Computational Algebraic Geometry

 Numerical algebraic geometryKaie Kubjas

kaie.kubjas@aalto.fi
February 17, 2021

Overview

- Main goal: To solve a system of equations A.
- Take a similar system of equations B for which solutions are known.
- Deform the solutions of B to the solutions of A.
- This approach is called homotopy continuation.

- A system of polynomial equations is called square if the number of equations is equal to the number of variables, i.e., the system has the form

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

- We will first consider square systems and later explain how the results can be extended to general systems.
- A system of polynomial equations is called square if the number of equations is equal to the number of variables, i.e., the system has the form

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

- We will first consider square systems and later explain how the results can be extended to general systems.
- A solution $z^{*} \in \mathbb{C}^{N}$ is called isolated if it is the only solution in an open ball centered at z^{*}.

Intuition

Consider a square system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

We want to find a finite set \mathcal{S} of solutions of this system containing every isolated solution of $f(z)=0$.

Intuition

Consider a square system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

We want to find a finite set \mathcal{S} of solutions of this system containing every isolated solution of $f(z)=0$.
(1) Build and solve a start system $g(z)$.

- $g(z)$ is related to $f(z)$: it usually has the same degrees
- It should be easy to solve $g(z)$
- The solutions of $g(z)$ are called the startpoints

Intuition

Consider a square system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

We want to find a finite set \mathcal{S} of solutions of this system containing every isolated solution of $f(z)=0$.
(1) Build and solve a start system $g(z)$.

- $g(z)$ is related to $f(z)$: it usually has the same degrees
- It should be easy to solve $g(z)$
- The solutions of $g(z)$ are called the startpoints
(2) Construct a homotopy between $f(z)$ and $g(z)$.
- Homotopy is a parametrized family of equations that specializes to $f(z)$ and $g(z)$ for different parameter values
- The simplest homotopy is $H(z, t)=\operatorname{tg}(z)+(1-t) f(z)$, where t is a new parameter
- $H(z, 1)=g(z)$ and $H(z, 0)=f(z)$

Intuition

(3) Follow the solution paths from $t=1$ to $t=0$.

- Predictor-corrector methods are used most of the way
- Close to $t=0$ more powerful endgames are used
- Some paths could approach infinity as $t \rightarrow 0$; these paths are called divergent
- Other paths can merge at $t=0$

Example

We want to solve $f(z)=0$ for the polynomial

$$
f(z)=-2 z^{3}-5 z^{2}+4 z+1
$$

This particular example can be solved by the cubic formula. We consider it to illustrate the steps of the homotopy continuation.

Example

We want to solve $f(z)=0$ for the polynomial

$$
f(z)=-2 z^{3}-5 z^{2}+4 z+1
$$

This particular example can be solved by the cubic formula. We consider it to illustrate the steps of the homotopy continuation.
(1) Start system

- Any cubic polynomial with three distinct roots that can be solved easily.
- We take $g(z)=z^{3}+1$.
- The roots of $g(z)$ are $z=-e^{2 k \pi i / 3}$, where $k=0,1,2,3$.

Example

We want to solve $f(z)=0$ for the polynomial

$$
f(z)=-2 z^{3}-5 z^{2}+4 z+1 .
$$

This particular example can be solved by the cubic formula. We consider it to illustrate the steps of the homotopy continuation.
© Start system

- Any cubic polynomial with three distinct roots that can be solved easily.
- We take $g(z)=z^{3}+1$.
- The roots of $g(z)$ are $z=-e^{2 k \pi i / 3}$, where $k=0,1,2,3$.
(2) Homotopy
- We choose linear homotopy $h(z, s)=s g(z)+(1-s) f(z)$.
- $h(z, 1)=g(z)$ and $h(z, 0)=f(z)$

Example

(Follow the solution paths

- The variable s is complex, so there are infinitely many paths from 1 to 0.
- Although the real line segment $[0,1]$ seems like a natural choice, it can be problematic.
- Instead consider the following family of circular arcs: Let $\gamma \in \mathbb{C} \backslash \mathbb{R}$. Then

$$
q(t)=\frac{\gamma t}{\gamma t+(1-t)}, \quad t \in[0,1]
$$

connects $s=1$ to $s=0$.

Figure: Plots are for six different values of γ.

Circular arcs

Figure: Plots are for six different values of γ.

- Following one of the arcs gives the homotopy $h(z, q(t))=0$.
- Substituting and clearing the denominators gives

$$
H(z, t)=\gamma \operatorname{tg}(z)+(1-t) f(z)
$$

- Choosing $\gamma=0.40+0.77 i$ gives three solution paths that never intersect.
- From $\mathbb{V}(g)$ we get $\mathbb{V}(f)=\{-3.0942,-0.2028,0.7969\}$.

Example

Choice of γ

- If γ is chosen randomly in \mathbb{C}, then with probability one the homotopy defines three smooth paths.
- To see this, we consider the behavior of $h(z, s)=0$ as s varies.
- For most $s^{*} \in \mathbb{C}, h\left(z, s^{*}\right)=0$ is a cubic equation with three distinct roots.
- For a few s^{*} there are only two distinct solutions.
- The use of circular arcs to obtain a path between $s=1$ and $s=0$ and choosing γ randomly is known as the "gamma trick".

NumericalAlgebraicGeometry in Macaulay2

```
*)
needsPackage("NumericaVAlgeb raicGeometry")
R = CC[z];
F}={-2*\mp@subsup{2}{}{\wedge}3-5*\mp@subsup{z}{}{\wedge}2+4*2+1}
s= solveSystem F
s= solveSyste
U:**- NAG-example.n2 All L5 (Macaulay2)
+ M2 -no-readline -print-width 140
Macaulay2, version 1.14
Macaulay2, versionration for package "FourTiTwo" fron file /Users/kubjask1/Library/Application Support/Macaulayz/init-FourTiTwo.m2
-loading configuration for package "Topcon" from file /Users/kubjask1/Library/Application Support/Macaulay2/init-Topcom, m2
with packages: CorwayPolynomials, Elinination, IntegralClosure, InverseSystems, LL&ases, PrinaryDecomposition, ReesAlgebra, TangentCone,
    Truncations
11 : needsPackage("NumericalAlgeb raicGeometry")
-loading configuration for package "NumericalAlgebraicGeometry" from file /Users/kubjask1/Library/Application Support/Macaulay2/init-NumericalAlgebraicGeometry.m2
-loading contiguration for package "PHCpack" from file /Users/kubjaski/Library/Application support/Macaulay2/1nit-PHCpack.m.2
-loading configuration for package "Bertini" from file/Users/kubjask1/Library/Application Support/Macaulay2/init-Bertini.m2
01 = NumericalAlgeb raicGeometry
01 : Package
12 : R = CC[2];
13:F={-2*\mp@subsup{z}{}{\wedge}3-5*\mp@subsup{z}{}{\wedge}2+4*z+1};
i4 : s = solveSysten F
04 ={{-3.09415}, {.796927}, {-.202773}}
04 : List
i5 : realPoints s
05 = {{-3.09415}, {.796927}, {-.202773}}
05 : List
16 : \
U:***- *N2*
Beginning of buffer
```


Definition

Given two continuous functions $f, g: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, a homotopy is a continuous function

$$
H(z, t): \mathbb{C}^{N} \times[0,1] \rightarrow \mathbb{C}^{N}
$$

satisfying $H(z, 0)=f(z)$ and $H(z, 1)=g(z)$.

Homotopy

Definition

Given two continuous functions $f, g: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, a homotopy is a continuous function

$$
H(z, t): \mathbb{C}^{N} \times[0,1] \rightarrow \mathbb{C}^{N}
$$

satisfying $H(z, 0)=f(z)$ and $H(z, 1)=g(z)$.

- For homotopy continuation, the homotopy H is obtained from composing the family of systems $\mathcal{H}(z ; s)$ with a path $s=q(t)$.
- $\mathcal{H}(z ; s): \mathbb{C}^{N} \times U \rightarrow \mathbb{C}^{N}$, where $U \subseteq \mathbb{C}^{M}$ is an open set, \mathcal{H} is polynomial in z and analytic in s
- $q:[0,1] \rightarrow U$ is a differentiable map

Path tracking

Definition

Path tracking is the numerical process of approximating the paths from startpoints to endpoints.

Path tracking gives approximations of the solutions of $H(z, 0)=0$ from the known solutions of $H(z, 1)=0$.

Good homotopy

A good homotopy for

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

and a set of D distinct solutions S_{1} of $g(z)$ is a system of infinitely differentiable functions

$$
H(z, t)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N}, t\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N}, t\right)
\end{array}\right]=0
$$

such that

Good homotopy

A good homotopy for

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

and a set of D distinct solutions S_{1} of $g(z)$ is a system of infinitely differentiable functions

$$
H(z, t)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N}, t\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N}, t\right)
\end{array}\right]=0
$$

such that
(1) for any $t \in[0,1], H(z, t)$ is a system of polynomials;

Good homotopy

A good homotopy for

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

and a set of D distinct solutions S_{1} of $g(z)$ is a system of infinitely differentiable functions

$$
H(z, t)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N}, t\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N}, t\right)
\end{array}\right]=0
$$

such that
(1) for any $t \in[0,1], H(z, t)$ is a system of polynomials;
(2) for any $w \in S_{1}$, there is a smooth map $p_{j}(t):(0,1] \rightarrow \mathbb{C}^{N}$ satisfying $p_{j}(1)=w$;

Good homotopy

A good homotopy for

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

and a set of D distinct solutions S_{1} of $g(z)$ is a system of infinitely differentiable functions

$$
H(z, t)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N}, t\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N}, t\right)
\end{array}\right]=0
$$

such that
(1) for any $t \in[0,1], H(z, t)$ is a system of polynomials;
(2) for any $w \in S_{1}$, there is a smooth map $p_{j}(t):(0,1] \rightarrow \mathbb{C}^{N}$ satisfying $p_{j}(1)=w$;
(3) the associated paths do not cross;

Good homotopy

A good homotopy for

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

and a set of D distinct solutions S_{1} of $g(z)$ is a system of infinitely differentiable functions

$$
H(z, t)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N}, t\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N}, t\right)
\end{array}\right]=0
$$

such that
(1) for any $t \in[0,1], H(z, t)$ is a system of polynomials;
(2) for any $w \in S_{1}$, there is a smooth map $p_{j}(t):(0,1] \rightarrow \mathbb{C}^{N}$ satisfying $p_{j}(1)=w$;
(3) the associated paths do not cross;
(4) for each $t^{*} \in(0,1]$ the points $p_{j}\left(t^{*}\right)$ are smooth isolated solutions of $H\left(z, t^{*}\right)$.

Good homotopy

Definition

We say that the above homotopy is a good homotopy for the system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

if one can choose D distinct solutions S_{1} of $g(z)=H(z, 1)$ such that the set

$$
S_{0}=\left\{z \in \mathbb{C}^{N}:\|z\|_{2}<\infty \text { and } z=\lim _{t \rightarrow 0} p_{j}(t)\right\}
$$

contains every isolated solution of $f(z)=0$.

Bezout's theorem

Theorem (Bezout's theorem)

Assume that the system of polynomial equations

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

has finitely many solutions in \mathbb{C}^{N}. Let $d_{i}=\operatorname{deg} f_{i}$. Then the system f has at most $d_{1} \cdots d_{N}$ solutions.

Bezout's theorem

Theorem (Bezout's theorem)

Assume that the system of polynomial equations

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

has finitely many solutions in \mathbb{C}^{N}. Let $d_{i}=\operatorname{deg} f_{i}$. Then the system f has at most $d_{1} \cdots d_{N}$ solutions.

- For general systems of polynomial equations the number of solutions equals this bound.
- The Bernstein-Kushnirenko Theorem gives better upper bounds for special systems, but it is more complicated.

Bezout's theorem

$$
\begin{aligned}
& d_{1}=d_{2}=1 \\
& d_{1} \cdot d_{2}=1 \\
& \# \text { solutions }=1
\end{aligned}
$$

$$
d_{1}=d_{2}=2
$$

$$
d_{1} \cdot d_{2}=4
$$

\# solutions $=2$

Total-degree homotopies

We construct a good homotopy

$$
H(z, t)=(1-t)\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]+\gamma t\left[\begin{array}{c}
g_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
g_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

as follows:

Total-degree homotopies

We construct a good homotopy

$$
H(z, t)=(1-t)\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]+\gamma t\left[\begin{array}{c}
g_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
g_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

as follows:

- Let $d_{i}=\operatorname{deg} f_{i}$.
- Choose polynomials g_{1}, \ldots, g_{N} such that they have degrees d_{1}, \ldots, d_{N}, the system $g(z)=0$ is easy to solve and it has exactly $D:=d_{1} d_{2} \cdots d_{N}$ solutions.

Total-degree homotopies

We construct a good homotopy

$$
H(z, t)=(1-t)\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]+\gamma t\left[\begin{array}{c}
g_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
g_{N}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

as follows:

- Let $d_{i}=\operatorname{deg} f_{i}$.
- Choose polynomials g_{1}, \ldots, g_{N} such that they have degrees d_{1}, \ldots, d_{N}, the system $g(z)=0$ is easy to solve and it has exactly $D:=d_{1} d_{2} \cdots d_{N}$ solutions.
- For example, one can take $g_{i}(z)=z_{i}^{d_{i}}-1$.
- In this case, the solution set of $g(z)=0$ is given by

$$
\left\{\left(e^{\left(j_{1} / d_{1}\right) 2 \pi i}, \ldots, e^{\left(j_{N} / d_{N}\right) 2 \pi i}\right): 0 \leq j_{i} \leq d_{i} \text { for } i=1, \ldots, N\right\}
$$

Total-degree homotopies

- Choose a random complex number $\gamma \neq 0$.
- In practice γ is chosen in a small band around the unit circle.
- If γ is chosen randomly, then with probability one we get a good homotopy.
- Total-degree homotopies are the simplest of all homotopies. Alternatively, one can use more special degree bounds.

Assume that we have:

- a family of functions on \mathbb{C}^{N}

$$
H(z ; q)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right)
\end{array}\right]=0
$$

such that H_{i} is a polynomial in $z \in \mathbb{C}^{N}$ and analytic in $q \in \mathbb{C}^{M}$;

Assume that we have:

- a family of functions on \mathbb{C}^{N}

$$
H(z ; q)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right)
\end{array}\right]=0
$$

such that H_{i} is a polynomial in $z \in \mathbb{C}^{N}$ and analytic in $q \in \mathbb{C}^{M}$;

- differentiable maps $\phi: t \in[0,1] \rightarrow q \in \mathbb{C}^{M}$ and $\psi: t \in[0,1] \rightarrow z \in \mathbb{C}^{N}$ satisfying
(1) $H(\psi(t), \phi(t))=0$ for $t \in(0,1]$ and
(2) the Jacobian of H with respect to z_{1}, \ldots, z_{N} has rank N for the points $(\psi(t), \phi(t))$ with $t \in(0,1]$.

Assume that we have:

- a family of functions on \mathbb{C}^{N}

$$
H(z ; q)=\left[\begin{array}{c}
H_{1}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right) \\
\vdots \\
H_{N}\left(z_{1}, \ldots, z_{N} ; q_{1} \ldots, q_{M}\right)
\end{array}\right]=0
$$

such that H_{i} is a polynomial in $z \in \mathbb{C}^{N}$ and analytic in $q \in \mathbb{C}^{M}$;

- differentiable maps $\phi: t \in[0,1] \rightarrow q \in \mathbb{C}^{M}$ and $\psi: t \in[0,1] \rightarrow z \in \mathbb{C}^{N}$ satisfying
(1) $H(\psi(t), \phi(t))=0$ for $t \in(0,1]$ and
(2) the Jacobian of H with respect to z_{1}, \ldots, z_{N} has rank N for the points $(\psi(t), \phi(t))$ with $t \in(0,1]$.
- We construct H and ϕ in such a way that ψ exists and $\psi(1)=p_{0}$. The objective is to compute $p^{*}=\psi(0)$.

Path tracking

- Assume that $M=1$ and $q_{1}=t$. Denote $\psi(t)$ by $z(t)$.

Path tracking

- Assume that $M=1$ and $q_{1}=t$. Denote $\psi(t)$ by $z(t)$.
- Differentiating $H(z(t), t)=0$ with respect to t gives

$$
\frac{\partial H(z(t), t)}{\partial t}+\sum_{i=1}^{N} \frac{\partial H(z(t), t)}{\partial z_{i}} \frac{d z_{i}(t)}{d t}=0 \text { with } z(1)=p_{0} .
$$

- Assume that $M=1$ and $q_{1}=t$. Denote $\psi(t)$ by $z(t)$.
- Differentiating $H(z(t), t)=0$ with respect to t gives

$$
\frac{\partial H(z(t), t)}{\partial t}+\sum_{i=1}^{N} \frac{\partial H(z(t), t)}{\partial z_{i}} \frac{d z_{i}(t)}{d t}=0 \text { with } z(1)=p_{0}
$$

- Let $J H(z, t)$ denote the Jacobian matrix of H with respect to the variables z

$$
J H:=\frac{\partial H}{\partial z}:=\left[\begin{array}{ccc}
\frac{\partial H_{1}}{\partial z_{1}} & \cdots & \frac{\partial H_{1}}{\partial z_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial H_{N}}{\partial z_{1}} & \cdots & \frac{\partial H_{N}}{\partial z_{N}}
\end{array}\right]
$$

evaluated at (z, t) and let $z(t)=\left[z_{1}(t), \ldots, z_{N}(t)\right]^{T}$ denote the solution of the above differential equation.

Path tracking

- Using this notation, the above differential equation becomes

$$
\frac{\partial H(z(t), t)}{\partial t}+J H(z(t), t) \cdot \frac{d z(t)}{d t}=0
$$

- Using this notation, the above differential equation becomes

$$
\frac{\partial H(z(t), t)}{\partial t}+J H(z(t), t) \cdot \frac{d z(t)}{d t}=0
$$

- Since $J H(z(t), t)$ is invertible on the path, this is equivalent to

$$
\frac{d z(t)}{d t}=-[J H(z(t), t)]^{-1} \frac{\partial H(z(t), t)}{\partial t}
$$

- Using this notation, the above differential equation becomes

$$
\frac{\partial H(z(t), t)}{\partial t}+J H(z(t), t) \cdot \frac{d z(t)}{d t}=0
$$

- Since $J H(z(t), t)$ is invertible on the path, this is equivalent to

$$
\frac{d z(t)}{d t}=-[J H(z(t), t)]^{-1} \frac{\partial H(z(t), t)}{\partial t}
$$

- This is an initial value problem that can be solved using numerical methods.

First-order tracking

- We solve the initial value problem using Euler's method starting at $t_{0}=1$ with p_{0} as the initial value and successively computing the approximations p_{1}, p_{2}, \ldots at values $t_{0}>t_{1}>t_{2}>\cdots>0$.

First-order tracking

- We solve the initial value problem using Euler's method starting at $t_{0}=1$ with p_{0} as the initial value and successively computing the approximations p_{1}, p_{2}, \ldots at values $t_{0}>t_{1}>t_{2}>\cdots>0$.
- The approximations are computed as

$$
p_{i+1}=p_{i}-J H\left(p_{i}, t_{i}\right)^{-1} \frac{\partial H\left(p_{i}, t_{i}\right)}{\partial t} \Delta t_{i}
$$

where $\Delta t_{i}=t_{i+1}-t_{i}$.

First-order tracking

- We solve the initial value problem using Euler's method starting at $t_{0}=1$ with p_{0} as the initial value and successively computing the approximations p_{1}, p_{2}, \ldots at values $t_{0}>t_{1}>t_{2}>\cdots>0$.
- The approximations are computed as

$$
p_{i+1}=p_{i}-J H\left(p_{i}, t_{i}\right)^{-1} \frac{\partial H\left(p_{i}, t_{i}\right)}{\partial t} \Delta t_{i}
$$

where $\Delta t_{i}=t_{i+1}-t_{i}$.

- Geometrically this means predicting along the tangent line to the solution path at the current point of the path.

- The prediction is often followed by the correction using the Newton's method.
- This means Newton's method is used for $H\left(z, t_{i+1}\right)$ starting with $z_{0}=p_{i+1}$.
- Newton's method uses the iterative formula

$$
z_{i+1}=z_{i}-\left[J H\left(z_{i}, t_{i+1}\right)\right]^{-1} H\left(z_{i}, t\right)
$$

Correction

- The prediction is often followed by the correction using the Newton's method.
- This means Newton's method is used for $H\left(z, t_{i+1}\right)$ starting with $z_{0}=p_{i+1}$.
- Newton's method uses the iterative formula

$$
z_{i+1}=z_{i}-\left[J H\left(z_{i}, t_{i+1}\right)\right]^{-1} H\left(z_{i}, t\right)
$$

- One or two iterations of Newton's method usually improves the prediction of $z\left(t_{i+1}\right)$.
- p_{i+1} is replaced with the corrected value before starting the next predictor-corrector cycle.

Numerical methods

- In practice Δt_{i} is chosen adaptively.
- If the error after the correction is larger than the desired tracking accuracy, then Δt_{i} is halved.

Numerical methods

- In practice Δt_{i} is chosen adaptively.
- If the error after the correction is larger than the desired tracking accuracy, then Δt_{i} is halved.
- Often higher-order methods (e.g. Runge-Kutta methods) are used in practice.
- They have the advantage that they often allow larger step sizes.

From square systems to general systems

- Consider a general system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{n}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

- If $n<N$, then the system is underdetermined and the solution set has positive-dimensional solution components.

From square systems to general systems

- Consider a general system

$$
f(z):=\left[\begin{array}{c}
f_{1}\left(z_{1}, \ldots, z_{N}\right) \\
\vdots \\
f_{n}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right]=0
$$

- If $n<N$, then the system is underdetermined and the solution set has positive-dimensional solution components.
- If $n>N$, let $A \in \mathbb{C}^{N \times n}$ be a random matrix. Instead of the system

$$
f=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right],
$$

we consider the system

$$
A \cdot f
$$

From square systems to general systems

- Every polynomial in the system $A \cdot f$ has the form

$$
a_{i 1} f_{1}+a_{i 2} f_{2}+\ldots+a_{i n} f_{n}
$$

where $a_{i j}$ are random complex numbers.

From square systems to general systems

- Every polynomial in the system $A \cdot f$ has the form

$$
a_{i 1} f_{1}+a_{i 2} f_{2}+\ldots+a_{i n} f_{n}
$$

where $a_{i j}$ are random complex numbers.

- With probability one, all the isolated solutions of f are isolated solutions of $A \cdot f$.
- Every polynomial in the system $A \cdot f$ has the form

$$
a_{i 1} f_{1}+a_{i 2} f_{2}+\ldots+a_{i n} f_{n},
$$

where $a_{i j}$ are random complex numbers.

- With probability one, all the isolated solutions of f are isolated solutions of $A \cdot f$.
- The system $A \cdot f$ could have more solutions than f.
- The extra solutions can be detected because they do not satisfy f.

From square systems to general systems

Example

- Let $p(z)=(z+1)(z-1)$ and $q(z)=z(z-1)$.
- The system $p(z)=q(z)=0$ has one solution $z=1$.

From square systems to general systems

Example

- Let $p(z)=(z+1)(z-1)$ and $q(z)=z(z-1)$.
- The system $p(z)=q(z)=0$ has one solution $z=1$.
- Consider

$$
2 p(z)-3 q(z)=2(z+1)(z-1)-3 z(z-1)=(2-z)(z-1) .
$$

- This system has two solutions $z=1$ and $z=2$.
- For $z=2$, we have $p(2)=3$ and $q(2)=2$, so it is not a solution of the original system.

From square systems to general systems

Example

- Let $p(z)=(z+1)(z-1)$ and $q(z)=z(z-1)$.
- The system $p(z)=q(z)=0$ has one solution $z=1$.
- Consider

$$
2 p(z)-3 q(z)=2(z+1)(z-1)-3 z(z-1)=(2-z)(z-1)
$$

- This system has two solutions $z=1$ and $z=2$.
- For $z=2$, we have $p(2)=3$ and $q(2)=2$, so it is not a solution of the original system.
- Since for most choices of constants we get a degree two polynomial, there are necessarily two solutions.
- This second solution changes when different coefficients are used.

Numerical algebraic geometry packages

- Bertini
- Julia Homotopy Continuation
- NumericalAlgebraicGeometry package in Macaulay2
- PHCpack

Julia Homotopy Continuation

An introduction to the numerical solution of polynomial systems

The basics of the theory and techniques behind HomotopyContinuation．jl

01 A first example
02 Homotopy continuation methods
os Tracking solution paths
（04．Constructing start systems
and homotopies
15 Case Study：Optimization
06 Solving the critical equations
07 Computing critical points
repeatedly
OE Alternative start systems
09 More information

- Today's lecture was based on Chapter 2 in "Numerically Solving Polynomial Systems with Bertini" by Bates, Sommese, Hauenstein and Wampler.
- Exam will take place on Friday, February 26 at 13:00-17:00 in MyCourses. More information will be posted soon.
- Please fill out the course feedback form. You will get 1.5 extra points for filling it out.
- Check out the Algebraic Geometry I and II courses taught by Alexander Engström in the fall of 2021.
- Thank you for attending the course!!!

