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1 Introduction 

Electrochemical reactions are studied by perturbing the equilibrium with a properly 

chosen signal and measuring the system’s response to it. From the results, 

thermodynamic data of simple reactions or knowledge on the kinetics and 

mechanisms in more complicated cases is obtained. Here, we study a simple electron 

transfer reaction 

 
Fe3+ + e−

 𝑘𝑟𝑒𝑑

⇌
 𝑘𝑜𝑥

Fe2+ (i) 

which takes place on a glassy carbon electrode. From the laboratory works on cyclic 

voltammetry and potential step we have learned that the current can be connected 

to the rate of the redox reaction. However, the actual kinetics of the reaction is 

difficult to quantify as the reaction can, especially in the case of facile kinetics, 

quickly become limited by the rate of diffusion to the electrode. The rotating disk 

electrode (RDE) is designed to enhance the mass transport to the electrode through 

convection, thus decreasing the effect of diffusion.  

 

2 Theory 

The reaction (i) can be expressed more generally as 

 
O + 𝑛e−

 𝑘𝑟𝑒𝑑

⇌
 𝑘𝑜𝑥

R (ii) 

where n is number of transferred electrons in the reaction, and 𝑘𝑟𝑒𝑑 and 𝑘𝑜𝑥 are the 

rate constants of the reduction and oxidation reactions, respectively. An 

electrochemical reaction is a combination of at least three steps which affect its 

observed rate. Firstly, the reactant (O) has to be transported from the bulk solution 

to the electrode surface. Secondly, at the electrode, the reaction occurs at some finite 

rate. Thirdly, the product (R) has to be transported away from the electrode. If one of 

these steps is slower than the others, it is said to be the limiting step of the reaction. 
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2.1 Convective electrodiffusion 

The Nernst–Planck equation offers a practical starting point for the analysis of a 

transport process. The flux of species O (similarly for R) can be expressed as the sum 

of diffusive, migrational and convective fluxes, where the driving forces for these 

fluxes are the gradient of concentration ∇⃗⃗ 𝑐, the gradient of electric potential ∇⃗⃗ 𝜙, and 

the convectional velocity 𝑣 :  

 
𝑗 O = −𝐷O∇⃗⃗ 𝑐O −

𝐷O𝑧O𝐹𝑐O

𝑅𝑇
∇⃗⃗ 𝜙 + 𝑐O𝑣  (1)  

𝐷O is the diffusion coefficient of the oxidised species, 𝑧O is the charge of O, 𝐹 is the 

Faraday coefficient, 𝑅 the gas constant and 𝑇 temperature. In the case of a trace-ion, 

the migrational term can be omitted. The flux of O at the electrode surface is equal 

to the current density, which in the one-dimensional case can be expressed as: 

 
𝑗O|𝑥=0 =

𝑖

𝑛𝐹
 (2)  

where the number of transferred electrons is the difference of their charge numbers, 

𝑛 = 𝑧O − 𝑧R.  

 

Let us first consider a case in the absence of convection. Then, current density can be 

expressed as 

 𝑖

𝑛𝐹
= −𝐷O (

𝜕𝑐O

𝜕𝑥
  )

𝑥=0
= 𝐷R (

𝜕𝑐R

𝜕𝑥
)
𝑥=0

 (3)  

where 𝐷O and 𝐷R are the diffusion coefficients of the oxidised and reduced species, 

respectively. The concentration gradient can be estimated with the so-called Nernst 

diffusion model, which assumes that mass transport occurs only with diffusion and 

the gradient can be approximated as [1,2]: 

 
(
𝜕𝑐O

𝜕𝑥
  )

𝑥=0
=

(𝑐O
b − 𝑐O

s )

𝛿
 (4)  

where 𝑐O
b and 𝑐O

s  are the bulk and surface concentration of the oxidised species and 𝛿 

is the thickness of the diffusion layer. From eq. (4) it is immediately seen that the 

gradient reaches its maximum value when 𝑐O
s  equals zero. Then the system is under 

diffusion control, and the resulting current is known as the limiting current density:  
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𝑖lim = −

𝑛𝐹𝐷O𝑐O
b

𝛿
 (5)  

 

    

Figure 1. The Nernst diffusion model. The concentration gradient is approximated 

with a linear profile inside a diffusion layer of thickness δ.  

 

In the considered case (no convection) above, δ is a function of time, which gives the 

current the well-known 𝑡−1/2 time dependency (cf. eq. (7) in instructions for Cyclic 

voltammetry and potential step). However, in the case of RDE, the electrode is 

rotated around its axis, which creates a well-determined velocity field for the 

solution. The rotation flings electrolyte to the sides of the electrode (parallel to the 

electrode), simultaneously drawing more solution from the bulk of the solution 

(perpendicular to the electrode). The outline of the fluid velocity field is shown in 

Figure 2. Due to frictional forces between the electrode surface and the solution, the 

velocity at the surface is zero, which is known as the non-slip condition. Near the 

surface, the perpendicular component of the velocity is close to zero, and the velocity 

is directed in parallel to the electrode surface. When distance to the electrode 

increases, the perpendicular component of the velocity field increases and goes 

through a maximum, and very far away the velocity naturally decreases to zero.  
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Figure 2. The rotation of the disk creates a velocity field towards the electrode [2]. 

The perpendicular component of the velocity is a function of the distance squared, x2. 

 

The velocity is calculated from the Navier-Stokes equation. Only the perpendicular 

component of the velocity field affects the current. The solution can be approximated 

with a series expansion as a function of the angular rotation speed (angular 

frequency) 𝜔 of the electrode and the kinematic viscosity 𝜐 of the solution [2]:  

 𝑣𝑥 = 0.510𝜔3/2𝜐−1/2𝑥2 (6)  

where 𝑥 is the distance from the electrode surface. 

 

Introducing eq. (6) into eq. (1) leads to  

 𝑖lim = ±0.620𝑛𝐹𝐷2 3⁄ 𝑐𝑖
b𝜐−1 6⁄ 𝜔1/2 (7)  

Eq. (7) is known as the Levich equation. Its key message is that with RDE, the 

limiting current is a function of the angular rotation speed. Increasing the rotational 

speed enhances the mass transport rate (decreases δ), which enables the study of 

faster reaction kinetics. Comparing Eq. (7) with Eq. (5), the thickness of the diffusion 

layer can be identified as 

 𝛿i = 1.61𝐷i
1/3

𝜐1/6𝜔−1/2  (8)  

For a more detailed derivation of the theory, see e.g. [2]. 
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2.2 The Butler–Volmer equation 

The kinetics of a reaction can be studied when the reaction in not limited by diffusion. 

The Butler–Volmer equation can be utilized to link the measured current to the 

reaction rate constants (which are functions of potential). The rate of the reaction (ii) 

is directly proportional to the measured current density, i [1]: 

 
−

𝑖

𝑛𝐹
= 𝑘𝑟𝑒𝑑𝑐O

𝑠 − 𝑘𝑜𝑥𝑐R
𝑠 (9)  

When the reaction is at equilibrium, the net current density is zero, and the electrode 

potential 𝐸eq can be calculated with the Nernst equation [1]: 

 
𝐸eq = 𝐸0′

+
𝑅𝑇

𝑛𝐹
ln

𝑐O
𝑠

𝑐R
𝑠  (10)  

where 𝐸0′
is the formal standard potential of the reaction. Since the reaction is at 

equilibrium, the surface concentrations are equal to the bulk concentrations. As the 

potential of a single electrode cannot be measured,  𝐸eq is understood as the potential 

difference with respect to a reference electrode. When the electrode potential is 

changed, one of the reactions begins to take place faster than the other. Then the 

reaction is no longer at equilibrium, and a net current can be measured. The 

difference between the electrode potential and the equilibrium potential is known as 

overpotential 𝜂: 

 𝜂 = 𝐸 − 𝐸eq (11)  

The dependence of current density on overpotential is expressed by the Butler-

Volmer equation [1]: 

 
𝑖BV = 𝑖0 [exp(

(1 − 𝛼)𝑛𝐹

𝑅𝑇
𝜂) − exp (−

𝛼𝑛𝐹

𝑅𝑇
𝜂)] (12)  

where 𝑖0 is the exchange current density: 

 𝑖0 = 𝑛𝐹𝑘0(𝑐O
b)

𝛼
(𝑐R

b)
1−𝛼

 (13)  

and 𝛼 the transfer coefficient describing the symmetry of the energy landscape of the 

electron transfer reaction.  If 𝛼 = 1/2, the energy landscape of the reaction is 

symmetric. For more information, see e.g. [1,3,4]. The exchange current density 

represents the rates of the cathodic and anodic reactions at equilibrium; the net 

current density is zero and both reactions occur at equal rate. Therefore, equation 
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(12) can be expressed as the sum of the cathodic and anodic current, 𝑖BV = 𝑖𝑎 + 𝑖𝑐. 

Figure 3 shows the cathodic, anodic and total current as a function of the 

overpotential.  

 

Equation (12) can be more easily analysed in the extreme values of 𝜂. For large anodic 

overpotentials (𝜂 ≫ 0) eq. (12) yields 

 
ln 𝑖BV = ln 𝑖0 +

(1 − 𝛼)𝑛𝐹

𝑅𝑇
𝜂 (14)  

and for large cathodic overpotentials (𝜂 ≪ 0) 

 
ln 𝑖BV = ln 𝑖0 −

𝛼𝑛𝐹

𝑅𝑇
𝜂 (15)  

 

 

Figure 3. The dependence of the anodic (– –), cathodic (–•–) and total current (––) on 

the overpotential according to the Butler-Volmer equation. 

 

With eqs. (3) – (5), the original eq. (9) can be expressed as: 

 
−

𝑖

𝑛𝐹
= 𝑘𝑟𝑒𝑑𝑐O

b (1 +
𝑖

𝑖lim,O
) − 𝑘𝑜𝑥𝑐R

b (1 −
𝑖

𝑖lim,R
) (16)  

From eq. (16), we can solve for the current density: 

 
𝑖 =

𝑛𝐹(𝑘𝑜𝑥𝑐R
b − 𝑘𝑟𝑒𝑑𝑐O

b)

1 +
𝑘𝑟𝑒𝑑
𝑖lim,O

+
𝑘𝑜𝑥
𝑖lim,R

 (17)  

The inverse of eq. (17) yields 
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1

𝑖
=

1

𝑛𝐹(𝑘𝑜𝑥𝑐R
b − 𝑘𝑟𝑒𝑑𝑐O

b)
+

𝑘𝑟𝑒𝑑
𝑖lim,O

−
𝑘𝑜𝑥
𝑖lim,R

𝑛𝐹(𝑘𝑜𝑥𝑐R
b + 𝑘𝑟𝑒𝑑𝑐O

b)
=

1

𝑖BV
+

1

𝑖diff
 (18)  

 

As 𝑖lim~𝜔1/2, eq. (18) shows that at any given potential, the inverse of the current 

density is linearly dependent of 𝜔−1/2. When 𝜔−1/2 → 0,𝜔 → ∞. Therefore, the kinetic 

current (𝑖BV) can be determined from the intercept.  

 

 

3 Experimental 

A solution of 3 mmol/L FeCl3 and 2 mmol/L FeCl2 in 0.5 mol/L HCl is prepared to a 

100 mL volumetric flask. The cell is filled half-full with the solution, and a glassy 

carbon working electrode (GC, d = 0.5 cm), a Pt counter electrode, and a saturated 

calomel reference electrode (SCE) are placed in the cell, and connected to a 

potentiostat according to the instructions of the assistant.  The current-voltage 

curves are measured between 700 mV and 100 mV vs. SCE at the sweep rate of 5 

mV/s at five different rotational frequencies (5, 15, 25, 35, 45 Hz). 

 

 

4 Results 

Show the measured voltammograms for all rotational frequencies.  

1. Determine the limiting current for both reactions, and use eq. (8) to calculate 

the diffusion coefficient for both the reduced and oxidised species. Then, 

estimate the effective thickness of the diffusion layer at different rotational 

frequencies for both species with eq. (7).  

2. Use eqs. (8) and (18) to determine the kinetic current 𝑖BV as a function of 𝜂. 

Plot ln 𝑖BV as a function of 𝜂, and use eqs. (14) and (15) for determining the 

exchange current density 𝑖0 and 𝛼 for the anodic and cathodic reactions.  
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3. Use eq. (13) to calculate 𝑘0 for the reactions.  

4. Use regression analysis for the limiting currents to obtain the error for the 

diffusion coefficients (95% confidence interval). 

5. Use regression analysis for the kinetic currents to obtain the error for the 

exchange current density (intercept) and for 𝛼 (slope) (95% confidence 

interval). Finally, approximate the resulting error for 𝑘0 from eq. (13) using 

the total derivative method. 

6. Compare your results with the literature values. Discuss the reasons for 

possible differences. 
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