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Linear Model

Consider a linear statistical model

yt = β1 + β2xi2 + ...+ βK xiK + εi

or
yi = x 0i β+ εi .

We can write the model using matrix notation and stack all the
observations to write

y = X β+ ε, (1)

where y and ε are N-dimensional vectors and X is of dimension
N �K .
The OLS estimator of β has some important properties (it is unbiased
and the best linear unbiased estimator (BLUE)). To obtain these
properties, we have to make some assumptions about the error term
εi and the explanatory variables xi :

the so-called Gauss-Markov assumptions, and
the assumption that the disturbances εi are normally distributed.
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Assumptions of the Classical Linear Regression Model

1 Linearity: yt = β1 + β2xi2 + ...+ βK xiK + εi .

2 Full rank: The N �K sample data matrix X has full column rank.
3 Exogeneity of the independent variables: E [εi jxj1, xj2, ..., xjK ] = 0,
i , j = 1, ...,N. There is no correlation between the the disturbances
and the independent variables.

4 Homoskedasticity and nonautocorrelation: Each disturbance, εi , has
the same �nite variance, σ2, and is uncorrelated with every other
disturbance, εj , conditional on x .

5 Stochastic or nonstochastic data: fxi1, xi2, ..., xNK g, i = 1, ...,N.
6 Normal distribution: The disturbances are normally distributed.
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Gauss-Markov Assumptions

1 E [εi ] = 0; i = 1, ...,N : The expected value of the error term is zero,
which means that, on average, the regression line should be correct.

2 fε1, ..., εNg and fx1, ..., xNg are independent.
3 V [εi ] = σ2; 8i = 1, ...,N : All error terms have the same variance
(homoskedasticity).

4 Cov [εi , εj ] = 0; 8i , j = 1, ...,N; i 6= j : Zero correlation between
di¤erent error terms that excludes any form of autocorrelation.

Taken together, assumptions 1, 3 and 4 imply that the error terms are
uncorrelated drawings from a distribution with expectation zero and
constant variance σ2.
The essential Gauss-Markov assumptions (1-4) can be summarized as

E [εjX ] = E [εi ] = 0, and (2)

V [εjX ] = V [εi ] = σ2IN , (3)

where IN is the N �N identity matrix.
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Violation of (3)

Both heteroskedasticity and autocorrelation imply that condition (3)
does no longer hold.

Heteroskedasticity arises if di¤erent error terms do not have identical
variances, so that the diagonal elements of the covariance matrix are
not identical.
Autocorrelation almost excessively arises in cases where the data have
a time dimension. It implies that the covariance matrix is nondiagonal
such that di¤erent error terms are correlated. The reason could be
persistence in the unexplained part of the model.

Let us assume that the error covariance matrix can more generally be
written as

V [εjX ] = σ2Ψ. (4)

We obtain (for a given matrix X )

V [bjX ] = V
�
(X 0X )�1X 0εjX

�
= (X 0X )�1X 0V [εjX ]X (X 0X )�1

= σ2(X 0X )�1X 0ΨX (X 0X )�1,

which reduces to the simpler expression σ2(X 0X )�1 if Ψ = IN .
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Alternative BLUE Estimator

We shall derive the best unbiased estimator (b) for β under
assumption (4), assuming Ψ is completely known, by writing

Ψ�1 = P 0P (5)

for some nonsingular square matrix P.

Using (5) it is possible to write:

Ψ =
�
P 0P

��1
= P�1(P 0)�1

PΨP 0 = PP�1(P 0)�1P 0 = I .

Consequently, it holds for the error term vector ε premultiplied by the
transformation matrix P that

E [PεjX ] = PE [εjX ] = 0,
V [PεjX ] = PV [εjX ]P 0 = σ2PΨP 0 = σ2I .
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Alternative BLUE Estimator
(continued)

Thus, Pε satis�es the Gauss-Markov conditions. Consequently, we
can transform the entire model by this P matrix to obtain

Py = PX β+ Pε or y � = X �β+ ε�,

where ε� satis�es the Gauss-Markov conditions.
We know that applying OLS in this transformed model produces the
BLUE estimator for β.
This, therefore is automatically the BLUE estimator for β in the
original model with assumptions (2)-(4):

bβ = �X �0X ���1 X �0y � = �X 0Ψ�1X ��1 X 0Ψ�1y . (6)

It is referred to as the generalized least squares (GLS) estimator, that
reduces to the OLS estimator if Ψ = I . The choice of P is irrelevant,
only Ψ�1 matters.
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Testing Strategy

Heteroskedasticity poses potentially severe problems for inferences
based on OLS.
One can rarely be certain that the disturbances are heteroskedastic
however, and unfortunately, what form the heteroskedasticity takes if
they are.
As such, it is useful to be able to test for homoskedasticity and, if
necessary, modify our estimation procedures accordingly.
Several types of tests have been suggested. They can be roughly
grouped in descending order in terms of their generality and, as might
be expected, in ascending order in terms of their power.
The most commonly used tests (2) are based on the following
strategy. OLS is a consistent estimator of β even in the presence of
heteroskedasticity. As such, the OLS residuals will mimic, albeit
imperfectly because of sampling variability, the heteroskedasticity of
the true disturbances. Therefore, tests designed to detect
heteroskedasticity will, in general, be applied to the OLS residuals.
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White�s Test

To formulate most of the available tests, it is necessary to specify, at
least in rough terms, the nature of the heteroskedasticity. It would be
desirable to be able to test a general hypothesis of the form

H0 : σ2i = σ2 for all i ,

H1 : Not H0.

Such a test has been suggested by White (1980). The correct
covariance matrix for the least squares estimator is

V [bjX ] = σ2
�
X 0X

��1 �X 0ΩX � �X 0X ��1 ,
which can be estimated using White heteroskedasticity consistent
estimator

Est. Asy. V [b] =
1
N

�
1
N
X 0X

��1  1
N

N

∑
i=1

ε2i xix
0
i

!�
1
N
X 0X

��1
= N

�
X 0X

��1 S0(X 0X )�1.
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White�s Test
(continued)

The conventional estimator is V [b] = s2 [X 0X ]�1 = s2
�

∑N
i=1 xix

0
i

�
.

If there is no heteroskedasticity, then V will give a consistent
estimator of V [bjX ], whereas if there is, then it will not.
A simple operational version of the test is carried out by obtaining
NR2 in the regression of e2i on a constant and all unique variables
contained in x and all the squares and cross products of the variables
in x .
The statistic is asymptotically distributed as χ2P�1, where P-1 is the
number of regressors in the equation, including the constant.
The White test is extremely general. To carry it out, we need not
make any speci�c assumptions about the nature of the
heteroskedasticity.
But, the White test is nonconstructive: if we reject the null
hypothesis, then the result of the test gives no indication of what to
do next.
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The Breusch-Pagan/Godfrey LM Test

The White test is a generalization of the test proposed by Breusch
and Pagan (1980), who have devised a Lagrange multiplier test of the
hypothesis that σ2i = σ2f (α0 + α0zi ), where zi is a vector of
independent variables. The model is homoskedastic if α = 0.
The test can be carried out with a simple regression:

LM =
1
2
explained sum of squares in the OLS of e2i /

�
e 0e/N

�
on zi .

For computational purposes, let Z be the N � P matrix of
observations on (1, zi ), and let g be the vector of observations of
gi = e2i / (e 0e/N)� 1.
Then

LM =
1
2

h
g 0Z

�
Z 0Z

��1 Z 0gi .
Under the null hypothesis of homoskedasticity, LM has a limiting χ2

distribution with degrees of freedom equal to the variables in zi .
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Autocorrelation

Next, we will have a look at another case where V [ε] = σ2I is
violated, viz. when the covariances between di¤erent error terms are
not all equal to zero.

The most relevant example of this occurs when two or more
consecutive error are correlated, and we say that the error term is
subject to autocorrelation or serial correlation.

As long as it can be assumed that E [εjX ] = 0, the consequences of
autocorrelation are similar to those of heteroskedasticity: OLS
remains unbiased, but it becomes ine¢ cient and its standard errors
are estimated in the wrong way.

Autocorrelation normally occurs only when using time series data. To
stress this, we shall follow the literature and index the observations
from t = 1, 2, ...,T rather than from i = 1, 2, ...,N. The important
di¤erence is that now the order of the observations does matter and
the index re�ects a natural ordering.
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Autocorrelation
(continued)

Economic time series often display a �memory� in that variation
around the regression function is not independent from one period to
the next.
The seasonally adjusted price and quantity series published by
government agencies are examples.
Time series data are usually homoskedastic, so
E [εε0jX ] = V [εjX ] = σ2Ω = Σ might be

σ2Ω = Σ =

2664
1 ρ1 ... ρT�1
ρ1 1 ... ρT�2

ρT�1 ρT�2 ... 1

3775 .
The values that appear o¤ the diagonal depend on the model used for
the disturbances. In most cases, consistent with the notion of fading
memory, the values decline as we move away from the diagonal.
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Autocorrelation
(continued)

In general, the error term εt picks up the in�uence of those variables
a¤ecting the dependent variables that have not been included in the
model.
There are alternative estimation approaches that can make better use
of the characteristics (e.g., autocorrelation) of the models. In some
cases only minimal assumption about Ω are needed.
Tests for autocorrelation are very often interpreted as misspeci�cation
tests. Incorrect functional forms, omitted variables and an inadequate
dynamic speci�cation of the model may all lead to �ndings of
autocorrelation.
It is also possible to formulate parametric models that make speci�c
assumptions about Ω. Estimators in this setting are some form of
generalized least squares or maximum likelihood.
There are many forms of autocorrelation and each one leads to a
di¤erent structure for the error covariance matrix V [ε].
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First Order Autocorrelation

The most popular form is known as the �rst-order autoregressive
process. In this case the error term in

yt = x 0tβ+ εt (7)

is assumed to depend upon its predecessor as follows

εt = ρεt�1 + υt , (8)

where υt is an error term with mean zero and constant variance σ2υ
that exhibits no serial correlation.
The parameters ρ and σ2υ are typically unknown, and, along with β we
may wish to estimate them.
To derive the covariance matrix of the error term vector ε, we need to
make an assumption about the distribution of the initial period error,
ε1. Most commonly, it is assumed that ε1 is mean zero with the same
variance as all other εts.
This is consistent with the idea that the process has been operating
for a long period in the past and that jρj < 1.
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First Order Autocorrelation
(continued)

When the condition jρj < 1 is satis�ed we say that the �rst-order
autoregressesive process is stationary.

De�nition
A stationary process is such that the mean, variance and covariances of εt
do not change over time.

Imposing stationarity it easily follows from

E [εt ] = ρE [εt�1] + E [υt ]

that E [εt ] = 0. Further from

V [εt ] = V [ρεt�1 + υt ] = ρ2V [εt�1] + σ2υ,

we obtain that the variance of εt , denoted as σ2ε , is given by

σ2ε = V [ε] =
σ2υ

1� ρ2
.

Kahra (HSE) 30E00700 Spring 2008, First Period 16 / 31



First Order Autocorrelation
(continued)

The nondiagonal elements in the variance-covariance matrix of ε
follow from

cov [εt , εt�1] = E [εt εt�1] = ρE
�
ε2t�1

�
+ E [εt�1υt ] = ρ

σ2υ
1� ρ2

.

The covariance between error terms two periods apart is

cov [εt , εt�2] = E [εt εt�2] = ρE [εt�1εt�2] + E [εt�2υt ] = ρ2
σ2υ

1� ρ2
.

In general we have, for non-negative values of s,

E [εt εt�s ] = ρs
σ2υ

1� ρ2
.
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First Order Autocorrelation
(continued)

Looking at (7) and (8), it is immediately apparent which
transformation is appropriate.

Because εt = ρεt�1 + υt , where υt satis�es the Gauss-Markov
condition, it is obvious that a transformation like εt � ρεt�1 will
generate homoskedastic non-autocorrelated errors.

That is, all observations should be transformed as yt � ρyt�1 and
xt � ρxt�1. Consequently, the transformed model is given by

yt � ρyt�1 = (xt � ρxt�1)0β+ υt , t = 2, 3, ...,T .

Because the transformed model satis�es the Gauss-Markov conditions,
estimation with OLS yields the GLS estimator, assuming ρ is known.
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Unknown Correlation

In practise it is uncommon that the value of ρ is known. In that case
we have to estimate it. Starting from the AR(1) model

εt = ρεt�1 + υt ,

where υt satis�es the usual assumptions, it seems natural to estimate
ρ from a regression of the OLS residual et on et�1.

The resulting OLS estimator for ρ is given by

bρ =  T

∑
t=2
e2t�1

!�1  T

∑
t=2
etet�1

!
.

While this estimator for ρ is typically biased, it is a consistent
estimator for ρ under weak regularity conditions. If we use bρ instead
of ρ to compute the feasible GLS (FGLS) estimator bβ�, the BLUE
property is no longer retained.
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Unknown Correlation
(continued)

Under the same conditions as before, it holds that the FGLS estimatorbβ� is asymptotically equivalent to the GLS estimator bβ. This means
that for large sample sizes we can ignore the fact that ρ is estimated.
A related estimation procedure is the so-called iterative
Cochrane-Orcutt (1949) procedure.

In this procedure ρ and β are recursively estimated under convergence,
i.e. having estimated β with FGLS (by bβ�), the residuals are
recomputed and ρ is estimated again using the residuals from the FGLS
step.
With this new estimate of ρ, FGLS is applied again and one obtains a
new estimate of β.
This procedure goes on until convergence, i.e. until both the estimate
for ρ and the estimate for β do not change anymore.

Unlike the heteroskedastic model, iterating when there is
autocorrelation does not, however, produce the maximum likelihood
(ML) estimator.
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Unknown Correlation
(continued)

Maximum likelihood estimators can be obtained by maximizing the
log-likelihood with respect to β, σ2e and ρ.

The log-likelhood function may be written

lnL = �∑T
t=1 e

2
t

2σ2e
+
1
2
ln
�
1� ρ2

�
� T
2

�
ln 2π + ln σ2e

�
.

In practice, maximum likelihood estimators are probably the most
common choices.
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Testing for First Order Autocorrelation

When ρ = 0 no autocorrelation is present and OLS is BLUE. If ρ 6= 0
inferences based on the OLS estimator will be misleading because
standard errors will be based on the wrong formula.

Therefore, it is common practice with time series data to test for
autocorrelation in the error term.

Suppose we want to test for the �rst order autocorrelation indicated
by ρ 6= 0 in (8).
Next, we will examine alternative tests for autocorrelation. The �rst
set of tests are relatively simple and based on asymptotic
approximations, while the last test has a known small sample
distribution.
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Asymptotic Tests

The OLS results from (7) provide useful information about the
possible presence of serial correlation in the equation�s error term.

An intuitively appealing starting point is to consider the regression of
the OLS residual et upon its lag et�1. This regression may be done
with or without an intercept term.

The auxiliary regression not only produces an estimate for the �rst
order autocorrelation coe¢ cient, bρ, but also routinely provides a
standard error to this estimate.

In the absence of lagged dependent variables in (7), the corresponding
t-test is asymptotically valid. In fact, the resulting test statistic can
be shown to be approximately equal to

t �
p
Tbρ,

which provides an alternatively way of computing the test statistic.
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Asymptotic Tests
(continued)

Consequently, at the 5% signi�cance level we reject the null
hypothesis of no autocorrelation against a two sided alternative if
jtj > 1.96.
If the alternative hypothesis is positive autocorrelation (ρ > 0), which
is often expected a priori, the null hypothesis is rejected at the 5%
level if t > 1.64.

Another alternative is based upon the R2 of the auxiliary regression
(including an intercept term). If we take the R2 of this regression and
multiply it by the e¤ective number of observations T � 1 we obtain a
test statistic that, under the null hypothesis, has a χ2 distribution
with one degree of freedom.

Clearly an R2 close to zero in this regression implies that lagged
residuals are not explaining current residuals and a simple way to test
ρ = 0 is by computing (T � 1)R2.
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Asymptotic Tests
(continued)

This test is a special case of the Breusch (1978)�Goodfrey (1978)
Lagrange multiplier test and is easily extended to higher orders of
autocorrelation (by including additional lags of the residuals and
allowing for ether an AR(p) or an MA(q) process in the residuals.
The test is a Lagrange multiplier test of H0: no autocorrelation versus
H1: ε1 = AR(p) or ε1 = MA(p). The same test is used for either
structure. The test statistic is

LM = T

 
e 0X0 (X 00X0)

�1 X 00e
e 0e

!
= TR20 ,

where X0 is the original X matrix augmented by P additional columns
containing the lagged OLS residuals, et�1, ..., et�p .
The test can be carried out simply by regressing the OLS residuals et
on xt0 (�lling in missing values for lagged residuals with zeros) and
referring TR20 to the tabled critical value for the χ2 distribution with
p degrees of freedom.
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D-W Test

The Durbin-Watson (1950) statistic was the �rst formal procedure
developed for testing for autocorrelation using the OLS residuals. The
test statistic is

d =
∑T
t=2(et � et�1)2

∑T
t=1 e

2
t

= 2(1� ρ)� e
2
1 + e

2
T

∑T
t=1 e

2
t
.

If the sample is reasonably large, then the last term will be negligible,
leaving d � 2 (1� ρ).

Usable critical values depend on T (sample size) and K (number of
variables in the regression) and the tables are presented at the end of
many econometrics books.

The true critical value dcrit is between the bounds that are tabulated,
that is dL < dcrit < dU . Under H0 we thus have that (at the 5% level)

P (d < dL) � P (d < dcrit ) = 0.05 � P (d < dU ) .
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D-W Test
(continued)

As a rule of thumb, a value d � 2 is an indication of ρ = 0 in the
OLS residuals. Values substantially less than 2 are an indication of
positive autocorrelation, corresponding to bρ > 0.
For a one-sided test against positive autocorrelation, there are three
possibilities:

1 d is less than dL. In this case, it is certainly lower than the true critical
value dcrit , so you would reject H0.

2 d is larger than dU . In this case, it is certainly larger than dcrit and you
would not reject H0.

3 d lies between dL and dU . In this case it might be larger or smaller
than the critical value. Because you cannot tell which, you are unable
to accept or reject H0. This is the so-called �inconclusive region�.

The existence of the inconclusive region and the requirement that the
Gauss-Markov conditions, including normality of the error terms, are
satis�ed are important drawbacks of the Durbin-Watson test.

Kahra (HSE) 30E00700 Spring 2008, First Period 27 / 31



Box-Pierce and Ljung-Box Tests

An alternative test that is asymptotically equivalent to the LM test
when the null hypothesis, ρ = 0, is true and when X does not contain
lagged values of y is due to Box and Pierce (1970).

The Q test is carried out by referring

Q = T
p

∑
j=1
r2j ,

where rj =
�

∑T
t=j+1 etet�j

�
/
�

∑T
t=1 e

2
t

�
, to the critical values of the

χ2 table with p degrees of freedom.

A re�nement suggested by Ljung and Box (1979) is

Q 0 = T (T + 2)
p

∑
j=1

r2j
T � j .
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Newey-West Autocorrelation Consistent Covariance
Estimator

Let us consider the basic model

yt = x 0tβ+ εt ,

where εt is subject to autocorrelation.
We can choose to apply the GLS approach or apply ordinary OLS
while adjusting its standard errors. The latter is particularly useful
when the correlation between εt and εt�s can be argued to be
(virtually) zero after some lag length H and/or when the conditions
for consistency of the GLS estimator happen to be violated.
If E [xt εt ] = 0 and E [εt εt�s ] = 0 for s = H,H + 1, ..., the OLS
estimator is consistent and its covariance matrix can be estimated by

bV �[b] =  T

∑
t=1
xtx 0t

!�1
TS�

 
T

∑
t=1
xtx 0t

!�1
. (9)
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Newey-West Autocorrelation Consistent Covariance
Estimator
(continued)

S� is de�ned by

S� =
1
T

T

∑
t=1
e2t xtx

0
t +

1
T

H�1
∑
j=1

wj
T

∑
s=j+1

eses�j
�
xsx 0s�j + xs�jx

0
s

�
.

We will obtain the so-called White covariance matrix if wj = 0, so
that (9) is a generalization. In the standard case wj = 1, but this may
lead to an estimated covariance matrix in �nite samples that is not
positive de�nite.
To prevent this, it is common to use Bartlett weights, as suggested by
Newey and West (1987). These weights decrease linearly with j as
wj = 1� j/H.
The use of such as set of weights is compatible with the idea that the
impact of the autocorrelation of order j diminishes with jj j.
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Newey-West Autocorrelation Consistent Covariance
Estimator
(continued)

Standard errors computed from (9) are referred to as
heteroskedasticity-and-autocorrelation-consistent (HAC) standard
errors or simply Newey-West standard errors.

These kind of estimators are now standard features in modern
statistical and econometrics computer programs.1

There is a �nal problem to be solved. It must be determined in
advance how large H is to be. In general, there is little theoretical
guidance. Current practice speci�es H � T 1/4.

1The sandwich package in R contains procedures for heteroskedasticity-consistent
(HC) and heteroskedasticity-and-autocorrelation-consistent (HAC) covariance matrix
estimation.
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