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Preamble

Two of the cornerstones of econometrics are the so-called linear regression model and the ordinary
least squares (OLS) estimation method.

1 An Introduction to Linear Regression

1.1 Ordinary Least Squares as an Algebraic Tool

1.1.1 Ordinary least squares

Suppose we have a sample with N observations on individual wages and some background characteristics.
Our main interest lies in the question as to how in this sample wages are related to the other observations.
In this example, wages are functions of the underlying characteristics. Similarly, equity returns are func-
tions of companany characteristics, e.g. the size of the company, the book to market ratio, dividend yield,
price-earnings ratio, etc.

Let’s denote wages by y and the K − 1 characteristics by x2, . . . ,xK . Now, we may ask the question:
which linear combination of x2, . . . ,xK and a constant gives a good approximation (fit) of y? To answer
the question, first consider an arbitrary linear combination, including a constant, which can be written as

β̃1 + β̃2x2 + . . .+ β̃KxK ,

where β̃1, . . . , β̃K are constants (parameters) to be choosen. Let’s index the observations by i such that
i= 1, . . . ,N. Now, the difference between an observed value yi and its linear approximation (fit) is

yi−
[
β̃1 + β̃2xi2 + . . .+ β̃KxiK

]
. (1)

We simplify using vector notation. First, we collect the x -values for individual i in a vector xi, which in-
cludes the constant. That is

xi = (1 xi2 xi3 . . .xiK)
′
.

Collecting the β̃coefficients in a K -dimensional vector β̃ =
(
β̃1, . . . , β̃K

)′
we can briefly write (1) as

yi−x
′
iβ̃.

Clearly, we would like to choose values for β̃1, . . . , β̃K such that these differences are small. Although dif-
ferent measures can be used to define what we mean by ’small’, the most common approach is to choose β̃
such that the sum of squared differences is as small as possible. In this case we determine β̃ to minimize
the objective function S

(
β̃
)

:

min
β̃
S
(
β̃
)

=
N∑
i=1

(
yi−x

′
iβ̃
)2
. (2)

That is, we minimize the sum of squared approximation errors. This approach is referred to as the ordi-
nary least squares or OLS approach. Taking squares makes sure that positive and negative deviations
do not cancel out when taking the summation.
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To solve the minimization problem, we consider the first-order conditions, obtained by differentiating
S
(
β̃
)

with respect to the vector β̃. This gives the following system of K conditions:

−2
N∑
i=1

xi

(
yi−x

′
iβ̃
)

= 0

or (
N∑
i=1

xix
′
i

)
β̃ =

N∑
i=1

xiyi.

These equations are sometimes referred to as normal equations. As this system has K unknows, one can

obtain a unique solution to β̃ provided that the symmetrix matrix
∑N
i=1xix

′
i which contains the sum of

squares and cross products of the regressors xi, can be inverted. For the moment, we shall assume that
this is the case. The solution to the minimazation problem, which we shall denote by b (or usually by β̂),
is then given by

b=
(

N∑
i=1

xix
′
i

)−1 N∑
i=1

xiyi. (3)

By checking the second-order conditions, it is easily verified that b indeed corresponds to a minimum of
(2).

The resulting linear combination of xi is thus given by

ŷi = x
′
ib,

which is the best linear approximation of y from x2, . . . ,xK and a constant. The phrase ’best’ refers to
the fact that the sum of squared differences between the observed values yi and fitted values ŷi is minimal
for the least squares solution b.

In deriving the linear approximation, we have not used any economic or statistical theory. It is simply
an algebraic tool and it holds irrespective of the way the data are generated. That is, given a set of vari-
ables we can always determine the best linear approximation of one variable using the other variables.

Defining a residual ei as the difference between the observed and the approximated value, ei = yi− ŷi =
yi−x

′
ib, we can decompose the observed yi as

yi = ŷi+ei = x
′
ib+ei.

This allows us to write the minimum value for the objective function as

S (b) =
N∑
i

e2
i ,

which is referred to as the residual sum of squares.

1.1.2 Simple linear regression

In the case where K = 2 we only have one regressor and a constant. In this case, the observations (yi,xi)
can be drawn in a two-dimensional graph with x -values on the horizontal axis and y-values on the verti-
cal one. This is done for the US National Longitudial Survey (NLS) that relates to 1987, and we have a
sample of 3294 young working individuals, of which 1569 are female.1

> my.data <- read.table("H:/721364P/Rdata/wages1.dat", header=T)

> head(my.data)

1The data for this example are available as WAGES1.DAT, and it is taken from Marno Verbeek (2012), A Guide to Mod-
ern Econometrics, 4th edition, John Wiley & Sons.
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EXPER MALE SCHOOL WAGE

1 9 0 13 6.315296

2 12 0 12 5.479770

3 11 0 11 3.642170

4 9 0 14 4.593337

5 8 0 14 2.418157

6 9 0 14 2.094058

> tail(my.data)

EXPER MALE SCHOOL WAGE

3289 5 1 8 5.512004

3290 6 1 9 4.287114

3291 5 1 9 7.145190

3292 6 1 9 4.538784

3293 10 1 8 2.909113

3294 7 1 7 4.153974

> attach(my.data)

> summary(my.data)

EXPER MALE SCHOOL WAGE

Min. : 1.000 Min. :0.0000 Min. : 3.00 Min. : 0.07656

1st Qu.: 7.000 1st Qu.:0.0000 1st Qu.:11.00 1st Qu.: 3.62157

Median : 8.000 Median :1.0000 Median :12.00 Median : 5.20578

Mean : 8.043 Mean :0.5237 Mean :11.63 Mean : 5.75759

3rd Qu.: 9.000 3rd Qu.:1.0000 3rd Qu.:12.00 3rd Qu.: 7.30451

Max. :18.000 Max. :1.0000 Max. :16.00 Max. :39.80892

> m1 <- lm(WAGE~MALE)

> summary(m1)

Call:

lm(formula = WAGE ~ MALE)

Residuals:

Min 1Q Median 3Q Max

-6.160 -2.102 -0.554 1.487 33.496

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.14692 0.08122 63.37 <2e-16 ***

MALE 1.16610 0.11224 10.39 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.217 on 3292 degrees of freedom

Multiple R-squared: 0.03175, Adjusted R-squared: 0.03145

F-statistic: 107.9 on 1 and 3292 DF, p-value: < 2.2e-16

The best linear approximation of y (salary) from x (gender) and a constant is obtained by minimizing
the sum of squared residuals, which – in the two-dimensional case – equal the vertical distances between
an observation and the fitted value. All fitted values are on a straight line, the regression line.

Because a 2× 2 matrix can be inverted analytically, we can derive solutions for b1 and b2 in this special
case from the general expression for b above. Equivalently, we can minimize the residual sum of squares
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Figure 1: Simple linear regression: fitted line and observation points
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with respect to the unkowns directly. Thus we have

S
(
β̃1, β̃2

)
=

N∑
i=1

(
yi− β̃i− β̃2xi

)2
.

The basic elements in the derivation of the OLS solutions are the first-order conditions

∂S
(
β̃1, β̃2

)
∂β̃1

=−2
N∑
i=1

(
yi− β̃i− β̃2xi

)
= 0 (4)

∂S
(
β̃1, β̃2

)
∂β̃2

=−2
N∑
i=1

xi
(
yi− β̃i− β̃2xi

)
= 0 (5)

From (4) we can write

b1 = 1
N

N∑
i=1

yi− b2
1
N

N∑
i=1

xi = ȳ− b2x̄, (6)

where b2is solved from (5) and (6). First, from (5) we write

N∑
i=1

xiyi− b1
N∑
i=1

xi−

(
N∑
i=1

x2
i

)
b2 = 0

and then substitute (6) to obtain

N∑
i=1

xiyi−Nx̄ȳ−

(
N∑
i=1

x2
i −Nx̄2

)
b2 = 0

such that we can solve for the slope coefficient b2 as

b2 =
∑N
i=1 (xi− x̄)(yi− ȳ)∑N

i=1 (xi− x̄)2 .

By dividing both numerator and denominator by N − 1 it appears that the OLS solution b2 is the ratio
of the sample covariance between x and y and the sample variance of x. From (6), the intercept is deter-
mined so as to make the average approximation error (residual) equal to zero.

1.1.3 Example: Individual wages

The following examples are based on a sample of individual wages with background characteristics, like
gender, race and years of schooling. The average hourly wage rate in this sample equals $6.31 for males
and $5.15 for females. Now suppose we try to approximate wages by a linear combination of a constant
and a (binary) 0−1 variable denoting whether the individual is male or not. That is, xi = 1 if individual i
is male and zero otherwise. Such a variable, which can only take on the values of zero and one, is called a
dummy variable. Using the OLS approach the result is

ŷi = 5.15 + 1.17xi.

This means that for females our best approximation is $5.15 and for males it is $5.15+$1.17 = $6.31. It is
not a coincidence that these numbers are exactly equal to the sample means in the two subsamples. It is
easily verified from the results above that

b1 = ȳi

b2 = ȳm− ȳf ,

where ȳm is the sample average of the wage for males, and ȳf is the average for females.
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1.1.4 Matrix notation

Using matrices, deriving the least squares solution is fasterm but it requires some knowledge of matrix dif-
ferential calculus. We introduce the following notation:

X =

 1 x12 · · · x1K
...

...
. . .

...
1 xN2 · · · xNK

=

 x
′
1
...

x
′
N

 , y =

 y1
...
yN

 .
So, in the N ×K matrix X the ith row refers to observation i, and the kth column refers to the kth ex-
planatory variable (regressor).

The criterion to be minimized can be rewritten in matrix notation using the fact that the inner product
of a given vector a with itself (a′a) is the sum of its squared elements. That is,

S
(
β̃
)

=
(
y−Xβ̃

)′ (
y−Xβ̃

)
= y′y−2y′Xβ̃+ β̃′X ′Xβ̃,

from which the least squares solution follows from differentiating with respect to β̃ and setting the result
to zero:

∂S
(
β̃
)

∂β̃
=−2

(
X ′y−X ′Xβ̃

)
= 0. (7)

Solving (7) gives the OLS solution

b=
(
X ′X

)−1
X ′y

which is exactly the same as the one derived in (3). Here we assume that X ′X is invertible, i.e. that there
is no exact (or perfect) multicollinearity.

As before, we can decompose y as
y =Xb+e,

where e is an N -dimensional vector of residuals.

1.2 The Linear Regression Model

Usually, economists want more than just finding the best linear approximation of one variable given a set
of others. They want economic relationships that are more generally valid than the sample they happen to
have. They want to draw conclusions about what happens if one of the variables actually changes. That
is: they want to say something about things that are not observed (yet). In this case, we want the rela-
tionship that is found to be more than just a historical coincidence; it should reflect a fundamental rela-
tionship. To do this it is assumed that there is a general relationship that is valid for all possible observa-
tions from a well-defined population. Restricting attention to linear relationships, we specify a statistical
model as

yi = β1 +β2xi2 + . . .βKxiK +εi

or
yi = x

′
iβ+εi, (8)

where yi and xi are observable variables and εi is unobserved and referred to as an error term or distur-
bance term. The elements of β are unknown population parameters. The equality in (8) is supposed to
hold for any possible observation, while we only observe a sample on N observations.

We shall consider this sample as one realization of all possible samples of size N that could have been
drawn from the same population. In this way we can view yi and εi (and often xi) as random variables.
Each observation corresponds to a realization of these random variables. Again we can use matrix notation
and stack all observations to write

y =Xβ+ε, (9)

where y and ε are N -dimensional vectors and X, as before, is of dimension N ×K. Equations (8) and (9)
are population relationships, where β is a vector of unknown parameters characterizing the population.
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We need to impose some assumptions to give the model a meaning. A common assumption is the ex-
pected value of εi given all the explanatory variables in xi is zero, that is E {εi|xi} = 0. Usually, people
refer to this assumption by saying that the x variable is exogenous. Under this assumption it holds that

E {yi|xi}= x
′
iβ,

so that the regression line x
′
iβ describes the conditional expectation of yi given the values for xi. The coef-

ficients βk measure how the expected value of yi is affected if the value of xk is changed, keeping the other
elements in xi constant. This is referred to as the ceteris paribus condition.

Now that our β coefficients have a meaning, we can try to use the sample (yi,xi) i = 1, . . .N , to say
something about them. The rule that says how a given sample is translated into an approximate value for
β is referred to as an estimator. The result for a given sample is called an estimate (usually denoted

as β̂ or b). The estimator is a vector of random variables, because the sample changes, while the estimate
is a vector of numbers. The most widely used estimator in econometrics is the ordinary least squares
(OLS) estimator. The OLS estimator is given by

b=
(

N∑
i=1

xix
′
i

)−1 N∑
i=1

xiyi.

1.3 Small Sample Properties of the OLS Estimator

1.3.1 The Gauss-Markov assumptions

Whether or not the OLS estimator b provides a good approximation to the unknown parameter vector β
depends crucially upon the assumptions that are made about the distribution of εi and its relation to xi.
A standard case in which the OLS estimator has good properties is characterized by the Gauss-Markov
conditions. They constitute a simple case in which the small sample properties of b are easily derived.

For the linear regression model, given by

yi = x
′
iβ+εi

the Gauss-Markov conditions are

E {εi}= 0, for i= 1, . . . ,N (10)

{ε1, . . . ,εN}and{x1, . . . ,xN} are independent (11)

V {εi}= σ2, for i= 1, . . . ,N (12)

cov{εi,εj}= 0, for i, j = 1, . . . ,N, i 6= j. (13)

Assumption (10) says that the expected value of the error term is zero, which means that, on average,
the regression line should be correct. Assumption (12) states that all error terms have the same variance,
which is referred to as homoskedasticity, while assumption (13) imposes zero correlation between differ-
ent error terms. This excludes any form of autocorrelation. Taken together, (10), (12) and (13) imply
that the error terms are uncorrelated drawings from the distribution with expectation zero and constant
variance σ2.

1.3.2 Properties of the OLS estimator

Under assumptions (10)–(13), the OLS estimator b for β has several desirable properties. First of all, it
is unbiased. This means that, in repeated sampling, we can expect that the OLS estimator is on average
equal to the true (and unknown) value β. We formulate this as E {b}= β. It is instructive to see the proof:

E {b} = E
{(
X ′X

)−1
X ′y

}
= E

{
β+

(
X ′X

)−1
X ′ε

}
= β+E

{(
X ′X

)−1
X ′ε

}
= β.

7



The latter step here is essential and it follows from

E
{(
X ′X

)−1
X ′ε

}
= E

{(
X ′X

)−1
X ′
}
E {ε}= 0,

because, from assumption (11), X and ε are independent and, from (10), E {ε}= 0.
In addition to knowing that we are, on average, correct, we would also like to make statements about

how (un)likely it is to be far off in a given sample. This means we would like to know the distribution of b.
First of all, the variance of b (conditional upon X ) is given by

V {b|X}= σ2 (X ′X)−1 = σ2

(
N∑
i=1

xix
′
i

)−1

, (14)

which, for simplicity, we shall denote by V {b} . The K ×K matrix V {b} is a variance-covariance matrix,
containing the variances of b1, b2, . . . , bK on the diagonal and their covariances as off-diagonal elements.
The poof is fairly easy and goes as follows:

V {b} = E
{

(b−β)(b−β)′
}

= E
{(
X ′X

)−1
X ′εε′X

(
X ′X

)−1
}

=
(
X ′X

)−1
X ′
(
σ2IN

)
X
(
X ′X

)−1 = σ2 (X ′X)−1
,

where IN is the N ×N identity matrix. To estimate the variance of b, V {b}, we have to replace the un-
known error variance σ2 with an estimate. An obvious candidate is the sample variance of the residuals

ei = yi−x
′
ib, that is

s̃2 = 1
N −1

N∑
i=1

e2
i

(recalling the average residual is zero). However, because ei different from εi, this estimator is biased for
σ2.An unbiased estimator is given by

s2 = 1
N −K

N∑
i=1

e2
i . (15)

The estimator has a degrees of freedom correction as it divides by the number of observations minus the
number of regressors (including the intercept). The variance of b can thus be estimated by

V̂ {b}= s2 (X ′X)−1 = s2

(
N∑
i=1

xix
′
i

)−1

.

The estimated variance of an element bk is given by s2ckk, where ckk is the (k,k) element in
(∑

ixix
′
i

)−1
.

The square root of this estimated variance is usually referred to as the standard error of bk. We denote
it by se(bk). It is the estimated standard deviation of bk and is a measure for the accuracy of the estima-
tor. When the error terms are not homoskedastic and/or exhibit autocorrelation, the standard error of the
OLS estimator bk will have to be computed in a different way (to be discussed later).

Assumptions (10)–(13) state that the error term εi are mutually uncorrelated, are independent of X,
have zero mean and have constant variance, but do not specify the shape of the distribution. For exact
statistical inference from a given sample of N observations, explicit distributional assumptions have to be
made. The most common assumption is that the errors are jointly normally distributed. In this case the
uncorrelatednes of (13) is equivalent to independence of all error terms. The precise assumption is as fol-
lows:

ε∼N
(
0,σ2IN

)
, (16)

saying that the vector of error terms ε has a N -variate normal disribution with mean vector 0 and covari-
ance matrix σ2IN . An alternative way of formulating (16) is

ε∼NID
(
0,σ2) , (17)

8



which is a shorthand way of saying that the error terms εi are independent drawings from a normal distri-
bution (n.i.d.) with mean zero and variance σ2.

To make things simpler, let’s consider the X matrix as fixed and deterministic or, alternatively, let’s
work conditionally upon the outcomes of X. Then the following result holds. Under assumptions (11) and

(17) the OLS estimator b is normally distributed with mean vector β and covariance matrix σ2 (X ′X)−1
,

i.e.
b∼N

(
β,σ2 (X ′X)−1

)
. (18)

The result in (18) implies that each element in b is normally distributed, for example

bk ∼N
(
βk,σ

2ckk
)
, (19)

where, as before, ckk is the (k, k) element in (X ′X)−1
.These results provide the basis for statistical tests

based upon the OLS estimator b.

1.3.3 Example: Individual wages (continued)

Let’s now turn back to our wage example. We can formulate a (fairly trivial) statistical model as

wagei = β1 +β2malei+εi,

where wagei denotes hourly wage rate for individual i and malei = 1 if i is male and 0 otherwise. Impos-
ing that E {εi} = 0 and E {εi|male} = 0 gives β1 the interpretation of the expected wage rate for females,
while E {wagei|male= 1}= β1 +β2 is the expected wage rate for males. Thus β2 is the expected wage dif-
ferential between an arbitrary male and female. We can now say that our estimate of the expected wage
differential β2 between males and females is $1.17 with a standard error of $0.11. Combined with the nor-
mal distribution, this allows us to make statements about β2. For example, we can test the hypothesis
that β2 = 0. If this hypothesis is true, the wage differential between males and females in our sample is
nonzero only by chance. We’ll discuss hypotheses testing shortly.

1.4 Goodness-of-fit

Having estimated a particular linear model, a natural question that comes up is: how well does the esti-
mated regression line fit the observations? A popular measure for the goodness-of-fit is the proportion of
the (sample) variance of y that is explained by the model. This variable is called the R2 (R squared) and
is defined as

R2 = V̂ (ŷi)
V̂ (yi)

=
1(N −1)

∑N
i=1 (ŷi− ȳ)2

1(N −1)
∑N
i=1 (yi− ȳ)2 , (20)

where ŷi = x
′
ib and ȳi = 1

N

∑
i yi denotes the sample mean of yi. Note that ȳ also corresponds to the sam-

ple mean of ŷi, because for the average observation ȳ = x̄′b.
R2 can be rewritten as

R2 = 1− V̂ {ei}
V̂ {yi}

= 1−
1

N−1
∑N
i=1 e

2
i

1
N−1

∑N
i=1 (yi− ȳ)2 . (21)

In the exceptional cases where the model does not contain an intercapt term, the two expressions for R2

are not equivalent. If there is no intercept, we apply the uncentered R2 which is defines as

uncentered R2 =
∑N

i
ŷ2

i∑N

i=1 y
2
i

= 1−
∑N

i
e2

i∑N

i=1 y
2
i

. (22)

Generally, the uncentered R2 is higher than the standard R2.
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1.4.1 R2

Sometimes R2 is interpreted as a measure of quality of the statistical model, while in fact it measures
nothing more than the quality of the linear approximation. For later use, we’ll present an alternative def-
inition for R2, which for OLS is equivalent to (20) and (21), and for any other estimator is guaranteed to
be between zero and and one. It is given by

R2 = corr2 {yi, ŷi}=
(∑N

i=1(yi−ȳ)(ŷi−ȳ)
)2(∑N

i=1(yi−ȳ)2
)(∑N

i=1(ŷi−ȳ)2
) , (23)

which denotes the squared (sample) correlation coefficient between the actual and fitted values. Written
this way, the R2 can be interpreted to measure how well the variation in ŷi reflects the quality of the lin-
ear approximation and not necessarily that of the statistical model in which we are interested. As a result,
the R2 is typically not the most important aspect of our estimation result.

Another drawback of the R2 is that it will never decrease if the number of regressors is increased, even
if the additional variables have no real explanatory power. A common way to solve this is to correct the
variance estimates in (21) . This gives the so-called adjusted R2, or R̄2,defined as

R̄2 = 1−
1/(N −K)

∑N
i=1 e

2
i

1/(N −1)
∑N
i=1 (yi− ȳ)2 . (24)

The goodness-of-fit measure has some punishment for the inclusion of additional explanatory variables
in the model and therefore does not automatically increase when regressors are added to the model. In
fact, it may decline when a variable is added to the set of regressors. Note that, in extreme cases, the R̄2

is strictly smaller than R2 unless K = 1 and the model only includes an intercept.

1.5 Hypothesis Testing

Under the Gauss-Markov assumptions (10)-(13) and normality of the error term (17), we saw that the

OLS estimator b has a normal distribution with mean β and covariance matrix σ2 (X ′X)−1
. We can use

this result to develop tests for hypotheses regarding the unknown population parameter β. Starting from
(19), it follows that the variable

z = bk−βk
σ
√
ckk

= bk−βk
s.e.(bk)

has a standard normal distribution (i.e., a normal distribution with mean 0 and variance 1, z ∼ N (0,1)).
If we replace the unknown σ by its estimate s, this is no longer exactly true. It can be shown that the un-
biased estimator s2 defined in (15) is independent of b and has a Chi-squared distribution with N −K de-
grees of freedom. In particular,

(N −K)s2/σ2 ∼ χ2
N−K .

Consequently, the random variable

tk = bk−βk
s
√
ckk

= bk−βk̂s.e.(bk)
is the ratio of a standard normal variable and the square root of an independent Chi-squared variable and
therefore follows Student’s t-distribution with N −K degrees of freedom. The t-distribution is close to the
standard normal distribution except that it has fatter tails, particularly when the number of degrees of
freedom N−K is ’small’. The larger the N−K, the more closely the t-distribution resembles the standard
normal, and for sufficiently large N −K the two distributions are identical.

1.5.1 A simple t-test

The result above can be used to construct test statistics and confidence intervals. The general idea of hy-
pothesis testing is as follows. Starting from a given hypothesis, the null hypothesis, a test statistic is
computed that has a known distribution under the assumption that the null hypothesis is valid. Next, it is
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decided whether the computed value of the test statistic is unlikely to come from this distribution, which
indicates that the null hypothesis is unlikely to hold. Let’s illustrate this with an example.

Suppose we have a null hypothesis that specifies the value of βk, say H0 : βk = β0
k, where β0

k is a specific
value chosen by the researcher. If this hypothesis is true, we know that the statistic

tk =
bk−β0

k

s.e.(bk) (25)

has a t-distribution with N −K degrees of freedom. If the null hypothesis is not true, the alternative hy-
pothesis H1 : βk 6= β0

k holds. The quantity in (25) is a test statistic and it is computed from the estimate
bk, its standard error s.e.(bk), and the hypothesized value β0

k under the null hypothesis. If the test statis-
tic realizes a value that is very unlikely under the null distribution, we reject the null hypothesis. In this
case this means very large absolute values for tk. To be precise, one rejects the null hypothesis if the prob-
ability of observing a value of |tk| or larger is smaller than a given significance level α, often 5%. From
this, one can define the critical values tN−K:α/2 using

P
{
|tk|> tN−K:α/2

}
= α.

For N −K not too small, these critical values are only slightly larger than those of the standard normal
distribution, for which the two-tailed critical value for α = 0.05 is 1.96. Consequently, at the 5% level the
null hypothesis will be rejected if

|tk|> 1.96.
The above test is referred to as a two-sided test since the alternative hypothesis allows for values of βk on
both sides of β0

k. Occasionally, the alternative hypothesis is one-sided, for example: the expected wage for
a man is larger than for a woman. Formally, we define the null hypothesis as H0 : βk ≤ β0

k with alternative
H1 : βk > β. Next, we consider the distribution of the test statistic tk at the boundary of the null hypothe-
sis (i.e., under βk =β0

k, as before) and we reject the null hypothesis if tk is too large (note that large values
for bk lead to large values of tk). Large negative values for tk are compatible with the null hypothesis and
do not lead to its rejection. Thus for this one-sided test the critical value is determined by

P {tk > tN−K:α}= α.

Using the standard normal approximation again, we reject the null hypothesis at the 5% level if

tk > 1.64.

Regression packages (R, too) typically report the following t-value:

tk = bk
s.e.(bk) ,

sometimes referred to as the t-ratio, which is the point estimate divided by its standard error. The t-ratio
is the t-statistics one would compute to test the null hypothesis that βk = 0, which may be a hypothesis
that is of economic interest as well. If it is rejected, it is said that ’bk differs significantly from zero’, or
the corresponding variable ’xik has statistically significant impact on y′i. Often we simply say that (the
effect of) ’xik is statistically significant’. Note that, if an economic variable is statistically significant, this
does not necessarily imply that its impact is economically meaningful. Therefore, it is good practice to pay
attention to the magnitude of the coefficients as well as to their statistical significance.

A confidence interval can be defined as the interval of all values for β0
k for which the null hypothesis

βk = β0
k is not rejected by the t-test. Loosely speaking, given the estimate bk and its associated standard

error, a confidence interval gives a range of values which are likely to contain the true value βk. It is de-
rived from the fact that the following inequalities hold with probability 1−α:

−tK−N :α/2 <
bk−βk
s.e.(bk) < tN−K:α/2,

or
bk− tN−K:α/2s.e.(bk)< βk < bk+ tN−K:α/2s.e.(bk) .

11



Consequently, using the standard normal approximation, a 95% condidence interval (setting α = 0.05) for
βk is given by the interval

bk−1.96×s.e.(bk) , bk+ 1.96×s.e.(bk) .

In repeated sampling, 95% of those intervals will contain the true value βk which is a fixed but unknown
number.

1.5.2 Example: Individual wages (continued)

From the results of the previous example we can compute t-ratios and perform simple tests. For exam-
ple, if we want to test whether β2 = 0, we construct the t-statistics as the estimate divided by its stan-
dard error to get t2 = 1.16610/0.11224 = 10.39. Given the large number of observations, the appropriate
t-distribution is virtually identical to the standard normal one, so that the 5% two-tailed critical value is
1.96. This means that we clearly reject the null hypothesis that β2 = 0. That is, we reject that in the US
population the expected wage differential between males and females is zero. We can also compute a confi-
dence interval, which has bounds 1.17 ± 1.96×0.11. This means that with 95% confidence we can say that
over the entire US population the expected wage differential between males and females is between $0.95
and $1.39 per hour.

1.5.3 A joint test of significance of regression coefficients

A standard test that is typically automatically suplied by a regression package (also suplied by R) is a
test for the joint hypothesis that all coefficients, except the intercept β1, are equal to zero. Without loss
of generality, assume that these are the last J coefficients in the model

H0 : βK−J+1 = · · ·= βK = 0.

The alternative hypothesis in this case is that H0 is not true, i.e., at least one of these J coefficients is not
equal to zero.

We can define the following test statistic:

F = (S0−S1)/J
S1/(N −K) , (26)

where S1 is the residual sum of squares of the full model and S0 is the residual sum of squares of the re-
stricted model. Under the null hypothesis, F has and F -distribution with J and N −K degrees of free-
dom. denoted FJN−K . If we use the definition of the R2 from (2.42), we can also write this F -statistic as

F =
(
R2

1−R2
0
)
/J(

1−R2
1
)
/(N −K)

, (27)

where R2
1 and R2

0 are the usual goodness-of-fit measures for the unrestricted and the restricted model, re-
spectively. This shows that the test can be interpreted as testing whether the increase in R2 moving from
the restricted model to the more general model is significant.

It is clear that in this case only very large values for the test statistic imply rejection of the null hypoth-
esis. Despite the two-sided alternative hypothesis, the critical values FJN−K:α for this test are one-sided
and defined by the following equality:

P
{
F > FJN−K:α

}
= α,

where α is the significance level of the test. For example, if N −K = 60 and J = 3 the critical value at the
5% level is 2.76. The resulting test is referred to a the F -test.

The F -statistic is routinely provided by the majority of all regression packages. Note that it is a simple
function of the R2 of the model (see, (27)).
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1.5.4 Example: Individual wages (continued)

The fact that we concluded above that there was a significant difference between expected wage rates for
males and females does not necessarily point to discrimination. It is possible that working males and fe-
males differ in terms of their characteristics, for example their years of schooling. To analyze this, we can
extend the regression model with additional explanatory variables, for example schooli, which denotes the
years of schooling, and expri, which denotes experience in years. The model is now interpreted to describe
the conditional expected wage of an individual given his or her gender, years of schooling and experience
and can be written a

wagei = β1 +β2malei+β3schooli+β4experi+εi.

The coefficient β2 for malei now measures the difference in expected wage between a male and a female
with the same schooling and experience. Similarly, the coefficient β3 for schooli gives the expected wage
difference between two individual with the same experience and gender where one has one additional year
of schooling. In general, the coefficients in a multiple regression model can only be interpreted under a ce-
teris paribus condition, which says that that the other variables that are included in the model are con-
stant.

> #my.data <- read.table("H:/721364P/Rdata/wages1.dat", header=T)

> m2 <- lm(WAGE~MALE+SCHOOL+EXPER)

> summary(m2)

Call:

lm(formula = WAGE ~ MALE + SCHOOL + EXPER)

Residuals:

Min 1Q Median 3Q Max

-7.654 -1.967 -0.457 1.444 34.194

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.38002 0.46498 -7.269 4.50e-13 ***

MALE 1.34437 0.10768 12.485 < 2e-16 ***

SCHOOL 0.63880 0.03280 19.478 < 2e-16 ***

EXPER 0.12483 0.02376 5.253 1.59e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.046 on 3290 degrees of freedom

Multiple R-squared: 0.1326, Adjusted R-squared: 0.1318

F-statistic: 167.6 on 3 and 3290 DF, p-value: < 2.2e-16

> # males

> males <- subset(my.data,MALE==1)

> m.males <- lm(WAGE~SCHOOL+EXPER,data=males)

> summary(m.males)

Call:

lm(formula = WAGE ~ SCHOOL + EXPER, data = males)

Residuals:

Min 1Q Median 3Q Max

-7.850 -2.120 -0.539 1.553 34.203

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -2.62390 0.68924 -3.807 0.000146 ***

SCHOOL 0.69349 0.04760 14.569 < 2e-16 ***

EXPER 0.12032 0.03505 3.433 0.000612 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.303 on 1722 degrees of freedom

Multiple R-squared: 0.1099, Adjusted R-squared: 0.1089

F-statistic: 106.3 on 2 and 1722 DF, p-value: < 2.2e-16

> # females

> females <- subset(my.data,MALE==0)

> m.females <- lm(WAGE~SCHOOL+EXPER,data=females)

> summary(m.females)

Call:

lm(formula = WAGE ~ SCHOOL + EXPER, data = females)

Residuals:

Min 1Q Median 3Q Max

-5.9093 -1.7883 -0.4244 1.3091 27.0794

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.59337 0.60235 -4.305 1.77e-05 ***

SCHOOL 0.56123 0.04491 12.496 < 2e-16 ***

EXPER 0.14184 0.03184 4.455 8.98e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.733 on 1566 degrees of freedom

Multiple R-squared: 0.09805, Adjusted R-squared: 0.0969

F-statistic: 85.12 on 2 and 1566 DF, p-value: < 2.2e-16

> # test the schooling parameters are equal:

> t.school <- (0.69349-0.56123)/0.04760 # test statistic

> t.school

[1] 2.778571

> pval <- 2*(1-pnorm(t.school)) # p-value

> pval # reject the null

[1] 0.005459851

> # test the experience parameters are equal:

> t.exper <- (0.12032-0.14184)/0.03505 # test statistic

> t.exper

[1] -0.61398

> pval <- 2*pnorm(t.exper) # p-value

> pval # no not reject the null

[1] 0.5392285
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The coefficient for malei now suggests that, if we compare an arbitrary male and female with the same
years of schooling and experience, the expected wage differential is $1.34 compared with $1.17 before.
With a standard error of $0.11, this difference is still statistically highly significant. The null hypothesis
that schooling has no effect on a person’s wage, given gender and experience, can be tested using the t-test
described above, with a test statistic of 19.48. Clearly the null hypothesis has to be rejected. The esti-
mated wage increase from one additional year of schooling, keeping years of experience fixed, is $0.64.

It should not be surprising, given these results, that the joint hypothesis that all three partial slope co-
efficients (β2,β3,β4) are zero, that is, wages are not affected by gender, schooling or experience, has to be
rejected as well. The F -statistic takes the value of 167.6, while the appropriate 5% critical value is 2.60.

Finally, we can use the above results to compare this model with the simpler one, the first model. The
R2 has increased from 0.0317 to 0.1326, which means that the current model is able to explain 13.3% of
the within-sample variation in wages. We can perform a joint test on the hypothesis that the two addi-
tional variables, schooling and experience, both have zero coefficients, by performing the F -test described
above. The test statistic in (27) can be computed from the R2s reported in the OLS outputs as

F = (0.1326−0.0317/2)
(1−0.1326)/(3294−4) = 191.35.

With 5% critical value of 3.00, the null hypothesis is obviously rejected. We can thus conclude that the
model that included gender, schooling and experience performs significantly better than the model that
only includes gender.

1.5.5 More testing examples:

> # F-test

> # Estimating the restricted (restricting some (or all) of slope coefficients to be zero)

> # and the unrestricted model (allowing non-zero as well as zero coefficients). You can use

> # anova() (analysis of variance) to test the joint hypotheses defined as in the restricted model.

> mod.restricted <- lm(WAGE~MALE) # restricted model

> # summary(mod.restricted) # output suppressed

> mod.unrestricted <- lm(WAGE~MALE+SCHOOL+EXPER) # unrestricted model

> # summary(mod.unrestricted) # output suppressed

> anova(mod.restricted,mod.unrestricted)

Analysis of Variance Table

Model 1: WAGE ~ MALE

Model 2: WAGE ~ MALE + SCHOOL + EXPER

Res.Df RSS Df Sum of Sq F Pr(>F)

1 3292 34077

2 3290 30528 2 3549 191.24 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> library(lmtest)

> # t-test for coefficients

> mod <- lm(WAGE~MALE+SCHOOL+EXPER)

> # summary(mod) # output suppressed coeftest(mod)

> # Wald test

> mod1 <- lm(WAGE~MALE+SCHOOL+EXPER,data=my.data)

> #summary(mod1)

> mod2 <- lm(WAGE~SCHOOL+EXPER,data=my.data)

> #summary(mf)

> waldtest(mod1,mod2)

15



Wald test

Model 1: WAGE ~ MALE + SCHOOL + EXPER

Model 2: WAGE ~ SCHOOL + EXPER

Res.Df Df F Pr(>F)

1 3290

2 3291 -1 155.88 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.6 Illustration: The Capital Asset Pricing Model (Verbeek: pp. 38–42)

> capm.data <- read.table("H:/721364P/Rdata/capm.dat", header=T)

> head(capm.data)

month constrrf durblrf foodrf hml jan rf rmrf smb

1 196001 -6.82 0.96 -4.61 2.69 1 0.33 -6.97 2.04

2 196002 2.63 3.64 2.79 -1.98 0 0.29 1.13 0.56

3 196003 -0.33 -2.25 -1.80 -2.91 0 0.35 -1.63 -0.43

4 196004 -1.99 2.56 0.84 -2.39 0 0.19 -1.72 0.43

5 196005 3.75 6.79 7.38 -3.79 0 0.27 3.13 1.34

6 196006 2.06 -1.29 4.96 -0.33 0 0.24 2.06 -0.16

> tail(capm.data)

month constrrf durblrf foodrf hml jan rf rmrf smb

605 201005 -8.27 -5.42 -4.86 -2.36 0 0.01 -8.00 -0.03

606 201006 -14.28 -8.82 -1.97 -4.28 0 0.01 -5.21 -2.05

607 201007 5.40 4.07 6.67 0.13 0 0.01 7.24 -0.08

608 201008 -4.59 -3.81 -0.65 -1.71 0 0.01 -4.40 -2.92

609 201009 10.47 11.55 3.17 -3.14 0 0.01 9.24 3.97

610 201010 -1.03 1.58 3.98 -2.14 0 0.01 3.89 0.91

> attach(capm.data)

> summary(capm.data)

month constrrf durblrf foodrf

Min. :196001 Min. :-29.8100 Min. :-25.9000 Min. :-18.800

1st Qu.:197209 1st Qu.: -3.1800 1st Qu.: -2.8500 1st Qu.: -1.603

Median :198506 Median : 0.4200 Median : 0.4250 Median : 0.715

Mean :198498 Mean : 0.4379 Mean : 0.3275 Mean : 0.653

3rd Qu.:199802 3rd Qu.: 3.7475 3rd Qu.: 4.0000 3rd Qu.: 3.223

Max. :201010 Max. : 25.5200 Max. : 29.4500 Max. : 19.520

hml jan rf rmrf

Min. :-12.7800 Min. :0.00000 Min. :0.000 Min. :-23.140

1st Qu.: -1.1500 1st Qu.:0.00000 1st Qu.:0.280 1st Qu.: -2.205

Median : 0.4350 Median :0.00000 Median :0.410 Median : 0.840

Mean : 0.4022 Mean :0.08361 Mean :0.427 Mean : 0.437

3rd Qu.: 1.7975 3rd Qu.:0.00000 3rd Qu.:0.530 3rd Qu.: 3.462

Max. : 13.8400 Max. :1.00000 Max. :1.350 Max. : 16.050

smb

Min. :-16.670

1st Qu.: -1.460

Median : 0.070

Mean : 0.230

3rd Qu.: 2.038

Max. : 22.190
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> # Table 2.3 in Verbeek

> # CAPM regressions without intercept

> m1 <- lm(foodrf~rmrf-1) # Food

> summary(m1)

Call:

lm(formula = foodrf ~ rmrf - 1)

Residuals:

Min 1Q Median 3Q Max

-13.539 -1.026 0.141 1.745 15.924

Coefficients:

Estimate Std. Error t value Pr(>|t|)

rmrf 0.75774 0.02579 29.39 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.884 on 609 degrees of freedom

Multiple R-squared: 0.5864, Adjusted R-squared: 0.5857

F-statistic: 863.5 on 1 and 609 DF, p-value: < 2.2e-16

> m2 <- lm(durblrf~rmrf-1) # Durables

> summary(m2)

Call:

lm(formula = durblrf ~ rmrf - 1)

Residuals:

Min 1Q Median 3Q Max

-9.6504 -1.9420 -0.3069 1.7332 17.8871

Coefficients:

Estimate Std. Error t value Pr(>|t|)

rmrf 1.04736 0.02775 37.74 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.105 on 609 degrees of freedom

Multiple R-squared: 0.7005, Adjusted R-squared: 0.7

F-statistic: 1424 on 1 and 609 DF, p-value: < 2.2e-16

> m3 <- lm(constrrf~rmrf-1) # Construction

> summary(m3)

Call:

lm(formula = constrrf ~ rmrf - 1)

Residuals:

Min 1Q Median 3Q Max

-12.9414 -1.7193 -0.1866 1.4458 11.6551

Coefficients:

Estimate Std. Error t value Pr(>|t|)

rmrf 1.16662 0.02535 46.01 <2e-16 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.836 on 609 degrees of freedom

Multiple R-squared: 0.7766, Adjusted R-squared: 0.7763

F-statistic: 2117 on 1 and 609 DF, p-value: < 2.2e-16

> # Table 2.4 in Verbeek

> # CAPM regressions with intercept

> m4 <- lm(foodrf~rmrf) # Food

> summary(m4)

Call:

lm(formula = foodrf ~ rmrf)

Residuals:

Min 1Q Median 3Q Max

-13.8088 -1.3498 -0.1708 1.4423 15.5687

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.32486 0.11669 2.784 0.00554 **

rmrf 0.75082 0.02576 29.142 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.869 on 608 degrees of freedom

Multiple R-squared: 0.5828, Adjusted R-squared: 0.5821

F-statistic: 849.2 on 1 and 608 DF, p-value: < 2.2e-16

> m5 <- lm(durblrf~rmrf) # Durables

> summary(m5)

Call:

lm(formula = durblrf ~ rmrf)

Residuals:

Min 1Q Median 3Q Max

-9.5355 -1.8116 -0.1857 1.8485 17.9876

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.13141 0.12628 -1.041 0.298

rmrf 1.05016 0.02788 37.664 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.104 on 608 degrees of freedom

Multiple R-squared: 0.7, Adjusted R-squared: 0.6995

F-statistic: 1419 on 1 and 608 DF, p-value: < 2.2e-16

> m6 <- lm(constrrf~rmrf) # Construction

> summary(m6)

Call:

lm(formula = constrrf ~ rmrf)
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Residuals:

Min 1Q Median 3Q Max

-12.879 -1.641 -0.115 1.520 11.725

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.07259 0.11542 -0.629 0.53

rmrf 1.16817 0.02549 45.837 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.837 on 608 degrees of freedom

Multiple R-squared: 0.7756, Adjusted R-squared: 0.7752

F-statistic: 2101 on 1 and 608 DF, p-value: < 2.2e-16

> # Table 2.5 in Verbeek

> # CAPM regressions with intercept and January dummy

> m7 <- lm(foodrf~jan+rmrf) # Food

> summary(m7)

Call:

lm(formula = foodrf ~ jan + rmrf)

Residuals:

Min 1Q Median 3Q Max

-13.8969 -1.3599 -0.1552 1.4408 15.5047

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.39745 0.12140 3.274 0.00112 **

jan -0.87849 0.41870 -2.098 0.03631 *

rmrf 0.75277 0.02571 29.280 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.861 on 607 degrees of freedom

Multiple R-squared: 0.5858, Adjusted R-squared: 0.5844

F-statistic: 429.2 on 2 and 607 DF, p-value: < 2.2e-16

> m8 <- lm(durblrf~jan+rmrf) # Durables

> summary(m8)

Call:

lm(formula = durblrf ~ jan + rmrf)

Residuals:

Min 1Q Median 3Q Max

-9.5223 -1.8001 -0.1801 1.8415 18.0025

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.14287 0.13184 -1.084 0.279

jan 0.13872 0.45473 0.305 0.760

rmrf 1.04985 0.02792 37.600 <2e-16 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.107 on 607 degrees of freedom

Multiple R-squared: 0.7, Adjusted R-squared: 0.699

F-statistic: 708.3 on 2 and 607 DF, p-value: < 2.2e-16

> m9 <- lm(constrrf~jan+rmrf) # Construction

> summary(m9)

Call:

lm(formula = constrrf ~ jan + rmrf)

Residuals:

Min 1Q Median 3Q Max

-12.8203 -1.6622 -0.0673 1.5535 11.7772

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.12246 0.12031 -1.018 0.309

jan 0.60354 0.41494 1.455 0.146

rmrf 1.16683 0.02548 45.797 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.835 on 607 degrees of freedom

Multiple R-squared: 0.7763, Adjusted R-squared: 0.7756

F-statistic: 1054 on 2 and 607 DF, p-value: < 2.2e-16

1.6.1 The World’s largest hedge fund (Verbeek, pp. 42–43)

> madoff.data <- read.table("H:/721364P/Rdata/madoff.dat", header=T)

> head(madoff.data)

month fsl fslrf hml rf rmrf smb

1 01dec1990 2.77 2.17 -1.50 0.60 2.35 0.77

2 01jan1991 3.01 2.49 -1.73 0.52 4.39 3.85

3 01feb1991 1.40 0.92 -0.59 0.48 7.10 3.89

4 01mar1991 0.52 0.08 -1.19 0.44 2.45 3.92

5 01apr1991 1.32 0.79 1.43 0.53 -0.20 0.52

6 01may1991 1.82 1.35 -0.56 0.47 3.60 -0.33

> tail(madoff.data)

month fsl fslrf hml rf rmrf smb

210 01may2008 0.81 0.64 -0.31 0.17 2.22 2.87

211 01jun2008 -0.06 -0.23 -1.05 0.17 -8.03 1.08

212 01jul2008 0.72 0.57 3.61 0.15 -1.47 3.71

213 01aug2008 0.71 0.59 1.46 0.12 0.99 3.76

214 01sep2008 0.50 0.35 4.48 0.15 -9.96 -0.24

215 01oct2008 -0.06 -0.14 -3.13 0.08 -18.54 -2.12

> attach(madoff.data)

The following object(s) are masked from 'capm.data':

hml, month, rf, rmrf, smb
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> summary(madoff.data)

month fsl fslrf hml

01apr1991: 1 Min. :-0.6400 Min. :-1.0100 Min. :-12.7800

01apr1992: 1 1st Qu.: 0.2950 1st Qu.:-0.0400 1st Qu.: -1.3450

01apr1993: 1 Median : 0.7300 Median : 0.3900 Median : 0.3100

01apr1994: 1 Mean : 0.8422 Mean : 0.5246 Mean : 0.4164

01apr1995: 1 3rd Qu.: 1.2700 3rd Qu.: 0.9400 3rd Qu.: 1.9550

01apr1996: 1 Max. : 3.2900 Max. : 3.1400 Max. : 13.8400

(Other) :209

rf rmrf smb

Min. :0.0600 Min. :-18.5400 Min. :-16.670

1st Qu.:0.2200 1st Qu.: -2.0800 1st Qu.: -1.635

Median :0.3500 Median : 1.0300 Median : 0.050

Mean :0.3177 Mean : 0.4795 Mean : 0.254

3rd Qu.:0.4200 3rd Qu.: 3.3600 3rd Qu.: 2.185

Max. :0.6000 Max. : 10.3000 Max. : 22.190

> # Table 2.6 CAPM regression (with intercept) Madoff's returns

> madoff.capm <-lm(fslrf~rmrf)

> summary(madoff.capm)

Call:

lm(formula = fslrf ~ rmrf)

Residuals:

Min 1Q Median 3Q Max

-1.34773 -0.48005 -0.08337 0.38865 2.97276

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.50495 0.04570 11.049 < 2e-16 ***

rmrf 0.04089 0.01072 3.813 0.00018 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6658 on 213 degrees of freedom

Multiple R-squared: 0.06388, Adjusted R-squared: 0.05949

F-statistic: 14.54 on 1 and 213 DF, p-value: 0.0001801

1.7 Asymptotic Properties of the OLS Estimator

This section lists briefly the asymptotic properties of the OLS estimator

1.7.1 Consistency

Let us start with the linear model under the Gauss-Markov assumptions. In this case we know that the
OLS estimator b has the following first two moment:

E {b}= β

V {b}= σ2

(
N∑
i=1

xix
′
i

)−1

= σ2 (X ′X)−1
.
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What happens when the sample size N grows to infinity? It is clear that
∑N
i=1xix

′
i increases as the num-

ber of terms grows, so that the variance of b decreases as the sample size increases. If we assume that

1
N

N∑
i=1

xix
′
i converges to a finite nonsingular matrix Σxx (28)

if the sample size N becomes infinitely large. It follows directly that ’the probability limit of b is β’, or ’b
converges in probability to β’, or just

plim b= β.

When an estimator for β converges to the true value, we say that it is a consistent estimator.

1.7.2 Asymptotic normality

If the small sample distribution of an estimator is unknown, the best we can do is try to find some approx-
imation. In most cases, one uses an asymptotic approximation (for N growing to infinity) based on the
asymptotic distribution. Most estimators in econometrics can be shown to be asymptotically normally
distributed.

For the OLS estimator it can be shown that under the Gauss-Markov conditions (10)–(13) combined
with (28) we have √

N (b−β)→N
(
0,σ2Σ−1

xx

)
,

where → means ’is asymptotically distributed as’ and
√
N is referred to as the rate of convergence.

Thus, the OLS estimator b is asymptotically normally distributed with variance-covariance matrix σ2Σ−1
xx .

2 Interpreting and Comparing Regression Models

2.1 Interpreting the Linear Model

As already stressed the linear model

yi = x
′
iβ+εi (29)

has little meaning unless we complement it with additional assumption on εi. It is common to state that
εi has expectation zero and that the xis are taken as given. A formal way of stating this is that it is as-
sumed that the expected value of εi given X, or expected value of εi given xi is zero; that is

E {εi|X}= 0 or E {εi|xi}= 0 (30)

respectively, where the latter condition is implied by the first. Under E {εi|xi} = 0, we can interpret the
regression model as describing the conditional expected value of yi given values for the explanatory vari-
ables xi.

For example, what is the expected wage for an arbitrary woman of age 40, with a university education
and 14 years of experience? Or, what is the expected unemployment rate given wage rates, inflation and
total output in the economy? Or, what is the expected return on a stock, if the expected return on the
market is 12%, the risk-free rate is 5% and the asset’s beta is 0.8?

The first consequence of (30) is the interpretation of the individual β coefficient. For example, βk mea-
sures the expected change in yi if xik changes with one unit but all the other variables in xi do not change.
This is,

∂E {yi|xi}
∂xik

= βk.

It is important to realize that we had to state explicitly that the other variables in xi did not change. This
is the so-called ceteris paribus condition. An important consequence of this condition is that it is im-
possible to interpret a single coefficient in a regression model without knowing what the other variables in
the equation are. If interest is focused on the relationship between yi and xik, the other variables inxi act
as control variables.
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2.2 Selecting the Set of Regressors

2.2.1 Misspecifying the set of regressors

If one is (implicitely) assuming that the conditioning set of the model contains more variables than the
ones that are included, it is possible that the set of explanatory variables is ’misspecified’. This means that
one or more of the omitted variables are relevant, i.e. have nonzero coefficients.

2.2.2 Selecting regressors

Again, it should be stressed that, if we interpret the regression model as describing the conditional ex-
pectation of yi given the included variables xi, there is no issue of misspecified set of regressors, although
there might be a problem of functional form. This implies that statistically there is nothing to test here.
The set of xi variables will be chosen on the basis of what we find interesting, and often economic theory
or common sense guides us in our choice. Interpreting the model in a broader sense implies that there may
be relevant regressors that are excluded or irrelevant ones that are included. To find potentially relevant
variables, we can use economic thery again.

It is a good practice to select the set of potentially relevant variables on the basis of economic arguments
rather that statistical ones. Although it is sometimes suggested otherwise, statistical arguments are never
certainty arguments. That is, there is always a small (but not ignorable non-zero) probability of drawing
the wrong conclusion. For example, there is always a probability of rejecting the null hypothesis that a co-
efficient is zero, while the null is is actually true. Such type I errors2 are rather likely to happen if we
use a sequence of many tests to select the regressors to include in the model. This process is referred to as
data snooping or data mining and in economics it is not a compliment if someone accuses you of doing
it. In general, data snooping refers to the fact that a given set of data is used more than once to choose
a model specification and to test hypotheses. You can imagine, for example, that, if you have a set of 20
potential regressors and you try each one of them, it is quite likely to conclude that one of them is signifi-
cant, even though there is no true relationship between any of these regressors and the variable you are ex-
plaining.3 The probability of making incorrect choises is high, and it is not unlikely that your ’model’ cap-
tures some peculiarities (e.g. ’calendar anomalies’) in the data that have no real meaning outside the sam-
ple. In practice, however, it is hard to prevent some amount of data snooping from entering your work.4

Besides formal statistical tests there are other criteria that are sometimes used to select a set of re-
gressors. First of all, theR2, discussed earlier , measures the proportion of the sample variation in yi that
is explained by variation in xi. However, using R2 as the criterion would not be optimal, since with too
many variables we will not be able to say very much about the model’s coefficients , as they may be esti-
mated rather inaccurately. Because the R2 does not ’punish’ the inclusion of many variables, it would be
better to use a measure that incorporates a trade-off between goodness-of-fit and the number of regressors.
The adjusted R̄2 (24) is such a measure.

There exist a number of alternative criteria that provide such trade-off, the most common ones being
Akaike’s Information Criterion (AIC)

AIC = ln 1
N

N∑
i=1

e2
i + 2K

N
(31)

and the Rissanen-Schwartz Bayesian Information Criterion (BIC)

BIC = ln 1
N

N∑
i=1

e2
i + K

N
lnN. (32)

2A type II error is such that that the null hypothesis is not rejected while the alternative is true.
3Although statistical software packages sometimes provide mechanical routines, e.g. stepwise regression, to select regres-

sors, these are typically not recommended in economic work.
4In recent years, the possibility of data snooping biases has played an important role in empirical studies modelling finan-

cial asset pricing models. Lo and MacKinlay (Lo and MacKinlay (1990), Data-Snooping Biases in Tests of Financial Asset
Pricing Models, Review of Financial Studies, 3, 431–469), for example, analyse such biases in tests of financial asset pricing
models, while Sullivan, Timmerman and White (Sullivan, Timmerman and White (2001), Dangers of Data-Driven Inference:
The Case of Calendar Effects in Stock Returns, Journal of Econometrics, 105, 249–286) analyse the extent to which the
presence of calendar effects in stock returns, like the January effect can be attributed to data snooping.
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Models with lower AIC or BIC are typically preferred. Note that both criteria add a penaty that increases
with the number of regressors. Because the penaly is larger for BIC, the latter criterion tend to favour
more parsimomious (’less parameters’) than AIC.

Alternatively, it is possible to test whether the increase in R2 is statistically significant using the F -test
(27).

2.3 Illustration: Explaining House Prices (Verbeek, pp. 72–76)

> house <- read.table("H:/721364P/Rdata/HOUSING.dat", header=T)

> attach(house)

> names(house)

[1] "price" "lotsize" "bedrooms" "bathrms" "stories" "driveway"

[7] "recroom" "fullbase" "gashw" "airco" "garagepl" "prefarea"

> head(house)

price lotsize bedrooms bathrms stories driveway recroom fullbase gashw airco

1 42000 5850 3 1 2 1 0 1 0 0

2 38500 4000 2 1 1 1 0 0 0 0

3 49500 3060 3 1 1 1 0 0 0 0

4 60500 6650 3 1 2 1 1 0 0 0

5 61000 6360 2 1 1 1 0 0 0 0

6 66000 4160 3 1 1 1 1 1 0 1

garagepl prefarea

1 1 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

> # Table 3.1 page 73

> house1 <- lm(log(price)~log(lotsize)+bedrooms+bathrms+airco)

> summary(house1)

Call:

lm(formula = log(price) ~ log(lotsize) + bedrooms + bathrms +

airco)

Residuals:

Min 1Q Median 3Q Max

-0.81782 -0.15562 0.00778 0.16468 0.84143

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.09378 0.23155 30.636 < 2e-16 ***

log(lotsize) 0.40042 0.02781 14.397 < 2e-16 ***

bedrooms 0.07770 0.01549 5.017 7.11e-07 ***

bathrms 0.21583 0.02300 9.386 < 2e-16 ***

airco 0.21167 0.02372 8.923 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2456 on 541 degrees of freedom

Multiple R-squared: 0.5674, Adjusted R-squared: 0.5642

F-statistic: 177.4 on 4 and 541 DF, p-value: < 2.2e-16
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> AIC(house1)

[1] 23.05703

> BIC(house1)

[1] 48.87274

> # Table 3.2 page 74

> house2 <- lm(log(price)~log(lotsize)+bedrooms+bathrms+airco+driveway+recroom+

+ fullbase+gashw+garagepl+prefarea+stories)

> summary(house2)

Call:

lm(formula = log(price) ~ log(lotsize) + bedrooms + bathrms +

airco + driveway + recroom + fullbase + gashw + garagepl +

prefarea + stories)

Residuals:

Min 1Q Median 3Q Max

-0.68355 -0.12247 0.00802 0.12780 0.67564

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.74509 0.21634 35.801 < 2e-16 ***

log(lotsize) 0.30313 0.02669 11.356 < 2e-16 ***

bedrooms 0.03440 0.01427 2.410 0.016294 *

bathrms 0.16576 0.02033 8.154 2.52e-15 ***

airco 0.16642 0.02134 7.799 3.29e-14 ***

driveway 0.11020 0.02823 3.904 0.000107 ***

recroom 0.05797 0.02605 2.225 0.026482 *

fullbase 0.10449 0.02169 4.817 1.90e-06 ***

gashw 0.17902 0.04389 4.079 5.22e-05 ***

garagepl 0.04795 0.01148 4.178 3.43e-05 ***

prefarea 0.13185 0.02267 5.816 1.04e-08 ***

stories 0.09169 0.01261 7.268 1.30e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2104 on 534 degrees of freedom

Multiple R-squared: 0.6865, Adjusted R-squared: 0.6801

F-statistic: 106.3 on 11 and 534 DF, p-value: < 2.2e-16

> AIC(house2)

[1] -138.8234

> BIC(house2)

[1] -82.88931

> # Table 3.3 page 75

> house3 <- lm(price~lotsize+bedrooms+bathrms+airco+driveway+recroom+

+ fullbase+gashw+garagepl+prefarea+stories)

> summary(house3)
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Call:

lm(formula = price ~ lotsize + bedrooms + bathrms + airco + driveway +

recroom + fullbase + gashw + garagepl + prefarea + stories)

Residuals:

Min 1Q Median 3Q Max

-41389 -9307 -591 7353 74875

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4038.3504 3409.4713 -1.184 0.236762

lotsize 3.5463 0.3503 10.124 < 2e-16 ***

bedrooms 1832.0035 1047.0002 1.750 0.080733 .

bathrms 14335.5585 1489.9209 9.622 < 2e-16 ***

airco 12632.8904 1555.0211 8.124 3.15e-15 ***

driveway 6687.7789 2045.2458 3.270 0.001145 **

recroom 4511.2838 1899.9577 2.374 0.017929 *

fullbase 5452.3855 1588.0239 3.433 0.000642 ***

gashw 12831.4063 3217.5971 3.988 7.60e-05 ***

garagepl 4244.8290 840.5442 5.050 6.07e-07 ***

prefarea 9369.5132 1669.0907 5.614 3.19e-08 ***

stories 6556.9457 925.2899 7.086 4.37e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15420 on 534 degrees of freedom

Multiple R-squared: 0.6731, Adjusted R-squared: 0.6664

F-statistic: 99.97 on 11 and 534 DF, p-value: < 2.2e-16

> AIC(house3)

[1] 12094.19

> BIC(house3)

[1] 12150.12

2.4 Illustration: Predicting Stock Index Returns (Verbeek, pp. 76–78)

> stocks <- read.table("H:/721364P/Rdata/PREDICTSP.dat", header=T)

> attach(stocks)

> names(stocks)

[1] "OBS" "CS_1" "DY_1" "EXRET" "I12_1" "I12_2" "I3_1" "I3_2"

[9] "INF_2" "IP_2" "MB_2" "PE_1" "TS_1" "WINTER"

> head(stocks)

OBS CS_1 DY_1 EXRET I12_1 I12_2 I3_1 I3_2

1 1966M01 0.027130 0.246132 0.3556919 0.3978448 0.3850723 0.3747 0.3579

2 1966M02 0.025523 0.246734 -1.8896210 0.4026298 0.3978448 0.3795 0.3747

3 1966M03 0.027106 0.253051 -2.3094014 0.4050214 0.4026298 0.3747 0.3795

4 1966M04 0.031842 0.260563 1.9798476 0.3994401 0.4050214 0.3771 0.3747

5 1966M05 0.035802 0.257156 -5.5604503 0.4018325 0.3994401 0.3787 0.3771

6 1966M06 0.039764 0.273811 -1.7151910 0.4050214 0.4018325 0.3675 0.3787

INF_2 IP_2 MB_2 PE_1 TS_1 WINTER
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1 0.026786 0.100527 0.046695 0.1785 0.002380 1

2 0.032738 0.096325 0.051422 0.1743 -0.003219 1

3 0.032641 0.093860 0.051778 0.1712 0.019155 1

4 0.038576 0.095886 0.055034 0.1674 0.019947 1

5 0.038576 0.094733 0.060271 0.1671 0.008768 0

6 0.032448 0.093014 0.058601 0.1581 0.022364 0

> tail(stocks)

OBS CS_1 DY_1 EXRET I12_1 I12_2 I3_1 I3_2

475 2005M07 0.071464 0.146370 3.4772740 0.2983874 0.2757784 0.264500 0.244200

476 2005M08 0.070612 0.141754 -1.2119415 0.3169172 0.2983874 0.282200 0.264500

477 2005M09 0.069013 0.148075 0.5195351 0.3418328 0.3169172 0.280628 0.282200

478 2005M10 0.071359 0.145608 -1.9379552 0.3538643 0.3418328 0.304031 0.280628

479 2005M11 0.075163 0.147520 3.4684277 0.3554674 0.3538643 0.317722 0.304031

480 2005M12 0.076693 0.149449 -0.2840651 0.3634782 0.3554674 0.318527 0.317722

INF_2 IP_2 MB_2 PE_1 TS_1 WINTER

475 0.035594 0.023892 0.021507 0.1988 0.062874 0

476 0.045730 0.037026 0.013819 0.2050 0.059633 0

477 0.052525 0.031695 0.012422 0.1923 0.067624 0

478 0.070034 0.033067 0.004816 0.1921 0.039407 0

479 0.082044 0.021309 0.005773 0.1880 0.046557 1

480 0.041447 0.024396 -0.001824 0.1872 0.052155 1

> stock.model <- lm(EXRET/100~PE_1+DY_1+INF_2+IP_2+I3_1+I3_2+I12_1+I12_2+MB_2+CS_1+WINTER)

> summary(stock.model)

Call:

lm(formula = EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 +

I3_2 + I12_1 + I12_2 + MB_2 + CS_1 + WINTER)

Residuals:

Min 1Q Median 3Q Max

-0.204406 -0.024293 0.001638 0.027697 0.146903

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.033010 0.023259 1.419 0.156500

PE_1 -0.113984 0.064504 -1.767 0.077869 .

DY_1 0.059894 0.060119 0.996 0.319642

INF_2 -0.139880 0.068664 -2.037 0.042194 *

IP_2 -0.021111 0.056942 -0.371 0.710994

I3_1 0.191875 0.121159 1.584 0.113945

I3_2 -0.194518 0.119687 -1.625 0.104788

I12_1 -0.413432 0.120863 -3.421 0.000679 ***

I12_2 0.358917 0.125504 2.860 0.004428 **

MB_2 -0.128530 0.061594 -2.087 0.037453 *

CS_1 0.183006 0.099212 1.845 0.065727 .

WINTER 0.008057 0.003915 2.058 0.040149 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.04164 on 468 degrees of freedom

Multiple R-squared: 0.1179, Adjusted R-squared: 0.09712

F-statistic: 5.684 on 11 and 468 DF, p-value: 1.281e-08
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> AIC(stock.model)

[1] -1675.488

> BIC(stock.model)

[1] -1621.229

> # data snooping:

> # stepwise selection using the AIC

> step(stock.model, direction = "backward")

Start: AIC=-3039.67

EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 +

I12_2 + MB_2 + CS_1 + WINTER

Df Sum of Sq RSS AIC

- IP_2 1 0.0002383 0.81175 -3041.5

- DY_1 1 0.0017210 0.81323 -3040.7

<none> 0.81151 -3039.7

- I3_1 1 0.0043489 0.81586 -3039.1

- I3_2 1 0.0045801 0.81609 -3039.0

- PE_1 1 0.0054144 0.81692 -3038.5

- CS_1 1 0.0059000 0.81741 -3038.2

- INF_2 1 0.0071962 0.81871 -3037.4

- WINTER 1 0.0073437 0.81885 -3037.3

- MB_2 1 0.0075506 0.81906 -3037.2

- I12_2 1 0.0141815 0.82569 -3033.3

- I12_1 1 0.0202895 0.83180 -3029.8

Step: AIC=-3041.53

EXRET/100 ~ PE_1 + DY_1 + INF_2 + I3_1 + I3_2 + I12_1 + I12_2 +

MB_2 + CS_1 + WINTER

Df Sum of Sq RSS AIC

- DY_1 1 0.0018950 0.81364 -3042.4

<none> 0.81175 -3041.5

- I3_2 1 0.0044567 0.81621 -3040.9

- I3_1 1 0.0044589 0.81621 -3040.9

- PE_1 1 0.0052129 0.81696 -3040.5

- INF_2 1 0.0069583 0.81871 -3039.4

- WINTER 1 0.0071826 0.81893 -3039.3

- MB_2 1 0.0080102 0.81976 -3038.8

- CS_1 1 0.0109916 0.82274 -3037.1

- I12_2 1 0.0139694 0.82572 -3035.3

- I12_1 1 0.0206039 0.83235 -3031.5

Step: AIC=-3042.41

EXRET/100 ~ PE_1 + INF_2 + I3_1 + I3_2 + I12_1 + I12_2 + MB_2 +

CS_1 + WINTER

Df Sum of Sq RSS AIC

<none> 0.81364 -3042.4

- I3_1 1 0.0038002 0.81744 -3042.2

- I3_2 1 0.0047271 0.81837 -3041.6
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- INF_2 1 0.0056675 0.81931 -3041.1

- MB_2 1 0.0061733 0.81982 -3040.8

- WINTER 1 0.0075870 0.82123 -3039.9

- CS_1 1 0.0146547 0.82830 -3035.8

- I12_2 1 0.0159771 0.82962 -3035.1

- I12_1 1 0.0199986 0.83364 -3032.8

- PE_1 1 0.0228703 0.83651 -3031.1

Call:

lm(formula = EXRET/100 ~ PE_1 + INF_2 + I3_1 + I3_2 + I12_1 +

I12_2 + MB_2 + CS_1 + WINTER)

Coefficients:

(Intercept) PE_1 INF_2 I3_1 I3_2 I12_1

0.047479 -0.159540 -0.118789 0.177635 -0.196934 -0.409218

I12_2 MB_2 CS_1 WINTER

0.375002 -0.095765 0.227046 0.008154

> step(stock.model, direction = "forward")

Start: AIC=-3039.67

EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 + I3_2 + I12_1 +

I12_2 + MB_2 + CS_1 + WINTER

Call:

lm(formula = EXRET/100 ~ PE_1 + DY_1 + INF_2 + IP_2 + I3_1 +

I3_2 + I12_1 + I12_2 + MB_2 + CS_1 + WINTER)

Coefficients:

(Intercept) PE_1 DY_1 INF_2 IP_2 I3_1

0.033010 -0.113984 0.059894 -0.139880 -0.021111 0.191875

I3_2 I12_1 I12_2 MB_2 CS_1 WINTER

-0.194518 -0.413432 0.358917 -0.128530 0.183006 0.008057

> # or using the stepAIC function in the MASS package

> #library(MASS)

> #stepAIC(stock.model, direction = "backward") # output suppressed

> #stepAIC(stock.model, direction = "forward") # output suppressed

3 OLS Diagnostics

In many cases, the Gauss-Markov conditions (10)–(13) will not all be satisfied. This is not necessarily fatal
for the OLS estimator in the sense that it is consistent under fairly weak conditions. In this section we
apply three approaches to validating linear regression (OLS) models:

1. A popular approach compares various statistics computed for the full data set with those obtained
from deleting single observations. This is known as regression diagnostics.

2. In econometrics, diagnostic tests have played a prominent role since about 1980. The most impor-
tant alternative hypotheses are heteroskedasticity, autocorrelation, and misspecification of the
functional form.

3. Also, the impenetarble disturbance structures typically present in observational data have been led
to the development of “robust” covariance matrix estimators (for the parameter estimates), a number
of which have been available during the last 20 years.
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In this section we pay attention to heteroskedasticity and autocorrelation, typical to financial data, which
imply that the error terms in the model are no longer independently and identically distributed. In such
cases, the OLS estimator may still be unbiased or consistent, but its covariance matrix is different from
the one given by (14). Moreover, the OLS estimator may be relatively inefficient and no longer have the
BLUE property. Let’s go through the basic diagnostics using applications.

3.1 Regression Diagnostics

� See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression

> library(sandwich)

> data("PublicSchools")

> summary(PublicSchools)

Expenditure Income

Min. :259.0 Min. : 5736

1st Qu.:315.2 1st Qu.: 6670

Median :354.0 Median : 7597

Mean :373.3 Mean : 7608

3rd Qu.:426.2 3rd Qu.: 8286

Max. :821.0 Max. :10851

NA's :1

> ps <- na.omit(PublicSchools) # remove missing values

> ps$Income <- ps$Income/10000

> #plot(Expenditure ~ Income, data = ps, ylim = c(230,830)) # figure 4.1

> ps_lm <- lm(Expenditure ~ Income, data = ps)

> #abline(ps_lm) #id <- c(2, 24, 48)

> #text(ps[id, 2:1], rownames(ps)[id], pos = 1, xpd = TRUE)

> #plot(ps_lm, which = 1:6) # figure 4.2

> ps_hat <- hatvalues(ps_lm)

> #plot(ps_hat) # figure 4.3

> #abline(h = c(1, 3) * mean(ps_hat), col = 2)

> #id <- which(ps_hat > 3 * mean(ps_hat))

> #text(id, ps_hat[id], rownames(ps)[id], pos = 1, xpd = TRUE)

> influence.measures(ps_lm)

Influence measures of

lm(formula = Expenditure ~ Income, data = ps) :

dfb.1_ dfb.Incm dffit cov.r cook.d hat inf

Alabama -1.52e-02 1.39e-02 -1.74e-02 1.103 1.55e-04 0.0543

Alaska -2.39e+00 2.52e+00 2.65e+00 0.555 2.31e+00 0.2144 *

Arizona -1.51e-02 9.50e-03 -4.32e-02 1.061 9.51e-04 0.0210

Arkansas 5.93e-05 -5.44e-05 6.73e-05 1.107 2.32e-09 0.0576

California 1.83e-01 -2.09e-01 -2.72e-01 1.031 3.67e-02 0.0485

Colorado -2.90e-02 4.58e-02 1.30e-01 1.035 8.48e-03 0.0228

Connecticut -1.83e-01 2.07e-01 2.65e-01 1.042 3.48e-02 0.0515

Delaware 3.45e-02 -4.06e-02 -5.87e-02 1.081 1.76e-03 0.0383

Florida -2.75e-02 1.17e-02 -1.18e-01 1.035 7.01e-03 0.0202

Georgia -1.09e-01 9.47e-02 -1.44e-01 1.056 1.05e-02 0.0353

Hawaii 3.31e-02 -4.10e-02 -6.87e-02 1.070 2.41e-03 0.0310

Idaho -3.03e-02 2.60e-02 -4.27e-02 1.075 9.32e-04 0.0317

Illinois 3.30e-02 -3.81e-02 -5.16e-02 1.088 1.36e-03 0.0439

Indiana -4.17e-03 -6.73e-03 -8.03e-02 1.050 3.27e-03 0.0201
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Iowa -1.08e-02 2.35e-02 9.53e-02 1.047 4.60e-03 0.0213

Kansas 2.53e-02 -4.01e-02 -1.14e-01 1.043 6.51e-03 0.0228

Kentucky -1.15e-01 1.02e-01 -1.48e-01 1.060 1.10e-02 0.0383

Louisiana 2.38e-02 -2.10e-02 3.08e-02 1.082 4.83e-04 0.0373

Maine 1.36e-01 -1.23e-01 1.59e-01 1.076 1.28e-02 0.0501

Maryland -7.03e-03 8.91e-03 1.60e-02 1.074 1.31e-04 0.0290

Massachusetts -1.56e-02 2.29e-02 5.72e-02 1.062 1.66e-03 0.0238

Michigan -5.49e-02 6.69e-02 1.07e-01 1.063 5.80e-03 0.0328

Minnesota -1.90e-02 4.76e-02 2.13e-01 0.976 2.22e-02 0.0211

Mississippi 7.09e-02 -6.65e-02 7.61e-02 1.137 2.95e-03 0.0848 *

Missouri -7.47e-02 4.92e-02 -1.98e-01 0.988 1.93e-02 0.0213

Montana 1.57e-01 -1.27e-01 2.68e-01 0.957 3.47e-02 0.0257

Nebraska -5.19e-02 3.17e-02 -1.55e-01 1.016 1.19e-02 0.0209

Nevada 3.45e-01 -3.86e-01 -4.79e-01 0.949 1.08e-01 0.0575

New Hampshire -7.62e-02 5.38e-02 -1.77e-01 1.006 1.56e-02 0.0220

New Jersey 8.20e-02 -9.38e-02 -1.24e-01 1.080 7.77e-03 0.0470

New Mexico 2.63e-01 -2.35e-01 3.23e-01 0.988 5.07e-02 0.0425

New York -3.28e-02 4.22e-02 7.88e-02 1.063 3.16e-03 0.0280

North Carolina 7.97e-02 -7.05e-02 1.02e-01 1.073 5.24e-03 0.0385

North Dakota -3.24e-02 1.57e-02 -1.26e-01 1.031 7.96e-03 0.0203

Ohio 8.97e-03 -3.01e-02 -1.57e-01 1.015 1.22e-02 0.0208

Oklahoma -1.42e-02 1.18e-02 -2.20e-02 1.072 2.47e-04 0.0280

Oregon -1.54e-03 4.05e-03 1.87e-02 1.065 1.79e-04 0.0210

Pennsylvania 1.19e-03 8.42e-03 7.08e-02 1.054 2.55e-03 0.0203

Rhode Island -1.28e-02 4.73e-03 -5.98e-02 1.057 1.82e-03 0.0201

South Carolina 1.25e-01 -1.14e-01 1.44e-01 1.087 1.05e-02 0.0545

South Dakota 1.33e-03 -1.14e-03 1.91e-03 1.076 1.87e-06 0.0309

Tennessee -8.06e-02 7.21e-02 -9.85e-02 1.080 4.93e-03 0.0432

Texas -7.75e-03 -1.29e-02 -1.52e-01 1.015 1.15e-02 0.0201

Utah 2.95e-01 -2.61e-01 3.79e-01 0.934 6.80e-02 0.0380

Vermont 1.47e-01 -1.31e-01 1.83e-01 1.052 1.68e-02 0.0411

Virginia -5.15e-03 -6.33e-04 -4.27e-02 1.060 9.27e-04 0.0200

Washington 2.56e-02 -3.10e-02 -4.94e-02 1.075 1.24e-03 0.0331

Washington DC 6.57e-01 -7.05e-01 -7.68e-01 1.014 2.77e-01 0.1277 *

West Virginia 7.72e-02 -6.94e-02 9.34e-02 1.083 4.44e-03 0.0446

Wyoming -7.54e-02 8.41e-02 1.03e-01 1.103 5.36e-03 0.0609

> which(ps_hat > 3 * mean(ps_hat))

Alaska Washington DC

2 48

> summary(influence.measures(ps_lm))

Potentially influential observations of

lm(formula = Expenditure ~ Income, data = ps) :

dfb.1_ dfb.Incm dffit cov.r cook.d hat

Alaska -2.39_* 2.52_* 2.65_* 0.55_* 2.31_* 0.21_*

Mississippi 0.07 -0.07 0.08 1.14_* 0.00 0.08

Washington DC 0.66 -0.71 -0.77_* 1.01 0.28 0.13_*

3.2 Diagnostic Tests

� See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression
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> options(prompt = "R> ", continue = "+ ", width = 64, digits = 4,

+ show.signif.stars = FALSE, useFancyQuotes = FALSE)

R> library(AER)

R> # demo("Ch-Validation", package = "AER") # you can run all the demos

R> data("Journals")

R> summary(Journals)

title publisher society

Length:180 Elsevier :42 no :164

Class :character Blackwell :26 yes: 16

Mode :character Kluwer :16

Springer :10

Academic Press : 9

Univ of Chicago Press: 7

(Other) :70

price pages charpp citations

Min. : 20 Min. : 167 Min. :1782 Min. : 21

1st Qu.: 134 1st Qu.: 549 1st Qu.:2715 1st Qu.: 98

Median : 282 Median : 693 Median :3010 Median : 262

Mean : 418 Mean : 828 Mean :3233 Mean : 647

3rd Qu.: 541 3rd Qu.: 974 3rd Qu.:3477 3rd Qu.: 656

Max. :2120 Max. :2632 Max. :6859 Max. :8999

foundingyear subs field

Min. :1844 Min. : 2 General :40

1st Qu.:1963 1st Qu.: 52 Specialized :14

Median :1973 Median : 122 Public Finance :12

Mean :1967 Mean : 197 Development :11

3rd Qu.:1982 3rd Qu.: 268 Finance :11

Max. :1996 Max. :1098 Urban and Regional: 8

(Other) :84

R> journals <- Journals[,c("subs", "price")]

R> journals$citeprice <- Journals$price/Journals$citations

R> journals$age <- 2000-Journals$foundingyear

R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)

R> #summary(jour_lm)

R> # Testing for heteroskedasticity

R> bptest(jour_lm) # Breusch-Pagan test

studentized Breusch-Pagan test

data: jour_lm

BP = 9.803, df = 1, p-value = 0.001742

R> gqtest(jour_lm, order.by = ~citeprice, data = journals) # Goldfeld-Quandt test

Goldfeld-Quandt test

data: jour_lm

GQ = 1.703, df1 = 88, df2 = 88, p-value = 0.00665

R> # Testing the functional form

R> resettest(jour_lm) # RESET test
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RESET test

data: jour_lm

RESET = 1.441, df1 = 2, df2 = 176, p-value = 0.2395

R> raintest(jour_lm, order.by = ~ age, data = journals) # Rainbow test

Rainbow test

data: jour_lm

Rain = 1.774, df1 = 90, df2 = 88, p-value = 0.003741

R> harvtest(jour_lm, order.by = ~ age, data = journals) # Harvey-Collier test

Harvey-Collier test

data: jour_lm

HC = 5.081, df = 177, p-value = 9.464e-07

R> # Testing for autocorrelation

R> data("USMacroG")

R> summary(USMacroG)

gdp consumption invest government

Min. :1610 Min. :1059 Min. : 198 Min. : 360

1st Qu.:2602 1st Qu.:1640 1st Qu.: 309 1st Qu.: 741

Median :4142 Median :2715 Median : 568 Median : 952

Mean :4563 Mean :2999 Mean : 652 Mean : 997

3rd Qu.:6294 3rd Qu.:4235 3rd Qu.: 874 3rd Qu.:1301

Max. :9304 Max. :6341 Max. :1802 Max. :1583

dpi cpi m1 tbill

Min. :1178 Min. : 70.6 Min. : 110 Min. : 0.81

1st Qu.:1822 1st Qu.: 91.2 1st Qu.: 148 1st Qu.: 3.09

Median :3133 Median :162.1 Median : 284 Median : 5.04

Mean :3341 Mean :225.8 Mean : 454 Mean : 5.23

3rd Qu.:4733 3rd Qu.:350.1 3rd Qu.: 764 3rd Qu.: 6.64

Max. :6635 Max. :521.1 Max. :1152 Max. :15.09

unemp population inflation

Min. : 2.60 Min. :149 Min. :-2.53

1st Qu.: 4.40 1st Qu.:186 1st Qu.: 1.76

Median : 5.60 Median :215 Median : 3.14

Mean : 5.67 Mean :214 Mean : 3.94

3rd Qu.: 6.80 3rd Qu.:243 3rd Qu.: 5.59

Max. :10.70 Max. :281 Max. :16.86

NA's :1

interest

Min. :-11.216

1st Qu.: -0.158

Median : 1.513

Mean : 1.311

3rd Qu.: 2.916

Max. : 10.626

NA's :1
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R> library(dynlm)

R> consump1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG)

R> #summary(consump1)

R> # Alternative way, apply the Lag operator of the Hmisc package

R> #library(Hmisc)

R> #consump0 <- lm(consumption ~ dpi + Lag(dpi), data = USMacroG)

R> #summary(consump0)

R> dwtest(consump1) # Durbin-Watson test

Durbin-Watson test

data: consump1

DW = 0.0866, p-value < 2.2e-16

alternative hypothesis: true autocorrelation is greater than 0

R> Box.test(residuals(consump1), type = "Ljung-Box") # Ljung-Box

Box-Ljung test

data: residuals(consump1)

X-squared = 176.1, df = 1, p-value < 2.2e-16

R> bgtest(consump1) # Breusch-Gofrey test

Breusch-Godfrey test for serial correlation of order up

to 1

data: consump1

LM test = 193, df = 1, p-value < 2.2e-16

3.3 Robust Standard Errors

� See, Lecture-3.R and Chapter 4: Diagnostics andAlternative Methods of Regression

R> vcov(jour_lm) # covariance matrix of parameter estimates

(Intercept) log(citeprice)

(Intercept) 3.126e-03 -6.144e-05

log(citeprice) -6.144e-05 1.268e-03

R> vcovHC(jour_lm) # heteroskedasticity consistent covariance matrix

(Intercept) log(citeprice)

(Intercept) 0.003085 0.000693

log(citeprice) 0.000693 0.001188

R> vcovHAC(jour_lm)# heteroskedasticity and autocorrelationconsistent covariance matrix (Newey-West)

(Intercept) log(citeprice)

(Intercept) 0.0026709 0.0003565

log(citeprice) 0.0003565 0.0009710

R> summary(jour_lm)

Call:

lm(formula = log(subs) ~ log(citeprice), data = journals)
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Residuals:

Min 1Q Median 3Q Max

-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0559 85.2 <2e-16

log(citeprice) -0.5331 0.0356 -15.0 <2e-16

Residual standard error: 0.75 on 178 degrees of freedom

Multiple R-squared: 0.557, Adjusted R-squared: 0.555

F-statistic: 224 on 1 and 178 DF, p-value: <2e-16

R> #library(lmtest)

R> coeftest(jour_lm, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0555 85.8 <2e-16

log(citeprice) -0.5331 0.0345 -15.5 <2e-16

R> coeftest(jour_lm, vcov = vcovHAC) # Newey-West

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0517 92.2 <2e-16

log(citeprice) -0.5331 0.0312 -17.1 <2e-16

R> t(sapply(c("const", "HC0", "HC1", "HC2", "HC3", "HC4"),

+ function(x) sqrt(diag(vcovHC(jour_lm, type = x)))))

(Intercept) log(citeprice)

const 0.05591 0.03561

HC0 0.05495 0.03377

HC1 0.05526 0.03396

HC2 0.05525 0.03412

HC3 0.05555 0.03447

HC4 0.05536 0.03459

3.4 Testing for Normality

Let’s consider the linear regression model again with, under the null hypothesis, normal errors. For a con-
tinuously observed variable, normality tests usually check for skewness (third moment) and excess kurto-
sis (fourth moment), because the normal distribution implies that E

{
ε3
t

}
= 0 and E

{
ε4
t −3σ4} = 0, i.e.

for a normal distribution, skewness is zero and excess kurtosis is zero. A popular test for normality is the
Jargue-Bera test (see, my Probability and Statistics Review, page 13).

R> names(consump1)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

[13] "index" "frequency" "twostage"
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R> res <- consump1$residuals

R> library(fBasics)

R> normalTest(res, method = "jb")

Title:

Jarque - Bera Normalality Test

Test Results:

STATISTIC:

X-squared: 72.7384

P VALUE:

Asymptotic p Value: < 2.2e-16

Description:

Wed Feb 06 10:01:35 2013 by user: Hannu

R> # or

R> normalTest(residuals(consump1), method = "jb")

Title:

Jarque - Bera Normalality Test

Test Results:

STATISTIC:

X-squared: 72.7384

P VALUE:

Asymptotic p Value: < 2.2e-16

Description:

Wed Feb 06 10:01:35 2013 by user: Hannu
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