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1 Introduction 

Electrochemical impedance spectroscopy (EIS) is a method that separates different 
processes in an electrochemical system based on their frequency dependency. The 
system is perturbed with a small-amplitude periodic signal (voltage or current), and 
the response is measured as a function of the frequency. With a single measurement, 
precise information of conductivity, reaction kinetics, electrode capacitance and dif-
fusion is obtained. For example, facile charge transfer kinetics shows a response at 
high frequencies and mass transport is visible at low frequencies. However, careful 
consideration of the physical model of the system and reaction mechanism is required 
before the measurements can offer any meaningful information.  
 
For the measurement to be successful, it has to fulfil four basic criteria: 1) The output 
results only from the input, i.e. no parasitic reactions take place in the system. 2) The 
input is moderate enough, so that the response is a linear function of the input. This 
depends on the form of the current-voltage plot but an amplitude of 10 mV, for exam-
ple, can be used in most cases. 3) The system returns to its initial state after the 
input. 4) Impedance is finite and continuous. 
 

2 Theory 

The following chapter first introduces the concept of impedance, and then shows how 
the impedance of a simple electrochemical measurement is calculated. 

2.1 Definition of impedance 

An impedance measurement can be either potentiostatic or galvanostatic, depending 
on the input signal. In a potentiostatic EIS measurement, the cell is set to a defined 
dc potential, and a small amplitude sinusoidal potential signal is fed as an input. The 
potential signal creates a corresponding current response in the system, which might 
have some delay. The input and response are expressed in a complex form: 
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 input 𝐸𝐸 = 𝐸𝐸�e𝑗𝑗𝑗𝑗𝑗𝑗 

response 𝐼𝐼 = 𝐼𝐼e𝑗𝑗(𝑗𝑗𝑗𝑗+𝜙𝜙) 
(1)  

where 𝐸𝐸� and 𝐼𝐼 are the amplitudes of the potential and current signals, respectively, 𝑗𝑗 

is the complex variable, 𝜔𝜔 is the angular frequency, 𝑡𝑡 is time. The delay of the output 
is expressed with a phase shift 𝜙𝜙. Impedance Z defined as the ratio of voltage E and 
current I, and it is a function of the frequency 𝜔𝜔 and the amplitude of the input signal. 
 

𝑍𝑍 ≡
𝐸𝐸
𝐼𝐼

=
𝐸𝐸�
𝐼𝐼 ̅

e−𝑗𝑗𝜙𝜙 (2)  

 

2.2 Calculating the impedance of a cell 

When current flows in an electrochemical cell and the potential of the working elec-
trode (WE) is measured against the reference electrode (RE), the impedance always 
has contributions from at least three factors. Firstly, the electrolyte resistance be-
tween the reference and the working electrode causes an ohmic drop, which depends 
on the current and the solution resistance Rs. Secondly, changing the potential of the 
working electrode causes charging of the electrode double layer capacitance. Thirdly, 
the actual reaction creates a faradic current in the system. The total current of the 
cell is a sum of the capacitive current and the faradic current: 
 
 𝑖𝑖𝑗𝑗𝑡𝑡𝑗𝑗 = 𝑖𝑖𝑓𝑓 + 𝑖𝑖𝑐𝑐 (3)  

 
In terms of electrical circuit analogy, the faradic and capacitive processes thus occur 
in parallel. Therefore, the circuit form of an electrochemical cell consists of capacitive 
and faradic impedance elements of the working electrode connected in parallel, and 
in series with the impedance of the electrolyte (between WE and RE), shown in Fig-
ure 1.  
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Figure 1. Impedance circuit of a cell. 

 
The impedance of the electrolyte is simply 𝑍𝑍𝑠𝑠 = 𝐸𝐸𝑠𝑠/𝑖𝑖 = 𝑅𝑅𝑠𝑠. The impedance of a capac-
itor, 𝑍𝑍𝑐𝑐, is easier to calculate in the Laplace domain: 
 𝑖𝑖𝑐𝑐(𝑡𝑡) = 𝐶𝐶𝑑𝑑𝑑𝑑

d𝐸𝐸(𝑡𝑡)
d𝑡𝑡

  

𝚤𝚤�̅�𝑐(𝑠𝑠) = 𝐶𝐶𝑑𝑑𝑑𝑑𝐸𝐸�(𝑠𝑠)𝑠𝑠 

�̅�𝑍𝑐𝑐(𝑠𝑠) =
𝐸𝐸�(𝑠𝑠)
𝚤𝚤�̅�𝑐(𝑠𝑠) =

1
𝑠𝑠

1
𝐶𝐶𝑑𝑑𝑑𝑑

=
1
𝑗𝑗𝜔𝜔

1
𝐶𝐶𝑑𝑑𝑑𝑑

 

(4)  

The actual faradic current is created by the redox-reaction  
 

O + 𝑛𝑛e−
 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
⇌

 𝑘𝑘𝑜𝑜𝑜𝑜
R (ii) 

where n is number of transferred electrons in the reaction, and 𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑 and 𝑘𝑘𝑡𝑡𝑜𝑜 are the 
rate constants of the reduction and oxidation reactions, respectively. The flux 𝑗𝑗𝑘𝑘 of a 

trace-ion 𝑘𝑘 in the absence of convection is 
 𝑗𝑗𝑘𝑘 = −𝐷𝐷𝑘𝑘

d𝑐𝑐𝑘𝑘
d𝑥𝑥

 (5)  

where 𝐷𝐷𝑘𝑘 is the diffusion coefficient. The mass balance of 𝑘𝑘 leads to the Fick’s 2nd law: 

 𝜕𝜕𝑐𝑐𝑘𝑘
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝑘𝑘
d2𝑐𝑐𝑘𝑘
d𝑥𝑥2

  (6)  

This partial differential equation is solved with the Laplace transform: 
 

𝑠𝑠𝑐𝑐�̅�𝑘 − 𝑐𝑐�̅�𝑘,0 = 𝐷𝐷𝑘𝑘
d2𝑐𝑐�̅�𝑘
d𝑥𝑥2

  (7)  
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where the bar denotes the Laplace transform of the variable; 𝑐𝑐�̅�𝑘,0 is the initial con-

centration of 𝑘𝑘. Equation (6) is thus transformed into an ordinary second order dif-
ferential equation, which has a general solution1 
 𝑐𝑐�̅�𝑘(𝑠𝑠, 𝑥𝑥) =

𝑐𝑐�̅�𝑘,0

𝑠𝑠
+ 𝐴𝐴(𝑠𝑠)e−𝜆𝜆𝑘𝑘𝑜𝑜 + 𝐵𝐵(𝑠𝑠)e𝜆𝜆𝑘𝑘𝑜𝑜  (8)  

where 𝜆𝜆𝑘𝑘 = �𝑠𝑠 𝐷𝐷𝑘𝑘⁄ . The coefficients 𝐴𝐴(𝑠𝑠) and 𝐵𝐵(𝑠𝑠) can be determined with the bound-

ary conditions 
 d𝑐𝑐𝑘𝑘(𝑡𝑡, 0)

d𝑥𝑥
=

d𝑐𝑐�̅�𝑘(𝑠𝑠, 0)
d𝑥𝑥

= −
𝚤𝚤(̅𝑠𝑠)
𝐷𝐷𝑘𝑘𝑛𝑛𝑛𝑛

 (9)  

 𝑐𝑐𝑘𝑘(𝑡𝑡,∞) = 𝑐𝑐�̅�𝑘(𝑠𝑠,∞) = 𝑐𝑐𝑘𝑘𝑏𝑏 (10)  
and the initial condition 
 𝑐𝑐�̅�𝑘(0, 𝑥𝑥) = 𝑐𝑐�̅�𝑘,0 = 𝑐𝑐𝑘𝑘𝑏𝑏 (11)  

where 𝚤𝚤(̅𝑠𝑠) is the current in the Laplace domain,  𝑛𝑛 is the Faraday constant and 𝑐𝑐𝑘𝑘𝑏𝑏 

the bulk concentration of 𝑘𝑘. The semi-infinite boundary condition (eq. 10) dictates 
that 𝐵𝐵(𝑠𝑠) = 0, and the other boundary condition (eq. 9) determines the value of the 
coefficient 𝐴𝐴(𝑠𝑠). The final solution is 
 

𝑐𝑐�̅�𝑘(𝑠𝑠, 𝑥𝑥) =
𝑐𝑐𝑘𝑘𝑏𝑏

𝑠𝑠
±

𝚤𝚤(̅𝑠𝑠)
𝑛𝑛𝑛𝑛𝐷𝐷𝑘𝑘𝜆𝜆𝑘𝑘

e−𝜆𝜆𝑘𝑘𝑜𝑜 (12)  

where the sign of the current depends on whether 𝑘𝑘 is oxidized or reduced. 
 
On the other hand, the Butler-Volmer equation for (ii) states that 

 𝑖𝑖
𝑛𝑛𝑛𝑛

= 𝑘𝑘𝑡𝑡𝑜𝑜𝑐𝑐R𝑠𝑠 − 𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑𝑐𝑐O𝑠𝑠  (13)  

where 𝑘𝑘𝑡𝑡𝑜𝑜 = 𝑘𝑘0𝑒𝑒(1−𝛼𝛼)𝑓𝑓𝑓𝑓 and 𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑 = 𝑘𝑘0𝑒𝑒𝛼𝛼𝑓𝑓𝑓𝑓, 𝑓𝑓 = 𝑛𝑛𝑛𝑛/𝑅𝑅𝑅𝑅, 𝜂𝜂 = 𝐸𝐸 − 𝐸𝐸𝑟𝑟𝑒𝑒, and the subscript 

s represents electrode surface (𝑥𝑥 = 0). The linearization of eq. (13) yields 
 Δ𝚤𝚤(̅𝑠𝑠)

𝑛𝑛𝑛𝑛
= 𝑘𝑘𝑡𝑡𝑜𝑜Δ𝑐𝑐R𝑠𝑠(𝑠𝑠)− 𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑Δ𝑐𝑐O𝑠𝑠 (𝑠𝑠) + (1 − 𝛼𝛼)𝑓𝑓𝑘𝑘𝑡𝑡𝑜𝑜𝑐𝑐R𝑠𝑠Δ𝐸𝐸� + 𝛼𝛼𝑓𝑓𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑𝑐𝑐OsΔ𝐸𝐸� (14)  

Calculating the surface concentration changes with eq. (12), and introducing them 
into eq. (14) leads to 

                                                
1 Use trial function 𝑐𝑐�̅�𝑘 = e𝜆𝜆𝑜𝑜 to the homogeneous form of the equation and determine the roots 
of the resulting characteristic equation. The solution is the sum of the homogeneous solution 
and the particular solution.  
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 Δ𝚤𝚤(̅𝑠𝑠)
𝑛𝑛𝑛𝑛

= −𝑘𝑘𝑡𝑡𝑜𝑜
Δ𝚤𝚤(̅𝑠𝑠)

𝑛𝑛𝑛𝑛�𝑠𝑠𝐷𝐷R
− 𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑

Δ𝚤𝚤(̅𝑠𝑠)
𝑛𝑛𝑛𝑛�𝑠𝑠𝐷𝐷O

+ [(1 − 𝛼𝛼)𝑘𝑘𝑡𝑡𝑜𝑜𝑐𝑐R𝑠𝑠 + 𝛼𝛼𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑𝑐𝑐O𝑠𝑠 ]
𝑛𝑛𝑛𝑛
𝑅𝑅𝑅𝑅

Δ𝐸𝐸� (15)  

 
Rearranging these terms shows us the equation for the faradic impedance: 
 

𝑍𝑍𝑓𝑓(𝑠𝑠) =
Δ𝐸𝐸�(𝑠𝑠)
Δ𝚤𝚤(̅𝑠𝑠) =

𝑅𝑅𝑅𝑅
𝑛𝑛2𝑛𝑛2𝐴𝐴

1
(1 − 𝛼𝛼)𝑘𝑘𝑡𝑡𝑜𝑜𝑐𝑐R𝑠𝑠 + 𝛼𝛼𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑𝑐𝑐O𝑠𝑠

�1 +
𝑘𝑘𝑡𝑡𝑜𝑜
�𝑠𝑠𝐷𝐷R

+
𝑘𝑘𝑟𝑟𝑟𝑟𝑑𝑑
�𝑠𝑠𝐷𝐷O

� (16)  

The first term inside the brackets of eq. (16) is the charge transfer resistance. The 
second and third represent together the response from mass transfer, and the imped-
ance element is named after the German scientist Emil Warburg (1846-1931). Thus, 
the faradic impedance consists two elements, charge transfer resistance and the War-
burg element, connected in series. This circuit, known as the Randles circuit, is 
shown in Figure 2. 

 
Figure 2. The Randles circuit. 

 
The potential dependence of the charge transfer resistance and the Warburg element 
can be expressed by the following equations: 

 𝑅𝑅𝑐𝑐𝑗𝑗 =
𝑅𝑅𝑅𝑅

𝑛𝑛2𝑛𝑛2𝐴𝐴𝑘𝑘0�𝑐𝑐R,0 + 𝜉𝜉𝑐𝑐O,0�
1 + 𝜉𝜉𝜉𝜉
𝜉𝜉1−𝛼𝛼

 (17)  

 
 

𝑊𝑊 =
𝑅𝑅𝑅𝑅

𝑛𝑛2𝑛𝑛2𝐴𝐴�𝑐𝑐R,0 + 𝜉𝜉𝑐𝑐O,0��𝐷𝐷O√2𝜔𝜔
(1 + 𝜉𝜉𝜉𝜉)2

𝜉𝜉
(1 − 𝑗𝑗) (18)  

where 𝜉𝜉 = �𝐷𝐷O 𝐷𝐷R⁄ , 𝜉𝜉 = exp�(𝑛𝑛𝑛𝑛 𝑅𝑅𝑅𝑅⁄ )�𝐸𝐸 − 𝐸𝐸0′�� and 𝑠𝑠 = 𝑗𝑗𝜔𝜔 have been used. Here it is 

assumed that the surface concentrations follow the Nernst equation. The error from 
this assumption causes is relatively small, especially when the system is studied near 
the equilibrium potential. 
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3 Experimental 

Again, we concentrate on the redox-reaction of iron (trace-ion) 
 

Fe3+ + e−
 𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
⇌

 𝑘𝑘𝑜𝑜𝑜𝑜
Fe2+ (i) 

which takes place on a glassy carbon electrode. 
 
A solution of 2.5 mmol/L FeCl3 and 2.5 mmol/L FeCl2 in 0.5 mol/L HCl is prepared to 
a 100 mL volumetric flask. The cell is filled half-full with the solution, and a glassy 
carbon working electrode (GC, d = 0.5 cm), a Pt counter electrode, and a saturated 
calomel reference electrode (SCE) are placed in the cell, and connected to a potenti-
ostat according to the instructions of the assistant. N2 gas purge is used to remove 
oxygen from the cell. The impedance is measured from 100 kHz to 1 Hz in different 
potentials ( e.g. -0.16, -0.06, 0, 0.06, 0.16 V vs. Eeq). 
 
 

4 Results 

Use the Matlab script provided by the assistant to fit your results into an equivalent 
circuit. Show the measured impedance plots in a Nyquist form along with the fit re-
sults. Show how the relevant parameters in your equivalent circuit change with the 

potential. Fit your fitted 𝑅𝑅𝑐𝑐𝑗𝑗 and 𝑊𝑊 values to eqs. 17 and 18 to obtain values for the 
standard rate coefficient and the diffusion coefficients. Compare your results with 
any literature values you can find. 
 
Homework: Show that the impedance of an EC circuit (Randles circuit without the 
Warburg element) results in a semicircle, when plotted in a Nyquist plot. 
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