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1 Introduction 

An oxidation-reduction reaction or, more commonly, a redox reaction is an 

electron transfer reaction, where one chemical species donates and another 

accepts an electron. The species donating the electron is oxidized and the one 

accepting it is reduced. If the electron transfer is heterogeneous, i.e. occurs at an 

interface, such as a metal/liquid or a liquid/liquid interface, we define the reaction 

as electrochemical.  The rate of an electrochemical reaction (r), is proportional to 

the electric current via the Faraday law, 𝑟 =
𝜈𝑖

𝑛𝐹 
, where  is the stoichiometric 

coefficient of the reacting species, i the current density (A cm−2), n the number of 

electrons and F the Faraday constant.  

A specific feature of an electrochemical reaction is that its rate depends on 

potential. Since electric current can exist only in a closed circuit and only potential 

differences can be measured, at least two electrodes are needed in a measurement, 

and the electrodes must be connected via an external resistance (load). The 

reaction of interest takes place at the working electrode, and some other reaction 

closing the circuit takes place at the counter electrode. In the modern experimental 

set-up, the potential of the working electrode is measured against a reference 

electrode, through which no current passes. The idea of the reference electrode is 

to separate current measurement from potential measurement, also eliminating 

ohmic losses. Figure 1 shows the schematic of an electrochemical system. 

 

 

Figure 1. Schematic of an electrochemical cell. The studied reaction takes place at the 

working electrode (WE). Current flows between the WE and the counter electrode (CE). 
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Potential difference is measured between the working and the reference electrodes (RE) 

with a potentiostat. 

 

2 Theory 

This section provides the basic theory of the potential step and the cyclic 

voltammetry (CV) methods (chronoamperometry). In these methods, the potential 

of the working electrode is varied and the current is measured. However, in order 

to obtain any quantitative information from the measurement, the current has to 

be mathematically linked to the reaction rates. The starting point for most 

measurements is the electrochemical redox reaction: 

R

 𝑘𝑜𝑥

⇌
 𝑘𝑟𝑒𝑑

O + 𝑛e−                                              (i) 

where R is the reduced and O the oxidized species, and kox and kred are the reaction 

rate constants. Nernst-Planck equation describes the flux of species 𝑘 = O, R 

across a reference plane [1] (no convection): 

 
𝑗𝑘 = −𝐷𝑘 ∇⃗⃗⃗𝑐𝑘 −

𝑧𝑘𝐹

𝑅𝑇
𝐷𝑘𝑐𝑘 ∇⃗⃗⃗𝜙 (1)  

𝐷𝑘 is the diffusion coefficient, 𝑐𝑘 the concentration, 𝑧𝑘 the charge of the ion 𝑘, 𝐹 is 

the Faraday constant, 𝑅 the gas constant, 𝑇 temperature and 𝜙 potential. If 𝑘 is 

present in the system only as a trace-ion (excess supporting electrolyte), the latter 

term in eq. (1) can be neglected, and the equation reduces to Fick’s first law.  

From the balance equation of 𝑘, we can deduce that in the absence of homogeneous 

chemical reactions, Fick’s second law is obtained: 

 𝜕𝑐𝑘

𝜕𝑡
= −∇⃗⃗⃗ ∙ 𝑗𝑘 = 𝐷𝑖 ∇⃗⃗⃗2𝑐𝑘 (2)  

where eq. (1) is used. In most cases, it is sufficient to consider the problem in only 

one dimension x perpendicular to the working electrode. The analysis of all 

methods aims at solving the partial differential equation above, and the selected 

method determines the mathematical boundary conditions which are applied in 

the solution. If it is assumed that initially only one species is present in the system 

and the concentration is uniform, the initial condition is 
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 𝑐𝑘(0, 𝑥) = 𝑐𝑘
𝑏 (3)  

where 𝑐𝑘
𝑏 is the bulk concentration of 𝑘. As electrochemical reactions take place at 

the working electrode, concentration changes are developed in its proximity, but 

“far away” from the electrode concentrations are equal to the bulk concentration: 

 lim
𝑥→∞

𝑐𝑘(𝑥) = 𝑐𝑘
𝑏 (4)  

This is known as the semi-infinite diffusion boundary condition. The other 

boundary condition is obtained considering the charge and mass balance at the 

working electrode. In a reaction O is transformed to R (or vice versa), and if 

neither of them is adsorbed at the electrode their fluxes at the electrode must be 

equal but opposite in direction. The number of electrons exchanged, n, is the 

difference of their charge numbers, 𝑛 = 𝑧O − 𝑧R. Therefore, 

 
𝑗O|𝑥=0 = −𝑗R|𝑥=0 =

𝑖

𝑛𝐹
  (5)  

The problem can be solved e.g. by taking the Laplace transform of eq. (2), solving 

the resulting ordinary differential equation with the selected initial and boundary 

conditions, and finally taking the inverse transform of the solution.  

 

 

2.1 Potential step 

In the potential step method the potential of the working electrode is changed in 

a step-like fashion shown in Figure 2. When the potential is changed sufficiently 

far from the equilibrium potential (Figure 2a), the surface concentration of O 

drops to zero (Figure 2b). The reaction takes place as fast as O diffuses to the 

electrode surface; the system is said to be under diffusion control, and the current 

density decreases as a function of t−1/2 (Figure 2c).   
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Figure 2. a) Potential step takes place from E1 to E2 at t = 0. b) If the potential step is large 

enough, the surface concentration of O decreases to zero. c) The current density decreases 

as a function of t−1/2. [1] 

For a reversible reaction, the electrode potential follows the Nernst equation: 

 
𝐸 = 𝐸0 +

𝑅𝑇

𝑛𝐹
ln (

𝛾O𝑐O
𝑠

𝛾R𝑐R
 𝑠) = 𝐸0′

+
𝑅𝑇

𝑛𝐹
ln (

𝑐O
𝑠

𝑐R
𝑠 ) (6)  

where 𝐸0 and 𝐸0′ are the standard reduction and the formal potentials, 

respectively, 𝛾 is the activity coefficient, and the superscript s indicates 

concentrations at the electrode surface. By solving eq. (2) with the initial and 

boundary conditions, eqs. (3) - (5), for an arbitrary potential step and a system 

with only O initially present, the current density can be expressed as [2] 

 
𝑖(𝑡) = −

𝑛𝐹√𝐷R𝜃𝑐O
𝑏

1 + 𝜉𝜃

1

√𝜋

1

√𝑡
  (7)  

where 𝜃 = exp [
𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′)] and 𝜉 = √𝐷O/𝐷R. If the potential step is done to a 

potential where the surface concentration of O drops to zero, i.e. 𝜉𝜃 ≫ 1, the 

current density declines according to the Cottrell equation [1]: 

 

𝑖𝑑(𝑡) = −𝑛𝐹√
𝐷O

𝜋
𝑐O

𝑏 1

√𝑡
 (8)  

The formulation of this equation is left as a homework. 

 

If the electrochemical reaction has more sluggish kinetics, the reaction is called 

quasi-reversible, and the reaction rate has to be taken into account [1]: 

 𝑖

𝑛𝐹
= 𝑘𝑜𝑥𝑐𝑅

𝑠 − 𝑘𝑟𝑒𝑑𝑐𝑂
𝑠  (9)  

The surface concentrations are solved as described earlier. The exact solution is 

 𝑖(𝑡) = −𝑛𝐹𝑘𝑟𝑒𝑑𝑐𝑂
𝑏 exp(𝜆2𝑡) erfc(𝜆√𝑡) (10)  

where 𝜆 = (𝑘𝑜𝑥/√𝐷𝑅 + 𝑘𝑟𝑒𝑑/√𝐷𝑂) and where the inverse Laplace transform 

 
ℒ−1 {

1

√𝑠(√𝑠 + 𝑎)
} = exp(𝑎2𝑡) erfc(𝑎√𝑡) (11)  
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has been used. From eq. (10), it is useful to examine the extremum with respect 

to 𝑡. Firstly, for 𝑡 ≪ 1 a Taylor expansion at 𝑡 = 0 shows that 

𝑖(𝑡) = −𝑛𝐹𝑘𝑟𝑒𝑑𝑐𝑂
𝑏 (1 −

2𝜆

√𝜋
√𝑡) (12)  

Equation (11) shows that the rate constant can be obtained by extrapolating the 

current density as a function of √𝑡 to 𝑡 = 0. On the other hand, when 𝑡 → ∞, the 

current approaches 1/√𝑡 dependency. 

 

2.2 Cyclic voltammetry 

In cyclic voltammetry the electrode potential is changed in cycles and the current 

is measured. The method can be used to evaluate the reversibility of an electro-

chemical system or to obtain quantitative information of the kinetics of the 

reaction. Usually, a CV is initiated at a potential where no reaction takes place. 

From there, the potential is scanned linearly to one direction until the first switch 

(or vertex) potential is reached and the potential is scanned back to the initial 

potential. A scheme of this procedure is shown in Figure 3. With digital 

instruments, the potential is changed in small steps, and the current is sampled 

either continuously (linear scan), or at the end of the steps (staircase scan). 

Keeping the step size at 1-2 mV, the results are identical. 

 

Figure 3. a) In CV, potential is scanned at a constant scan rate until the vertex potential 

Eλ is reached. b) A reduces to a-radical, and at the reverse scan oxidizes back to A. The 

resulting current density i is shown as a function of the applied potential E. [1]* 

 

                                                

* This presentation follows the old polarographic convention where reduction current is shown as 

positive. The IUPAC convention defines oxidation current positive. 
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The current density is shown in Figure 3b, where 𝐴 is first reduced to a negatively 

charged radical. First, the current increases exponentially with the potential (see 

eq. (13) below) until the surface concentration of the reactant and diffusion begins 

to limit the rate. When the scan direction is reversed, the rate of the oxidation 

reaction increases, until the surface concentration of the reduced species begins 

to limit the current. The process yields the characteristic peaks for a CV which at 

first glance may all look very similar, but for an experienced eye it immediately 

offers both quantitative and qualitative information about the electrochemical 

nature of the system. For example, qualitative information is readily obtained 

about the kinetics and the amount of electrons transferred. Moreover, different 

mechanisms such as adsorption, homogenous reaction, and disproportionation all 

give their characteristic response in a CV. Due to its generality and ability to offer 

an overview of the characteristics of the system, cyclic voltammetry is the most 

popular basic methods in electrochemistry. For example, for a CV measurement 

of a reversible reaction, three general features apply [1]: 

1. The ratio of the peak currents equals one 

2. Peak potential separation at 25 °C equals 59 mV/n, where n is the number 

of electrons transferred in the reaction, regardless of the scan rate. 

3. Peak current density 𝑖p depends linearly on the square root of the scan 

rate, √𝑣, and follows the Randles-Ševčík equation: 

 

±𝑖p,𝑘 = 0.4463 𝑛𝐹𝑐𝑘
𝑏√

𝐷𝑘𝑛𝐹

𝑅𝑇
√𝑣 (13)  

where 𝑘 is either O or R, which also determines the sign of the peak 

current.  

 

For a quasi-reversible system, the theoretical consideration begins again from eq. 

(8). The rate constants depend on the potential according to the Butler-Volmer 

equation [1]: 

 
𝑘𝑟𝑒𝑑 = 𝑘0 exp [

𝛼𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)] 

𝑘𝑜𝑥 = 𝑘0 exp [(𝛼 − 1)
𝑛𝐹

𝑅𝑇
(𝐸 − 𝐸0′

)] 

(14)  



 7 

where 𝑘0 is the standard rate coefficient (cm/s).  

 

In cyclic voltammetry, the potential is varied linearly with time: 

 𝐸 = 𝐸𝑖 + 𝑣𝑡 − 2𝐻(𝑡 − 𝑡𝑠)𝑣(𝑡 − 𝑡𝑠) (15)  

where 𝐸𝑖 is the initial potential, 𝑣 is the scan rate, 𝑡𝑠 is the switch time and  

 𝐻(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 (16)  

is the Heaviside step function. If only species R is initially present, the initial and 

boundary conditions are 

 𝑐O(𝑥, 0) = 0 = lim
𝑥→∞

𝑐O(𝑥, 𝑡) 

𝑐R(𝑥, 0) = 𝑐R
𝑏 = lim

𝑥→∞
𝑐R(𝑥, 𝑡) 

𝑖

𝑛𝐹
= −𝐷O (

𝜕𝑐O(𝑥, 𝑡)

𝜕𝑥
)

𝑥=0

= 𝐷R (
𝜕𝑐R(𝑥, 𝑡)

𝜕𝑥
)

𝑥=0

 

(17)  

which leads to the surface concentrations 

 
𝑐O

𝑠 =
1

𝑛𝐹√𝐷O𝜋
∫

𝑖(𝑢)

√𝑡 − 𝑢
𝑑𝑢

𝑡

0

 

𝑐R
𝑠 = 𝑐R

𝑏 −
1

𝑛𝐹√𝐷R𝜋
∫

𝑖(𝑢)

√𝑡 − 𝑢
𝑑𝑢

𝑡

0

 

(18)  

where u is a dummy variable. Inserting eqs. (14)-(16) and (18) into eq. (9), a 

tedious looking integral is obtained: 

 
𝑖(𝑡)

𝑛𝐹𝑘0
= 𝑒

𝛼𝑛𝐹
𝑅𝑇

𝐸(𝑡)
[𝑒−

𝑛𝐹
𝑅𝑇

𝐸(𝑡)
− (

𝑒−
𝑛𝐹
𝑅𝑇

𝐸(𝑡)

𝑛𝐹√𝐷𝑅𝜋
+

1

𝑛𝐹√𝐷𝑂𝜋
) ∫

𝑖(𝑢)

√𝑡 − 𝑢

𝑡

0

d𝑢] (19)  

The equation is solved numerically, see e.g. [3]. The main result of the analysis is 

that the peak potential difference increases with an increasing scan rate. For a 

one-step, one-electron process with 0.3 < 𝛼 < 0.7, the relationship between the 

dimensionless parameter [1] 

 

𝛹 =
𝜉

𝛼
2 𝑘0

√ 𝐹
𝑅𝑇 𝐷𝑂𝜋𝑣

 (20)  
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and the peak potential separation follows the values of 𝛹 given in Table 1. Thus, 

by measuring the peak potential separation at different scan rates, the standard 

rate constant of a quasi-reversible reaction can be estimated. This approach is 

known as the method of Nicholson. 

 

Table 1. The dependency of the dimensionless parameter 𝜳 on the peak potential 

difference for a one-step electron transfer reaction. 

𝛹  20 7 6 5 4 3 2 1 0.75 0.50 0.35 0.25 0.10 

nΔ𝐸P 

[mV] 
61 63 64 65 66 68 72 84 92 105 121 141 212 

 

 

 

3 Experimental 

The redox-reaction of iron(III) is an example of a one-step, one electron transfer 

reaction: 

Fe3+ + e− ⇌ Fe2+ 

for which 𝐸0 = 0.771 V vs. NHE. A solution of 5 mmol/L FeCl3 in 0.5 mol/L HCl is 

prepared to a 100 mL volumetric flask. The cell is filled with the solution, and a 

glassy carbon working electrode (GC, d = 0.5 cm), a Pt counter electrode, and a 

saturated calomel reference electrode (SCE) are placed in the cell, and connected 

to a potentiostat (Metrohm Autolab PGSTAT100).  

The measurements are run with Metrohm Autolab Nova software. The three 

measurement procedures are built with the software according to the assistant’s 

instructions: general CV for characterizing the electrochemical system, potential 

step, and CV with different scan rates.  

First, the electrochemical system is characterized by performing a CV 

measurement inside the electrochemical window of the electrolyte. From this 

general measurement, correct options for the potential step and CV 

measurements are obtained. Then, the potential step measurement is executed 

from a potential where only the Fe3+ species is present and no current is detected, 
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to a potential where the reduction to Fe2+ takes place. Finally, the CV 

measurement is run at different scan rates (e.g. v = 10, 22.5, 40, 62.5, 90, 122.5, 

and 160 mV/s). 

 

 

4 Results 

The first CV measurement is used to characterise the system: use this data to 

justify the selected potential range in the measurements which follow. 

Show the CV measurements with different scan rates. Use these measurements 

to explain and justify whether the reaction is reversible, quasi-reversible or 

irreversible. Apply the method of Nicholson to determine the standard rate 

constant of the reaction. Hints: You can assume that 𝛼 = 1/2. Fit an equation to 

the data in Table 1**, and apply this fit to your measured Δ𝐸𝑃 to obtain the 𝛹 

corresponding to your experimental values. Calculate 𝑘0 from the obtained 𝛹 

values. Use the diffusion coefficients for Fe2+ and Fe3+ from the literature.  

Show the potential step data. Plot 𝑖(√𝑡) and calculate the standard rate constant. 

Plot 𝑖(𝑡−1/2) and calculate the diffusion coefficient. Compare these values with 

the value obtained from CV measurements. 

Finally, compare the literature values of the diffusion coefficients and standard 

rate constants to the values determined in this work. Discuss the possible 

discrepancies and sources of error. What effect conductivity has on the 

measurements, and can it be decreased? 

 

Derive the Cottrell equation for an arbitrary reversible redox reaction. 

 

 

 

                                                

** Select the Δ𝐸P interval which corresponds to your measurements. You can use Excel 

trendline, e.g. power function, to make the fit.  
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