Lecture 12

Spherical coordinates

- Defined spherical coordinates. Noted that θ and ϕ correspond to longitude and latitude on the surface of the earth. Also discussed that any point in \mathbb{R}^{3} can be specified with $\rho>0,0 \leq \theta<2 \pi, 0 \leq \emptyset \leq \pi$.
- Sketched some surface in spherical coordinates. For example, $\rho=$ constant, $\theta=$ constant, and $\phi=$ constant.
- Used geometry to figure out that $\Delta V \approx \rho^{2} \sin (\phi) \Delta \rho \Delta \phi \Delta \theta$ Hpefully this agree with what you obtained in homework using the Jacobian.
- Found the volume: (1) The right circular cone (noting that the integral looks very different than above when we used cylindrical coords). (2) The "cap" of a sphere using a triple integral in spherical coordinates.
- In both these example we converted the plane $z=c$ to spherical coords, obtaining $\rho=c / \cos (\phi)$.
- Go over the midterm solutons if time.

Where to find this material

- Adams and Essex 14.6
- Corral, 3.5 (mostly about general changes of variables)
- Guichard, 15.6
- Active Calculus.11.8

Conversion:

$$
\cos \phi=\frac{z}{\rho} \Rightarrow z=\rho \cos \phi
$$

$\sin \phi=\frac{r}{\rho} \Rightarrow r=\rho \sin \phi$
From polar we know

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

Then,

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \theta
\end{aligned}
$$

Also: $\quad x^{2}+y^{2}+z^{2}=\rho^{2}$

Some simple surfaces in spherical coords
(1) $\theta=\cos \tan t$

(2) $\rho=\cos \tan t$

(3) $\phi=\pi / 4$
$z=\rho / \sqrt{2}$

$$
\begin{aligned}
& x=(\rho / \sqrt{2}) \cos \theta \\
& y=(\rho / \sqrt{2}) \sin \theta
\end{aligned}
$$

(parametric equation)

$$
\underset{3 \pi / 4}{\Rightarrow} x^{2}+y^{2}=z^{2}
$$

Integration in spherical coords

We need to find what ΔV is in term of $\Delta \rho, \Delta \phi, \Delta \theta$

Method 1 - Using the general change of variable formula involving the Jacobian
(this is mathematically rigorous but there is no intuition for the formula)

$$
\begin{aligned}
& \text { the formula) } \\
& F=\mathbb{R}^{3}\left[\begin{array}{l}
\rho \\
\phi \\
\theta
\end{array}\right]=\left[\begin{array}{l}
\rho \sin \phi \cos \theta \\
\rho \sin \phi \sin \theta \\
\rho \cos \phi
\end{array}\right]
\end{aligned}
$$

So $d V=\rho^{1 / 2} \sin \phi(d \rho) d \phi d \theta$

Method 2 -Geometrically (this is only an approximation and we do not determine the error, but it gives some intuition)

Given $\Delta \rho, \Delta \phi, \Delta \theta$
What is ΔV ? q^{z}

$\Delta w=\rho \Delta \phi$
$\Delta l=r \Delta \theta$

$$
\begin{aligned}
\Delta V \approx \Delta \rho \Delta w \Delta l & =\Delta \rho(\rho \Delta \phi)(\rho \sin \phi \Delta \theta) \\
& =\rho^{2} \sin \phi \Delta \rho \Delta \phi \Delta \theta
\end{aligned}
$$

Describe the solid cone E in spherical coords

$$
\begin{aligned}
& 0 \leqslant \theta<2 \pi \\
& 0 \leqslant \phi \leqslant \frac{\pi}{4} \\
& 0 \leqslant \rho \leqslant \text { plane }
\end{aligned} \quad \begin{aligned}
& \text { Equation in } \\
& \text { Spherical cords } \\
& z=\rho \cos \phi \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume } & =\iiint_{E} 1 d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{a / \cos \phi} 1 \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\left.2 \pi \int_{0}^{\frac{\pi}{4}} \frac{1}{3} \rho^{3}\right|_{0} ^{a / \cos \phi} \sin \phi d \phi \\
& =\frac{2 \pi a^{3}}{3} \int_{0}^{\frac{\pi}{4}} \frac{\sin \phi}{\cos ^{3} \phi} d \phi \quad u=\cos \phi \\
& \\
& =\left.\frac{2 \pi a^{3}}{3}\left(\frac{1}{2}\right) \cos ^{-2} \phi\right|_{0} ^{\pi / 4} \\
& =\frac{1}{3} \pi a^{3}\left(\sqrt{2}^{2}-1\right) \\
& =\frac{1}{3} \pi\left(a^{3}\right)=-a^{2} \phi d \phi \\
& =\frac{1}{3} \operatorname{cylinder} \operatorname{rad}^{11}{ }^{2}{ }^{11} \text { height } a
\end{aligned}
$$

Examples (2)
(2) Find the volume of the cap of a sphere of radius 2 cut off by a plane of distance 1 from the center.

$$
\begin{aligned}
E: & 0 \leqslant \theta \leqslant 2 \pi \\
& 0 \leqslant \phi \leqslant \pi / 3
\end{aligned}
$$

plane $\leqslant \rho \leqslant \frac{\text { sphere }}{2}$

$$
\begin{aligned}
& \frac{Z}{1 / \cos \phi} \\
& \text { Volume }=\iiint_{E} 1 d v \\
&=\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{3}} \int_{1 / \cos \phi}^{2} 1 \rho^{2} \sin \phi d \rho d \phi d \theta \\
&=\left.2 \pi \int_{0}^{\frac{\pi}{3}} \frac{1}{3} \rho^{3}\right|_{1 / \cos \phi} ^{2} \sin \phi d \phi \\
&=\frac{2 \pi}{3} \int_{0}^{\frac{\pi}{3}} 8 \sin \phi-\frac{\sin \phi}{\cos ^{3} \phi} d \phi \\
&=\left.\frac{2 \pi}{3}\left(-8 \cos \phi-\frac{\cos ^{-2} \phi}{2}\right)\right|_{0} ^{\pi / 3} \\
&=\frac{2 \pi}{3}\left(-8\left(\frac{1}{2}-1\right)-\frac{\frac{1}{2}(4-1)}{3 / 2}\right. \\
&=5 \pi / 3
\end{aligned}
$$

Example (3)

Redo the previous example in cylindrical coords

$$
\begin{aligned}
E: \quad & 0 \leqslant \theta \leq 2 \pi \\
& 0 \leqslant r \leqslant \sqrt{3}
\end{aligned}
$$

plane $\leq z \leq$ sphere

$$
\begin{array}{r}
\text { plane } \leq z \leq \text { sphere } \sqrt{x^{2}+y^{2}}+z^{2}=4 \\
z=1 \\
z=+\sqrt{4-r^{2}}
\end{array}
$$

$$
\text { Volume }=\iiint I d v
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \int_{1}^{\sqrt{4-r^{2}}} 1 r d z d r d \theta
$$

$$
=\left.2 \pi \int_{0}^{\sqrt{3}} r z\right|_{z=1} ^{z=\sqrt{4-r^{2}}} d r
$$

$$
=2 \pi \int_{0}^{\sqrt{3}} r \sqrt{z^{c \mid}}-r^{2}-r d r \int_{u=r^{2}}^{s u b}
$$

$$
=\left.2 \pi\left(-\frac{1}{2}\left(\frac{2}{3}\right)\left(4-r^{2}\right)^{3 / 2}-\frac{r^{2}}{2}\right)\right|_{0} ^{\sqrt{3}}
$$

$$
=2 \pi\left(\begin{array}{c}
\left.-\frac{1}{3}(1-8)-\frac{3}{2}\right) \\
7 / 3-3 / 2=\frac{14-9}{6}
\end{array}\right.
$$

$=\frac{5 \pi}{3}$ as before $\ddot{\sim}$

