
CS-C2160 Theory of Computation

Lecture 7: The CYK Parsing Algorithm and Chomsky Normal Form,
Pushdown Automata, Limitations of Context-Free Languages

Pekka Orponen
Aalto University
Department of Computer Science

Spring 2021

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

2/62

Topics:

Parsing context-free grammars

The Chomsky normal form for CFGs

The CYK parsing algorithm

Pushdown automata

Pushdown automata and context-free languages

A pumping lemma for context-free languages

Material:

In Finnish: Sections 3.6–3.8 in the Finnish lecture notes
In English: In the Sipser book as follows:

I Chomsky normal form: Section 2.1
I CYK algorithm: Theorem 7.16
I Pushdown automata: Section 2.2
I Limitations of context-free languages: Section 2.3

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

3/62

Recap: Context-free grammars
Example:

A (simplified) grammar for arithmetic expressions with function calls in
a C-like programming language:

E → T | E + T

T → F | T ∗ F

F → a | (E) | f (L)

L → ε | L′

L′ → E | E , L′

Deriving the string f (a+a)∗a in the grammar:

E ⇒ T ⇒ T ∗F ⇒ F ∗F
⇒ f (L)∗F ⇒ f (L′)∗F ⇒ f (E)∗F
⇒ f (E+T)∗F ⇒ f (T +T)∗F ⇒ f (F+T)∗F
⇒ f (a+T)∗F ⇒ f (a+F)∗F ⇒ f (a+a)∗F
⇒ f (a+a)∗a.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

4/62

The CYK Parsing Algorithm and Chomsky Normal
Form

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

5/62

7.1 Parsing context-free grammars

The parsing problem: given a context-free grammar G and a
string x, is x ∈ L(G), i.e. can one derive x using the rules of G?

Previous lecture: recursive-descent parsing, LL(1) grammars.

Recursive descent parsing is an effective parsing method for
LL(1) grammars: strings of length n can be parsed in time O(n).

However, LL(1) grammars are a rather restricted class of
context-free grammars, and the parsing problem for context-free
grammars in general is not as easy.

In principle one can always use recursive-descent parsing with
backtracking, but in practice this is not feasible due to the very
large number possible derivations. (Typically O(cn) for some
c≥ 2.)

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

6/62

The Cocke-Younger-Kasami (CYK) algorithm is a “dynamic
programming” algorithm for parsing context-free grammars.

It works in time O(n3), where n is the length of the string to be
parsed. (Here the size of the grammar is assumed to be a
constant and thus ignored.)

In order to use the CYK algorithm, it is helpful to make some
transformations to the grammar at hand.

+ We first transform the grammar into Chomsky normal form,
where we only need to consider productions of a few simple basic
types.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

7/62

7.2 The Chomsky normal form for CFGs

We say that a variable A is nullable (in grammar G) if A⇒
G
∗ ε.

Definition 7.1
A context-free grammar G = (V,Σ,P,S) is in Chomsky normal form if

1. none of the variables, except possibly the start variable, are
nullable,

2. except for the possible production S→ ε, all the productions are
of form

A→ BC or A→ a

where A,B,C are variables and a is a terminal symbol, and

3. the start variable S does not occur on the right-hand side of any
production.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

8/62

1. Removing ε-productions

Let G = (V,Σ,P,S) be a context-free grammar.

Recall: a variable A ∈ V−Σ is nullable if A⇒
G
∗ ε.

Example:

In the grammar

S → A | B

A → a B a | ε

B → b A b | ε

all the variables S, A, B are nullable.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

9/62

Lemma 7.1
For any context-free grammar G, we can construct an equivalent
grammar G′ (that is, G′ generates the same language as G) in which
none of the variables, except possibly the start variable, are nullable.

Proof

Let G = (V,Σ,P,S). First, determine all the nullable variables in G:

1. Start by setting

NULL := {A ∈ V−Σ | A→ ε is a production in G}

2. and then expand the NULL set as long as possible with the
operation

NULL := NULL ∪
{A ∈ V−Σ | A→ B1 . . .Bk is a production in G and

Bi ∈ NULL for all i = 1, . . . ,k}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

10/62

After this, replace each production A→ X1 . . .Xk in G with the set of all
productions of the form

A→ α1 . . .αk, where

αi =

{
Xi if Xi /∈ NULL,
Xi or ε if Xi ∈ NULL.

Finally, remove all productions of form A→ ε. If the production S→ ε

is removed, add a new start variable S′ and the productions S′→ S and
S′→ ε.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

11/62

Example:

Let us remove the ε-productions from the grammar

S → A | B

A → a B a | ε

B → b A b | ε

Now NULL = {A,B,S} and we get

S → A | B | ε

A → a B a | a a | ε

B → b A b | b b | ε

and finally
S′ → S | ε

S → A | B

A → a B a | a a

B → b A b | b b

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

12/62

2. Removing unit productions

A production of form A→ B, where A and B are variables, is
called a unit production.

Lemma 7.2
For any context-free grammar G, we can construct an equivalent
context-free grammar G′ that does not contain any unit productions.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

13/62

Proof

Let6 G = (V,Σ,P,S). First compute the “unit successors” set F(A) for
each variable A as follows:

1. First, for each variable A, set

F(A) := {B | A→ B is a production in G and B is a variable}

2. and then expand the F-sets as long as possible with the operation

F(A) := F(A)∪
⋃
{F(B) | A→ B is a production in G}.

After this:

1. remove all the unit productions from G, and

2. for every variable A, add all possible productions of form A→ ω,
where B→ ω is a non-unit production in G for some B ∈ F(A).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

14/62

Example:

Let us remove the unit productions from our earlier grammar

S′ → S | ε

S → A | B

A → a B a | a a

B → b A b | b b

The unit successor sets for the variables
are: F(S′) = {S,A,B}, F(S) = {A,B},
F(A) = F(B) = /0.
By replacing the unit productions as
described, we get the grammar

S′ → a B a | a a | b A b | b b | ε

S → a B a | a a | b A b | b b

A → a B a | a a

B → b A b | b b

(Note that the variable S is now redundant, i.e. it cannot occur in any
derivation. One can remove all redundant variables from a grammar
with a similar algorithm. Details of this are left as an exercise.)

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

15/62

Theorem 7.3
For any context-free grammar G, we can construct an equivalent
grammar G′ that is in Chomsky normal form.

Proof

Let G = (V,Σ,P,S) be a CFG.

1. If the start variable S occurs on the right-hand side of any
production, introduce a new start variable S′ and add the
production S′→ S.

2. Remove all the ε- and unit productions by using the constructions
of Lemmas 3.1 and 3.2.

After this, each production is of one of the following forms:

A→ a, where a is a terminal,

A→ X1 . . .Xk, where k ≥ 2, or

S→ ε or S′→ ε.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

16/62

To conclude the transformation, do the following:

1. For each terminal a, add a new variable Ca and the production
Ca→ a.

2. In each production of form A→ X1 . . .Xk, k ≥ 2, first replace each
terminal a with the corresponding variable Ca, and then the whole
production with the production set

A → X1A1

A1 → X2A2
...

Ak−2 → Xk−1Xk,

where A1, . . . ,Ak−2 are again new variables.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

17/62

Example:

Consider the grammar:

S → a B C d

S → b b b

B → b

C → c

A Chomsky normal form grammar
obtained with the above construction:

S → Ca S1
1

S1
1 → B S1

2

S1
2 → C Cd

S → Cb S2
1

S2
1 → Cb Cb

B → b

C → c

Ca → a

Cb → b

Cc → c

Cd → d

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

18/62

7.3 The CYK parsing algorithm
Consider a CFG G = (V,Σ,P,S).
By Thm 7.3, we may assume that G is in Chomsky normal form.
An intuition behind the algorithm: due to the Chomsky normal
form conditions:

1. Only the start variable S can derive the empty string ε, and this
can only happen if G has the production S→ ε.

2. The only variables X that can derive a string a of length one are
the ones that have a production of form X→ a.

3. The other productions are of form X→ AB.
These derive strings of form a1...ak, where for some 1≤ l < k:
variable A derives substring a1...al and
variable B derives substring al+1...ak.

Based on these observations, we can devise a tabulating
(“dynamic programming”) algorithm that iteratively considers
longer and longer substrings of a target string, using the
information already available for shorter substrings.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

19/62

More specifically, the problem of deciding whether a given string x
belongs to the language L(G) can be solved as follows:

I If x = ε, then x ∈ L(G) if and only if S→ ε is a production in G.

I Otherwise, x = a1 . . .an and we study how substrings of x can be
derived.

Let Ni,k denote the set of variables A from which one can derive
the substring of x that starts at index i and has length k:

Ni,k = {A | A⇒
G
∗ ai . . .ai+k−1},

1≤ i≤ i+ k−1≤ n.

Clearly x ∈ L(G) if and only if S ∈ N1,n.

The sets Ni,k can be computed iteratively from shorter substrings
to longer ones as described on the next slide.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

20/62

Computing the sets Ni,k:

I First, for each i = 1, . . . ,n, assign

Ni,1 := {A | A→ ai is a production in G}.

I Next, for each k = 2, . . . ,n, and for each i = 1, . . . ,n− k+1,
compute

Ni,k :=
⋃k−1

j=1 {A | A→ BC is a production in G and
B ∈ Ni,j and C ∈ Ni+j,k−j}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

21/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B

A,C A,C B A,C

2

S,A B S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

N1,1 = {B} as B→ b is the only production that can derive the substring
b.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

22/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C

A,C B A,C

2

S,A B S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

N2,1 = {A,C} as A→ a and C→ a are the only productions that can
derive the substring a.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

23/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2

S,A B S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

Similarly for all Ni,1, where 1≤ i≤ 5

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

24/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A

B S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

N1,2 = {S,A} as S→ BC and A→ BA are the productions whose right-
hand sides are in the set N1,1×N2,1 = {BA,BC}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

25/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B

S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

N2,2 = {B} as B→ CC is the only production whose right-hand side is
in the set N2,1×N3,1 = {AA,AC,CA,CC}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

26/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3

/0 B B

4

/0 S,A,C

5

S,A,C

Similarly for all Ni,2, where 1≤ i≤ 4.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

27/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0

B B

4

/0 S,A,C

5

S,A,C

N1,3 = /0 as there are no productions with right-hand sides in the set
(N1,1×N2,2)∪ (N1,2×N3,1) = {BB,SA,SC,AA,AC}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

28/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B

B

4

/0 S,A,C

5

S,A,C

N2,3 = {B} as B→ CC is the only production with right-hand side in
the set (N2,1×N3,2)∪ (N2,2×N4,1) = {AS,AC,CS,CC,BB}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

29/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4

/0 S,A,C

5

S,A,C

Similarly for all Ni,3, where 1≤ i≤ 3.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

30/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0

S,A,C

5

S,A,C

N1,4 = /0 as there are no productions with right-hand sides in the set
(N1,1×N2,3)∪ (N1,2×N3,2)∪ (N1,3×N4,1) = {BB,SS,SC,AS,AC}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

31/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

And so on...

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

32/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

As the start variable S belongs to the set N1,5, we deduce that x belongs
to the language L(G).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

33/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

We can construct a leftmost derivation (or a parse tree) by remembering
why a variable belongs to an Ni,k set:

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

34/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

S ∈ N1,5 as S→ BC and B ∈ N1,1 and C ∈ N2,4
S⇒ BC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

35/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

B ∈ N1,1 as B→ b
S⇒ BC⇒ bC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

36/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

C ∈ N2,4 as C→ AB and A ∈ N2,1 and B ∈ N3,3
S⇒ BC⇒ bC⇒ bAB

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

37/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

A ∈ N2,1 as A→ a
S⇒ BC⇒ bC⇒ bAB⇒ baB

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

38/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

B ∈ N3,3 as B→ CC and C ∈ N3,2 and C ∈ N5,1
S⇒ BC⇒ bC⇒ bAB⇒ baB⇒ baCC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

39/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

C ∈ N3,2 as C→ AB and A ∈ N3,1 and B ∈ N4,1
S⇒ BC⇒ bC⇒ bAB⇒ baB⇒ baCC⇒ baABC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

40/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

A ∈ N3,1 as A→ a
S⇒ BC⇒ bC⇒ bAB⇒ baB⇒ baCC⇒ baABC⇒ baaBC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

41/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

B ∈ N4,1 as B→ b
S⇒ BC⇒ bC⇒ bAB⇒ baB⇒ baCC⇒ baABC⇒ baaBC⇒ baabC

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

42/62

Example:
Consider the grammar G in
Chomsky normal form:

S → A B | B C

A → B A | a

B → C C | b

C → A B | a

Executing the CYK algorithm on target string x = baaba:

i→
Ni,k 1 : b 2 : a 3 : a 4 : b 5 : a
1 B A,C A,C B A,C
2 S,A B S,C S,A

k ↓ 3 /0 B B
4 /0 S,A,C
5 S,A,C

C ∈ N5,1 as C→ a
S ⇒ BC ⇒ bC ⇒ bAB ⇒ baB ⇒ baCC ⇒ baABC ⇒ baaBC ⇒
baabC⇒ baaba

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

43/62

In general, when computing the a set Ni,k in the CYK algorithm, one
moves synchronously

in the column Ni,j towards the set Ni,k and

in the diagonal Ni+j,k−j away from the set Ni,k

Ni,i+k

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

44/62

Pushdown Automata

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

45/62

7.4 Pushdown automata

The automata class corresponding to context-free grammars
turns out to be (nondeterministic) pushdown automata:

q0
control unit:

read head:

input string:

(working string):

stack

S

T

A

C

K

tupni

δ

q1 q2

A pushdown automaton is like a
finite automaton but it is extended
with a stack of unlimited size.

The use of stack is rather limited:
the automaton can only read,
write, add and delete symbols on
the top of the stack (that is, it has
no random-access to the symbols
in the stack).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

46/62

Definition 7.2
A pushdown automaton is a tuple

M = (Q,Σ,Γ,δ,q0,F),

where

Q is the finite set of states,

Σ is the finite input alphabet,

Γ is the finite stack alphabet,

δ : Q× (Σ∪{ε})× (Γ∪{ε})→ P (Q× (Γ∪{ε})) is the
(set-valued) transition function,

q0 ∈ Q is the start state, and

F ⊆ Q is the set of accept states.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

47/62

The interpretation for a value

δ(q,σ,γ) = {(q1,γ1), . . . ,(qk,γk)}
of the transition function is that, when in the state q and reading
input symbol σ and stack symbol γ, the automaton can move to
any one of the states q1, . . . ,qk and replace the topmost symbol
on the stack with the corresponding symbol γ1, . . . ,γk.
Note that in pushdown automata, nondeterminism is allowed
already in the basic definition!
If σ = ε, the automaton can take the transition without reading the
next input symbol.
If γ = ε, the automaton does not read (and remove) the topmost
symbol on the stack, but the new symbol is added on the stack on
top of the previous one (the “push” operation).
If the stack symbol read is γ 6= ε and the stack symbol to be
written is γi = ε, the topmost symbol of the stack is removed (the
“pop” operation).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

48/62

A configuration of the automaton is a triple
(q,w,α) ∈ Q×Σ∗×Γ∗.

In particular, the start configuration of the automaton on input x is
the triple (q0,x,ε).

Intuition: in configuration (q,w,α) the automaton is in state q, the
input string that has not yet been processed is w, and the stack
contains (from top to bottom) the symbols in α.

A configuration (q,w,α) leads in one step to a configuration
(q′,w′,α′), denoted as

(q,w,α)
M̀
(q′,w′,α′),

if one can write w = σw′, α = γβ, α′ = γ′β (|σ|, |γ|, |γ′| ≤ 1), so
that

(q′,γ′) ∈ δ(q,σ,γ).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

49/62

A configuration (q,w,α) leads to a configuration (q′,w′,α′),
denoted as

(q,w,α)
M̀
∗ (q′,w′,α′),

if there is a sequence (q0,w0,α0), (q1,w1,α1), . . . , (qn,wn,αn),
n≥ 0, of configurations such that

(q,w,α)= (q0,w0,α0)
M̀
(q1,w1,α1)

M̀
· · ·

M̀
(qn,wn,αn)= (q′,w′,α′).

A pushdown automaton M accepts a string x ∈ Σ∗ if

(q0,x,ε)
M̀
∗ (qf ,ε,α) for some qf ∈ F and α ∈ Γ

∗,

meaning that it can be in an accept state when the whole input
has been processed; otherwise, M rejects x.
The language recognised by the automaton M is

L(M)= {x ∈ Σ
∗ | (q0,x,ε)

M̀
∗ (qf ,ε,α) for some qf ∈ F and α ∈ Γ

∗}.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

50/62

Example:

A pushdown automaton for the language {akbk | k ≥ 0}:

M = ({q0,q1,q2,q3},{a,b},{A,A},δ,q0,{q0,q3}),
where

δ(q0,a,ε) = {(q1,A)},
δ(q1,a,ε) = {(q1,A)},
δ(q1,b,A) = {(q2,ε)},
δ(q1,b,A) = {(q3,ε)},
δ(q2,b,A) = {(q2,ε)},
δ(q2,b,A) = {(q3,ε)},

δ(q,σ,γ) = /0 for other (q,σ,γ).

Diagram representation:

b, A/ε

a, ε/A

b, A/ε

a, ε/A

q2q3

q1q0

b, A/ε

b, A/ε

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

51/62

b, A/ε

a, ε/A

b, A/ε

a, ε/A

q2q3

q1q0

b, A/ε

b, A/ε

A computation of the automaton on input aabb:

(q0,aabb,ε) ` (q1,abb,A) ` (q1,bb,AA)
` (q2,b,A) ` (q3,ε,ε).

Since q3 ∈ F = {q0,q3}, we have that aabb ∈ L(M).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

52/62

7.5 Pushdown automata and context-free languages
Theorem 7.4
A language is context-free if and only if it can be recognised by a
(nondeterministic) pushdown automaton.

The proof of the direction “if L can be recognised by a
(nondeterministic) pushdown automaton, then L is context-free”
is omitted here but can be found in Sipser’s book (Lemma 2.27).
Also the detailed proof of the direction “if L is context-free, then L
can be recognised by a (nondeterministic) pushdown automaton”
is omitted. The main idea, however, is to have the pushdown
automaton MG corresponding to a CFG G try out leftmost
derivations S⇒

lm

∗x of G on its stack as follows:
I If the topmost symbol on the stack is a variable A, the machine

chooses some rule A→ ω and pushes the symbols
corresponding to ω on its stack.

I If the topmost symbol on the stack is a terminal symbol a, the
machine tries to match it with the current input symbol.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

53/62

Example:

A pushdown automaton
corresponding to the CFG
{S→ aSbS | bSaS | ε}:

ε, ε/S#
ε, S/aSbS

ε, S/bSaS
ε, S/ε

ε,#/ε

a, a/ε
b, b/ε

q0

q

qf

We use the following natural
abbreviation in the transition
diagram:

ε, ε/X1ε, ε/Xk−1

⇒

α, β/Xk

α, β/X1 . . . Xk

· · ·

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

54/62

For instance, on input abab the automaton has the accepting computa-
tion

(q0,abab,ε) ` (q,abab,S#) `∗ (q,abab,aSbS#)
` (q,bab,SbS#) `∗ (q,bab,bSaSbS#)
` (q,ab,SaSbS#) ` (q,ab,aSbS#)
` (q,b,SbS#) ` (q,b,bS#)
` (q,ε,S#) ` (q,ε,#)
` (qf ,ε,ε).

This corresponds to the following leftmost derivation of abab in the
grammar:

S ⇒ aSbS ⇒ abSaSbS ⇒ abaSbS
⇒ ababS ⇒ abab.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

55/62

A pushdown automaton M is deterministic, if for each
configuration (q,w,α) there is at most one configuration
(q′,w′,α′) such that

(q,w,α)
M̀
(q′,w′,α′).

Unlike in the case of finite automata, nondeterministic pushdown
automata are properly more powerful than deterministic ones.

As an example, the language {wwR | w ∈ {a,b}?} can be
recognised by a nondeterministic pushdown automaton but not
by any deterministic one. (Proof omitted.)

A context-free language is deterministic if it can be recognised by
some deterministic pushdown automaton.

Deterministic context-free languages can be parsed in time O(n);
in general, parsing context-free languages with currently known
algorithms takes almost time O(n3).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

56/62

Limitations of Context-Free Languages

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

57/62

7.6 A pumping lemma for context-free languages

There is a “pumping lemma” for context-free languages as well.

However, now the string must be “pumped” synchronously in two
parts.

Lemma 7.5 (The “uvwxy-lemma”)
Let L be a context-free language. Then for some n≥ 1, every string
z ∈ L with |z| ≥ n can be divided in five parts z = uvwxy in such a way
that

1. |vx| ≥ 1,

2. |vwx| ≤ n, and

3. uviwxiy ∈ L for all i = 0,1,2,

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

58/62

Proof

Let G = (V,Σ,P,S) be a CFG, in Chomsky normal form, that generates
the language L.

Then any parse tree of height h in G has at most 2h leaf nodes. In other
words, any parse tree for a string z ∈ L contains a path (from the root
to a leaf) whose length is at least log2 |z|.
Let k be the number of variables in G and define n = 2k+1. Consider
any string z ∈ L with |z| ≥ n, and take any parse tree for it.

By the above observations, the tree has a path whose length is at least
k+1; in such a path, at least one variable A must occur twice (in fact,
already among the k+2 lowest nodes of the path).

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

59/62

S

A

A

yxwvu

The string z can now be divided in five parts z = uvwxy, where w is
the substring derived from the lowest occurrence of A and vwx is the
substring derived from the second-lowest occurrence of A in the path.

The substrings can thus be obtained from a derivation

S⇒∗ uAy⇒∗ uvAxy⇒∗ uvwxy.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

60/62

⇒

A

yx

x

xwv

v

vu

A

A

A

A

...
yxwvu

SS

As S⇒∗ uAy, A⇒∗ vAx and A⇒∗ w, we can “pump” the substrings v
and x around the substring w:

S⇒∗ uAy⇒∗ uvAxy⇒∗ uv2Ax2y⇒∗ . . .⇒∗ uviAxiy⇒∗ uviwxiy.

Thus uviwxiy ∈ L for all i = 0,1,2,

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

61/62

As the CFG G is in Chomsky normal form and A⇒∗ vAx, we necessar-
ily have |vx| ≥ 1.

And as we selected the variable A in a way that guarantees that its
second-lowest occurrence is at most height k+ 1 from the leaf nodes
of the parse tree, the substring vwx derived in the parse tree rooted at
this occurrence has at most 2k+1 = n symbols.

CS-C2160 Theory of Computation / Lecture 7

Aalto University / Dept. Computer Science

62/62

Example:

Consider the language

L = {akbkck | k ≥ 0}.

Suppose that L would be context-free and consider the string
z = anbncn ∈ L, where n is the length parameter in Lemma 7.5.

By the Lemma, we should now be able to divide z into five parts

z = uvwxy, |vx| ≥ 1, |vwx| ≤ n.

Due to the second condition above, the substring vx contains at least
one symbol: a, b, or c. But due to the third condition, the substring
vx cannot contain every symbol a, b and c. Therefore, the string
uv0wx0y = uwy cannot contain equal numbers of all symbols a, b and
c, and thus does not belong to language L. Therefore, our assumption
is wrong and L is not context-free.

	The CYK Parsing Algorithm and Chomsky Normal Form
	Parsing context-free grammars
	The Chomsky normal form for CFGs
	The CYK parsing algorithm

	Pushdown Automata
	Pushdown automata
	Pushdown automata and context-free languages

	Limitations of Context-Free Languages
	A pumping lemma for context-free languages

