∂H(z(t), t)
∂t

.

This is an initial value problem that can be solved using
numerical methods.

Kaie Kubjas Numerical algebraic geometry



Path tracking

Using this notation, the above differential equation
becomes

∂H(z(t), t)
∂t

+ JH(z(t), t) · dz(t)
dt

= 0.

Since JH(z(t), t) is invertible on the path, this is equivalent
to

dz(t)
dt

= −[JH(z(t), t)]−1∂H(z(t), t)
∂t

.

This is an initial value problem that can be solved using
numerical methods.

Kaie Kubjas Numerical algebraic geometry



Path tracking

Using this notation, the above differential equation
becomes

∂H(z(t), t)
∂t

+ JH(z(t), t) · dz(t)
dt

= 0.

Since JH(z(t), t) is invertible on the path, this is equivalent
to

dz(t)
dt

= −[JH(z(t), t)]−1∂H(z(t), t)
∂t

.

This is an initial value problem that can be solved using
numerical methods.

Kaie Kubjas Numerical algebraic geometry



First-order tracking

We solve the initial value problem using Euler’s method
starting at t0 = 1 with p0 as the initial value and
successively computing the approximations p1,p2, . . . at
values t0 > t1 > t2 > · · · > 0.

The approximations are computed as

pi+1 = pi − JH(pi , ti)−1∂H(pi , ti)
∂t

∆ti ,

where ∆ti = ti+1 − ti .
Geometrically this means predicting along the tangent line
to the solution path at the current point of the path.
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Correction

The prediction is often followed by the correction using the
Newton’s method.
This means Newton’s method is used for H(z, ti+1) starting
with z0 = pi+1.
Newton’s method uses the iterative formula

zi+1 = zi − [JH(zi , ti+1)]−1H(zi , t).

One or two iterations of Newton’s method usually improves
the prediction of z(ti+1).
pi+1 is replaced with the corrected value before starting the
next predictor-corrector cycle.
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pi+1 is replaced with the corrected value before starting the
next predictor-corrector cycle.
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Numerical methods

In practice ∆ti is chosen adaptively.
If the error after the correction is larger than the desired
tracking accuracy, then ∆ti is halved.

Often higher-order methods (e.g. Runge-Kutta methods)
are used in practice.
They have the advantage that they often allow larger step
sizes.
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From square systems to general systems

Consider a general system

f (z) :=

f1(z1, . . . , zN)
...

fn(z1, . . . , zN)

 = 0.

If n < N, then the system is underdetermined and the
solution set has positive-dimensional solution components.

If n > N, let A ∈ CN×n be a random matrix. Instead of the
system

f =


f1
f2
...
fn

 ,
we consider the system

A · f .
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From square systems to general systems

Every polynomial in the system A · f has the form

ai1f1 + ai2f2 + . . .+ ainfn,

where aij are random complex numbers.

With probability one, all the isolated solutions of f are
isolated solutions of A · f .
The system A · f could have more solutions than f .
The extra solutions can be detected because they do not
satisfy f .
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From square systems to general systems

Example

Let p(z) = (z + 1)(z − 1) and q(z) = z(z − 1).
The system p(z) = q(z) = 0 has one solution z = 1.

Consider

2p(z)−3q(z) = 2(z +1)(z−1)−3z(z−1) = (2−z)(z−1).

This system has two solutions z = 1 and z = 2.
For z = 2, we have p(2) = 3 and q(2) = 2, so it is not a
solution of the original system.
Since for most choices of constants we get a degree two
polynomial, there are necessarily two solutions.
This second solution changes when different coefficients
are used.
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Numerical algebraic geometry packages

Bertini
Julia Homotopy Continuation
NumericalAlgebraicGeometry package in Macaulay2
PHCpack
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Julia Homotopy Continuation
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Conclusion

Today’s lecture was based on Chapter 2 in “Numerically
Solving Polynomial Systems with Bertini” by Bates,
Sommese, Hauenstein and Wampler.
Exam will take place on Friday, February 26 at 13:00-17:00
in MyCourses. More information will be posted soon.
Please fill out the course feedback form. You will get 1.5
extra points for filling it out.
Check out the Algebraic Geometry I and II courses taught
by Alexander Engström in the fall of 2021.
Thank you for attending the course!!!
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