Aalto University School of Electrici

Calibration and Uncertainty

ELEC-E5710 Sensors and Measurement Methods

J. Fraden, *Handbook of Modern Sensors,* Chapter 2.20 BIPM Guide to the Expression of Uncertainty in Measurement (GUM)

Calibration of instruments

- In calibration, reading of a device is compared to a more accurate device at one or several measurand levels
- Calibration can be used to reveal and correct for measurement errors due to e.g. Non-linearity, Offset, Gain error, or Drift
- In calibration, device is often adjusted to minimize the noted errors but not necessarily. If not, user of the device needs to correct errors manually
- Traceability to SI system of units guarantees comparable measurements with other measurers
- Calibration result must be accompanied with an uncertainty estimate

Example: Calibration results of a digital voltmeter

- Digital voltmeter Agilent 34410A is calibrated by comparing with a traceable Keithley Calibrator
- Readings at 0, Full range+, and Full range-
- In addition, midle values to detect linearity

Input voltage	Measurement range	Multimeter reading	Uncertainty
0 mV	100 mV	0.0039 mV	0.0002 mV
20 mV	100 mV	20.00540 mV	0.002 mV
-20 mV	100 mV	-19.99403 mV	0.002 mV
50 mV	100 mV	50.00607 mV	0.002 mV
-50 mV	100 mV	-49.99412 mV	0.002 mV
100 mV	100 mV	100.00494 mV	0.002 mV
-100 mV	100 mV	-99.99480 mV	0.002 mV
0 V	1 V	-0.0000012 V	0.0000003 V
0.2 V	1 V	0.20000 V	0.00001 V
-0.2 V	1 V	-0.19999 V	0.00001 V
0.5 V	1 V	0.50000 V	0.00001 V
-0.5 V	1 V	-0.49999 V	0.00001 V
1 V	1 V	0.99999 V	0.00001 V
-1 V	1 V	-0.99999 V	0.00001 V
0 V	10 V	0.0000003 V	0.0000009 V
2 V	10 V	2.00001 V	0.0001 V
-2 V	10 V	-1.99999 V	0.0001 V
5 V	10 V	4.99998 V	0.0001 V
-5 V	10 V	-4.99996 V	0.0001 V
10 V	10 V	9.99998 V	0.0001 V
-10 V	10 V	-9.99996 V	0.0001 V

 Table 1. Direct voltage. The uncertainty of the multimeter reading is expanded with a coverage factor k = 2.

 Input voltage.
 Measurement range.

 Multimeter reading.
 Uncertainty.

International System of Units (SI)

- The most widely used system of measurement
 - "The foundation of modern science, industry and commerce"
- Based on the metric system, originally established in France in 1795
- Adopted by international agreement in 1960, redefined in May 2019!
- Maintained by International Bureau of Weights and Measures (BIPM)
- Comprises a coherent system of units of measurement built on seven base units, set of twenty decimal prefixes, and 22+ derived units
- Each unit has a formal definition and sets of instructions that allows unit to be realized in practice
- Since 2019, all base units are derived from invariant constants of nature

Prefix		Bass 10	
Name	Symbol	Base 10	
yotta	Y	10 ²⁴	
zetta	Z	10 ²¹	
exa	E	10 ¹⁸	
peta	Р	10 ¹⁵	
tera	Т	10 ¹²	
giga	G	10 ⁹	
mega	М	10 ⁶	
kilo	k	10 ³	
hecto	h	10 ²	
deca	da	10 ¹	
deci	d	10 ⁻¹	
centi	С	10 ⁻²	
milli	m	10 ⁻³	
micro	μ	10 ⁻⁶	
nano	n	10 ⁻⁹	
pico	р	10 ⁻¹²	
femto	f	10 ⁻¹⁵	
atto	а	10 ⁻¹⁸	
zepto	Z	10 ⁻²¹	
yocto	У	10 ⁻²⁴	

2019 redefinition of SI base units

- Prototypes of [kg] and [m] no longer used!
- Based on fixed values of constants: Planck constant *h*, elementary charge *e*, Boltzmann constant *k*, Avogadro constant N_A , speed of light *c*, transition frequency of Cs-133 atom Δv_{Cs} , and luminous efficacy K_{cd}

- Derived units are formed by powers, products and quotients of the base units
- 22 derived units are recognized by the SI with special name

Traceability and standards

- Traceability: property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty
- Primary standard: direct realisation of a unit according to its definition
- Secondary standard: the value is obtained by a comparison to the primary standard.
- Working standard: used for routine calibrations of measurements instruments.

Traceability and standards

- BIPM, (National metrology institutes)
- National metrology institutes (NMIs)
- Calibration laboratories
- Industry, test laboratories
- End users, customers

Measurement uncertainty

- Uncertainty of measurement is the doubt about the validity of the result of a measurement
 - Measure for missing information
 - Also tells us something about the quality of the measurement
- "Any measurement that you make, without any knowledge of uncertainty, is meaningless"
 - Walter Lewin (1936-), professor emeritus, MIT
- Calibrations, scientific research and other accurate measurements require systematic analysis and estimation of uncertainty
- Useful for practical measurements as well

Terminology

- The objective of a **measurement** is to determine the **value** of the **measurand**, i.e. the value of the **particular quantity** to be measured
- In many cases, a measurand is not measured directly, but is determined from other **input quantities** through known relationship
- Influence quantity is not a measurand but still affects the result of measurement
 - For example temperature, humidity, pressure, vibration
- **Calibration** establishes a relation between the indication of the measurement device and the quantity value provided by a measurement standard, with corresponding uncertainties.
 - Comparison with a reference value with a smaller uncertainty

Error vs. uncertainty

- Error is the difference between the measured value and the 'true value' of the measurand. Errors should be corrected, not added to uncertainty (if they are significant):
 - Corrections from calibration certificates
 - Measured or modelled characteristics
 - Use of calibration artefacts before measurements
- Uncertainty is a quantification of the doubt about the measurement result
 - Uncertainties of calibrations, characteristics, and corrections
 - Error with unknown values are sources of uncertainty

Uncertainty budget

- Uncertainty components analysed as standard uncertainties (1δ, 68.3% probability)
- Combined standard uncertainty gives range, where measurand is with 68.3% confidence
- Expanded uncertainty increases the confidence to 95% (normal distribution)

	Aa
	Sc
	En

Table 2.2. Uncertainty Budget for Thermistor Thermometer				
Source of Uncertainty	Standard uncertainty (°C)	Туре		
Calibration of sensor	0.03	В		
Measured errors				
Repeated observations	0.02	А		
Sensor noise	0.01	А		
Amplifier noise	0.005	А		
Sensor aging	0.025	В		
Thermal loss through connecting wires	0.015	А		
Dynamic error due to sensor's inertia	0.005	В		
Temperature instability of object of measurement	0.04	А		
Transmitted noise	0.01	А		
Misfit of transfer function	0.02	В		
Ambient drifts				
Voltage reference	0.01	А		
Bridge resistors	0.01	А		
Dielectric absorption in A/D capacitor	0.005	В		
Digital resolution	0.01	А		
Combined standard uncertainty	0.068			
Expanded uncertainty ($k = 2$)	0.136			

Two types of uncertainty components

- **Type A uncertainty:** uncertainty component is obtained from statistical analysis of series of observations
 - "Five sequential measurements had the standard deviation of..."
 - "With a 10 second integration time per sample, a signal-to-noise ratio of 12 dB was achieved, resulting in...
- **Type B uncertainty:** uncertainty component is obtained using other methods than statistical analysis, for example:
 - Accuracy guaranteed by device manufacturer
 - Value obtained from calibration certificate
- Increasing the number of measurements will not decrease type B uncertainty

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

1. Formulate how the measurand is determined from input quantities

- Usually measurand *Y* is not measured but determined of *N* amount of input variables: $Y = f(X_1, X_2, ..., X_N)$
 - Output power P of a DC power supply is determined by measuring voltage U and current I

$$P = UI$$

Temperature *T* is determined by measuring the resistance *R* of a platinum sensor, and by using the *R*₀ value provided by the sensor manufacturer and coefficients *A* and *B* based on commonly used resistivity model

$$T=rac{-A+\sqrt{A^2-4B\left(1-rac{R_T}{R_0}
ight)}}{2B}$$

8.3.2021 17

- 1. Formulate how the measurand is determined from input quantities
- Typically, the governing equations consist of basic operations
- But it is possible that they involve complex mathematics...

$$\alpha = \frac{\int \Phi_{e,s}(\lambda) R_{s}(\lambda) \frac{\alpha_{s}(\lambda)}{1+\alpha_{s}(\lambda)} d\lambda + \int \Phi_{e,p}(\lambda) R_{p}(\lambda) \frac{\alpha_{p}(\lambda)}{1+\alpha_{p}(\lambda)} d\lambda}{\int \Phi_{e,s}(\lambda) R_{s}(\lambda) \frac{1}{1+\alpha_{s}(\lambda)} d\lambda + \int \Phi_{e,p}(\lambda) R_{s}(\lambda) \frac{1}{1+\alpha_{p}(\lambda)} d\lambda}{\eta_{m}(\lambda) = \eta_{a,m}(\lambda,\theta_{1}) + \sum_{i=2}^{N} \left[\eta_{a,m}(\lambda,\theta_{i}) \prod_{j=1}^{i-1} \rho_{r,m}(\lambda,\theta_{j}) \right]}$$

• ...or numerical methods, computer simulations, extrapolation etc.

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

- 2. Identify error sources and correct when possible (or necessary)
- Based on instrument calibrations:
 - "According to the calibration of a digital voltage meter, the voltage reading must be corrected with a factor of 1.00021"
- Some error sources can be measured
 - "When the water flow was cut off, the flow meter showed the value of 0.2 I / min. This offset was substracted from the recorded values
 - "The signal loss of the photodetector due to reflection from the front surface was measured to be 10.2 %"

2. Identify error sources and correct when possible (or necessary)

- Calculations
 - "It was calculated that the input impedance of the oscilloscope attenuates the measured signal source by 0.3 %
- Computer simulations
 - "Computer simulations indicate that the grooves in mechanical parts induce an underestimation around 20 ppm in the diameter measurement"

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

3. List all (relevant) sources of uncertainty

- Uncertainty components are the basis of so called uncertainty budget, which lists all uncertainty components and their contribution to the total uncertainty
- The more demanding the measurement, the more detailed the list of uncertainty components needs to be
- Typically, in an uncertainty budget there are a couple of dominating components. If these are identified, the smaller components may be skipped
- In simple measurements, uncertainties due to calibration of the measurement instrument and Type A uncertainty (repeatability or reproducibility) may be enough

3. List all (relevant) sources of uncertainty (list from GUM)

a) incomplete definition of the measurand;

b) imperfect realization of the definition of the measurand;

c) nonrepresentative sampling — the sample measured may not represent the defined measurand;

d) inadequate knowledge of the effects of environmental conditions on the measurement or imperfect measurement of environmental conditions;

e) personal bias in reading analogue instruments;

Aalto University School of Electrical Engineering

8.3.2021 24

3. List all (relevant) sources of uncertainty

f) finite instrument resolution or discrimination threshold;

g) inexact values of measurement standards and reference materials;

h) inexact values of constants and other parameters obtained from external sources and used in the data-reduction algorithm;

i) approximations and assumptions incorporated in the measurement method and procedure;

j) variations in repeated observations of the measurand under apparently identical conditions. (Repeatability)

Aalto University School of Electrical Engineering

8.3.2021 25

- 3. List all (relevant) sources of uncertainty
- Repeatability: The agreement between consecutive measurements when the same measurand is measured in unchanged conditions.
 Same method of measuring, device, measurer, place and repeats in a short period of time.
- Reproducibility: The agreement between consecutive measurements when the same measurand is measured in changed conditions.
 - Specification of changed conditions should be included

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

4. Calculate standard uncertainty of mean for Type A uncertainties

• Input variable X. The best estimate \bar{x} of its expected value is the arithmetic mean of *n* amount of independent measurement results:

$$\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

 Single measurements differ from each other. Standard deviation of a measurement result distribution describes the variation of single values around the mean:

$$s(x_k) = \sqrt{\frac{1}{n-1} \sum_{k=1}^n (x_k - \bar{x})^2}$$

• Standard deviation $s(x_k)$ describes the repeatability of measurements.

Aalto University School of Electrical Engineering

8.3.2021 28

- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 68% of results lie within $\pm s(x_k)$
- Standard deviation of measurement does not decrease even when the number of measurements *N* increases
- Instead, Type A uncertainty is better evaluated using the standard deviation of a mean, written $s(\bar{x})$,

$$s(\bar{x}) = \frac{s(x_k)}{\sqrt{n}}$$

• Standard deviation of the mean $s(\bar{x})$ describes the reproducibility of measurements

4. Calculate standard uncertainty of mean for Type A uncertainties

Aalto University School of Electrical Engineering

8.3.2021 30

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

5. Use other methods to estimate Type B uncertainties

- Most uncertainties are of type B
 - Uncertainty of calibration from calibration certificate
 - Measured characteristics for devices such as non-linearity, frequency response, wavelength dependence
 - Characteristics taken from datasheets, manuals, literature, such as ageing, non-linearity, temperature dependence
- Uncertainties need to be converted to standard deviations, 68.3% confidence level
 - Expanded uncertainties (k=2) with normal distribution divided with 2
 - Unity distributions (100% confidence) divided with $\sqrt{3}$.

- 5. Use other methods to estimate Type B uncertainties
- Type B uncertainty components are often normally distributed
 - Device calibrations, ambient conditions, modelled corrections etc.
 - Safest assumption to make about type B uncertainty
- Standard uncertainty equals a confidence level of 68,3 % (coverage factor k = 1).

Aalto University School of Electrical Engineering

8.3.2021 33

5. Use other methods to estimate Type B uncertainties

- Some uncertainty components have uniform distribution
 - Those who have strict upper and lower limits (-a and a)
 - Display resolution, counter value
 - Specifications from datasheets (mainly)
- Type B standard uncertainty of a uniform distribution can be calculated using statistics:

$$u(x_i) = \frac{a}{\sqrt{3}}$$

Aalto University School of Electrical Engineering

8.3.2021 34

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- Goal is to find out how much the standard deviation of every uncertainty component affects the standard uncertainty of the measurand
- If the uncertainty component is one of the input quantities, the contribution can be easily calculated
 - Vary input parameter by its standard uncertainty and calculate how much the obtained value changes
- Other uncertainty components must be analyzed using
 - Test measurement, literature data, computer simulations, "special know-how of the measurer"

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

7. Calculate the combined standard uncertainty

- If the uncertainty components are uncorrelated, the combined standard uncertainty of the measurand can be calculated by taking the sum in quadrature of each contribution
- That is "square root of the sum of the squares"

$$u(Y) = \sqrt{u(x_1)^2 + u(x_2)^2 + u(x_3)^2 + \cdots + u(x_4)^2}$$

- All uncertainty contribution should be either in absolute values (seconds, amperes, grams etc.) or relative values (%)
- Typically all uncertainty components are assumed to be uncorrelated
 - If some are significantly correlated, the correlations must be taken into account
 - This requires more sophisticated analysis

- 1. Formulate how the measurand is determined from input quantities
- 2. Identify error sources and correct when possible (or necessary)
- 3. List all (relevant) sources of uncertainty
- 4. Calculate standard uncertainty of mean for Type A uncertainties
- 5. Use other methods to estimate Type B uncertainties
- 6. Calculate/estimate how much every uncertainty source contributes to uncertainty of the measurand
- 7. Calculate the combined standard uncertainty
- 8. Calculate the expanded uncertainty for desired level of confidence

8. Calculate the expanded uncertainty for desired level of confidence

- Very often, the measurement uncertainties are expressed using expanded uncertainty
- Expanded uncertainty: $U = k \cdot u$
- Coverage factor k=2, is equal to confidence level of 95 %. \bullet
- There is a probability of 95% that the real value of Y belongs to the interval of

$$y - 2\sigma \le Y \le y + 2\sigma$$

Using a coverage factor k=3 we have a probability of 99,7 % that the real value is in the interval of + 3σ .

Recap

- Calculate standard uncertainties of uncertainty components
- Determine the effect of uncertainty components to the uncertainty of the measurand
- Obtained uncertainty components are summed quadratically
 → Combined standard uncertainty of the measurand
- Combined standard uncertainty is multiplied by a coverage factor (typically k=2)

 \rightarrow Expanded uncertainty

 Uncertainty often reported is either absolute (e.g. millivolt or kelvin) or relative (%)

