

Temperature and humidity

ELEC-E5710 Sensors and Measurement Methods

Why to measure temperature?

- One of the most important areas of measurement
- Most phenomena depend on the temperature
- Largest group of non-electric measurement devices in industrial sector and in research
- Temperature sensors are used to measure for example
 - Flow
 - Radiation
 - Pressure

Effect of temperature

- Affects many phenomena \rightarrow several ways to measure
- Mechanical
 - Thermal expansion: pillar of liquid, bimetal
 - Oscillating crystal
- Electrical
 - Resistor: RTD, thermistor
 - Voltage: thermocouple
- Semiconductor
 - Band-gap: threshold voltage of a pn-junction
- Radiation
 - Planck's law: pyrometers

Heat transfer mechanisms

- Conduction
 - Heat transfers inside the material through collisions between neighboring molecules (in all phases of matter)
 - Thermal conductivity [W/(K·m)]
- Convection
 - Heat transfers by collective movement of molecules in a fluid (in liquids, gases, plasmas)
 - Free convection (differences in density)
 - Forced convection
- Radiation
 - Depends on temperature and emissivity
 - Significant only with high temperatures

Temperature scales

- Fahrenheit (in 1724)
 - Cool brine: sodium chloride + water (0 °F, -17.8 °C)
 - °C ≈ (°F-30)/2
- Celsius (in 1742)
 - Water freezing point (0 °C), boiling point (100 °C)
- Kelvin (in 1848)
 - Became SI quantity in 1954
 - Absolute thermodynamic scale, the triple point of water
 (273.16 K = 0.01 °C, 611.73 Pa = 0.006 bar)
 - Boltzmann constant k equals 1.380649 kg·m²·s⁻²·K⁻¹

°
$$C = \frac{5}{9}$$
 (° $F - 32$) ° $F = \frac{9}{5}$ ° $C + 32$ $K = °C + 273.15$

Aalto University School of Electrical Engineering

2019 redefinition of SI base units

- Fixing the triple point of water contains uncertainties
 VSMOW (Vienna Standard Mean Ocean Water)
- 20. May 2019, Kelvin will be redefined by setting exact numerical values for the Boltzmann constant 1.380649 kg·m²·s⁻²·K⁻¹
- Realization based on e.g. Johnson noise thermometry, photonic thermometry, quantum thermometer
- Practical realization will remain using triple point of water [NIST]

Requirements for a temperature sensor

- Low specific heat, little mass and high thermal conductivity are required for a sensor element
- Low thermal conductivity and resistance for the contact between the sensor and measuring electronics
- Glue with good thermal conductivity or silicon paste and press can be used to attach the sensor to a surface
- Temperature gradient between the sensor and the surface can be reduced by placing the sensor to a hole or a channel filled with silicon paste

Mechanical instrument

- Liquid filled thermometer
- Capillary thermometer
- Bimetal thermometer

Capillary thermometer

- A sensor container with a capillary connected to Bourdon tube
 - Container filled with liquid, gas, or vapor
- Changing pressure moves the pointer on the gauge
- Measurement range:
 ~ -200 750 °C
- Uncertainty > 1%
- Response time of ~ 0.1 s – 1 min

Bimetal thermometer

- Two thin metal strips with different temperature coefficients rolled together
 - Bent to a helix or a spiral
- Used in rough measurements due to low-cost
- Temperature range: -70 +500 °C
- Longer response time compared to liquid filled thermometers due to larger mass
- Used e.g. in sauna

Electrical thermometers

- Resistance temperature detector (RTD)
- Thermistor ceramic or polymer
- Thermocouple
- Semiconductor thermometer

Resistance temperature detector (RTD)

• Resistance of a metal is dependent on temperature

$$R(T) = R_0(1 + \alpha T + \beta T^2 + ...)$$

 $-\beta << \alpha$, can be approximated on the first degree

- Close to linear, β may be 3-4 orders of magnitude smaller than α
- The most stable temperature sensor
- Temperature range: -250 °C +950 °C
- Specific resistance: ~ $10 1000 \Omega$
- The most common type is platinum based Pt-100

RTD structures

- Film resistor
 - Thin \rightarrow short response time
 - Inexpensive
 - Not very accurate (thermal expansion)
- Wire-wound resistor
 - Better accuracy
 - Wider temperature range
 - Compromise between accuracy and stability
- Resistor based on coil elements
 - The most accurate version
 - Expansion does not cause tension
- Platinum resistance thermometers as primary standard in ITS-90

Aalto University School of Electrical Engineering

Pt-100 sensor

- Specific resistance $R_0 = 100 \ \Omega \ (at \ 0 \ ^{\circ}C)$ $- \alpha = 3.9083 \cdot 10^{-3}$ $- \beta = -5.775 \cdot 10^{-7}$
- 138.5 Ω at 100 °C
- Stable

- Measurement range: -259 +962 °C
- Standard platinum sensor sensitivity:
 - 0.385 Ω /°C (European standard)
 - 0.392 Ω/°C (American standard uses more pure Pt)

Measuring with Pt-100

- Low resistance and sensitivity → four-point measurement often necessary
 - E.g. 1 ohm conductor wire/junction resistance is 1% of nominal value
 - E.g. 1 mA measuring current at 0 °C creates only 100 mV signal
- Error of 0.1 mV or 1 μ A in signal to be measured would cause the temperature error of 0.4 °C R_l
- Self heating
 - Measuring current of 1 mA produces 100 µW of heat
 - Low thermal resistance is important!

RTD properties

- Temperature dependencies of resistance thermometers
- NTC thermistor plotted for comparison
- Copper is the most linear, but oxidizes intensively
- Platinum is the most stable

18

Temperature

Aalto University School of Electrical Engineering

Thermistor

- Usually ceramics (metal oxides) or polymers
- Based on temperature dependency
 of resistance
- NTC negative factor, PTC positive factor
- High sensitivity (2 8 %/°C)
- Non-linear:

High specific resistance
$$\rightarrow$$
 error caused by the wires is small

• Faster and more sensitive than RTD and thermocouples

NTC thermistor

- More accurate than PTC
- Size and material resistivity determines the resistance
- Tolerance for mass produced thermistors is often ±20%
- General specifications provided by manufacturer are often not accurate enough
- User can calibrate (several calibration points needed)

PTC thermistor

- Response might be challenging to model
 - The temperature ranges can be modeled separately
- Often used as an overload protector (Polymeric Positive Temperature Coefficient, PPTC, polyfuse)
 - Self heating causes the resistance to increase

Measurement equation of a thermistor

- The logarithm of thermistor's resistance depends on the following polynomial: $\ln(R) = A_0 + \frac{A_1}{T} + \frac{A_2}{T^2} + \frac{A_3}{T^3}$
- Approximation $\ln(R) \approx A + \frac{\beta}{T}$
 - A is a constant and β is a material dependent factor

$$\begin{cases} \ln(R_0) - \beta/T_0 = A\\ \ln(R) - \beta/T = A \end{cases} \Rightarrow R = R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T_0}\right)} \end{cases}$$

• β can be determined with two-point calibration

Linearization of a thermistor

- Voltage dividing: Measuring voltage e_o(T) increases as the temperature increases
- Not completely linear

$$e_{\rm o}(T) = \frac{R}{R + R_T} e_{\rm s}$$

Linearization of a thermistor

• Voltage divider with parallel resistance

S-shaped transfer function has a bending point (a local maximum of a derivative)

- By choosing suitable R_1 and R_2 , this point is in the middle of the area
- Better average linearity

Linearization of a thermistor

Logarithmic amplifier

$$V_{\rm out} = -V_{\rm T} ln \left(\frac{V_{\rm in}}{I_{\rm S} R} \right)$$

where $V_{\rm T}$ is the thermal voltage and $I_{\rm S}$ the saturation current

• Not perfect since the thermal voltage and saturation current of a diode are temperature dependent

Self heating

- Resistance R of the sensor is measured with a small measurement current I
- Current heats the sensor with power $P = RI^2$
- Temperature of the sensor increases if it is not able to transfer the generated heat to surroundings efficiently

$$\Delta T = rP = rRI^2 ,$$

where *r* is the thermal resistance between the sensor and the surroundings

- ΔT is minimized by
 - Decreasing *r* (by better connection)
 - Choosing low resistance sensors (measurement current is constant)
 - Using pulsed current

The limitations of resistance thermometers

- Wire resistance and its temperature dependence
 Junction resistance and its variation
- The thermal noise
- Resistance changes by time and by changing environment
- Self heating by the measurement current
 - Thermistors: nonlinearity
 - RTDs: large size, slow
- Highest temperature 660 °C

Thermocouple

- Seebeck effect
 - Two different conducting material wires form a closed circuit. Current flows in the circuit as long as the junctions are in different temperature
 - The current is created by the thermo voltage
 - Sensitivity: 10–70 μ V/°C

Thermocouples

Туре	Positive element	Negative element	Temperature range / °C	Notes	
E	Chromel	Constantan	-240 - +800	For low temperatures, high sensitivity	
J	Fe	Constantan	0-+800	Used commonly in old devices (inexpensive, high sensitivity)	
к	Chromel (90% Ni, 10% Cr)	Alumel (95% Ni, 2% Mg, 2% Al, 1% Si)	-200 – +1200	The most common, inexpensive	
N	Nicrosil (84.1 % Ni, 14.4% Cr, 1.4% Si, 0.1% Mg)	Nisil (95.5% Ni, 4.4% Si, 0.1% Mg)	-250 – +1300	New enhanced K-type, to high temperatures, good resistance to oxidizing	
В	Pt	Pt ₈₀ Rh ₂₀	870 – 1700	Expensive, stable, corrosion resistant (noble metal), for high temperatures	
R	Pt	Pt ₈₇ Rh ₁₃	0 – 1480		
S	Pt	Pt ₉₀ Rh ₁₀	0 – 1480		
Т	Cu	Constantan	-200 - +400		

Color codes for thermocouples

International Thermocouple Colour Codes									
Thermocouple Extension Type		ANSI		DIN	NFC				
JX	+ Iron - Constantan ®	+	+	+	+	+	+		
кх	+ Chromel ® - Alumel ®	+	+	+	+	+	+ 660		
тх	+ Copper - Constantan ®	+	+	+	+	+	+ 60		
EX	+ Chromel ® - Constantan ®	+	+	+	+	+	+ 60		
NX	+ Nicrosil ® - Nisil ®	+	+				+		
SX RX	+ Copper - Alloy 11	+	+	+	+	+	+		
вх	+ Copper-S - Copper-E	+		+	+	+	+ 60		

Sensitivities of thermocouples

Measuring with a thermocouple

- The connection between the measuring instrument and the thermocouple wire makes another junction
 - If the temperature of 500 °C of an oven is measured, the thermo voltage depends on the oven temperature and the room temperature where the measuring instrument is placed
- If room temperature is 20 °C, voltage reading is the difference of thermo voltages at 500 °C and 20 °C!
 - Voltage caused by 20 °C is negative because of the inverted polarity of the junction

Measuring with a thermocouple

- Digital voltmeters often used
 - contain a reference temperature from which a built-in processor calculates the thermo voltage
 - sums the thermo voltage produced by the thermocouple and calculates the temperature according to standard
- If accurate measurements are required, reference junctions are used in a controlled temperature

Reference junction in a thermocouple measurement

Practical connections for a thermocouple

 Reference junction can be implemented with extension wires

 Parallel connection produces higher voltage (Thermopile)

Limitations in a thermocouple measurement

- Requires the reference temperature
- Extension wires must be the same type as the wires in the thermocouple
 - The polarity of the extension wires
- Nonlinear dependency of thermo voltage on temperature

Semiconductor thermometers

- Temperature affects significantly to the number of charge carriers
 - This affects both conductivity (thermistors) and band gap
- Voltage drop over the pn-junction of a diode and a transistor
- Very common in integrated circuits
- Highest temperature about 250 °C

Diode sensor

- Diode forward voltage V_F is proportional to the temperature.
- Zener voltage is temperature dependent.
- Properties
 - Temperature range:
 -40 +125°C
 - Sensitivity: +10 mV/K
 - Nonlinearity: 0.5 °C at range -10 – +100°C

IC sensor

- Linear, high output voltage, and inexpensive
- Temperatures <250 °C, slow, self heating

Crystal thermometer

- Frequency of the oscillating crystal depends on temperature
- Signal is multiplied with a signal from a reference oscillator
- The temperature is calculated from sum and difference frequencies
- Mechanically very stable \rightarrow even ~0.001 °C accuracy

Calibrating thermometers

- Conditions may change etc. \rightarrow calibrating regularly
- Comparison meters
 - Mercury thermometers
 - Platinum resistance thermometers in more accurate measurements
 - Pyrometers at high temperatures
- Comparison meters are calibrated to reference points
 - Inaccuracy of a reference point $10^{-3} 10^{-4}$ K

Optical thermometers

- Measure photons emitted by objects
- Enable non-contact
 temperature measurements
- Based on Planck's law
- Pyrometers
 - Total radiation pyrometer
 - Selective radiation pyrometer
- Infrared camera

Planck's law

• Spectral radiance of an object

$$B_{\lambda}(\lambda,T) = \varepsilon \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda k_{\rm B}T}} - 1}$$

- Emissivity *ε* is
 - 1 for a black body
 - <1 for a grey body</p>
 - 0 1 for real objects having the wavelength dependence

Black body

- A black body absorbs all incoming radiation (0% is reflected)
- Spectrum of a black-body radiation depends only on its temperature
- Total radiation power is the integral of Planck's law

 $P = A\sigma T^4$ (Stefan-Boltzmann law),

where A is the area of the object and σ is Stefan-Boltzmann constant

• The peak wavelength of the spectrum

 $\lambda = b/T$ (Wien's displacement law),

where *b* is Wien's displacement constant

Total radiation pyrometer

- Temperature is calculated according to Stefan-Boltzmann law
- The problem are absorptions by the air and optics and emissivity
- Detector can be e.g. thermocouple, bolometer, thermopile etc.

Optical pyrometer

- Was the first pyrometer (in 1901)
 - Selective radiation pyrometer (red filter), only for high temperatures
- Current of the glowing filament is adjusted so that it "disappears" from the picture. Therefore, its temperature corresponds to the temperature of the radiator
 - Emissivity is approximated to be the same

Aalto University School of Electrical Engineering

Black body

What is humidity?

Water vapor in gas or in other substances

- In gas: Humidity
- In other substances: Water content

Described with differend quantities:

- Absolute humidity
- Mass mixing ratio
- Specific humidity
- Relative humidity

Absolute and relative humidity

• The mass of water vapour in a certain volume of gas:

 $AH = \rho_{V} = m_{V} / V$

- Know also as volumetric humidity
- Absolute humidity (AH) changes as a function of temperature and pressure
 - The quantity does not fit well to situation where temperature changes a lot
- Relative humidity (RH), expressed as a percent, measures the current absolute humidity relative to the maximum (highest point) for that temperature.

Mass ratios

 Specific humidity is the mass of water vapour in relation to the total mass

 $SH = m_v / m_t$

 $m_v + m_g = m_t$

 Mass mixing ratio is the mass of water vapour in relation to the mass of dry gas

 $MR = r = m_v / m_g$

 Temperature does not affect mass ratios (unless condensation happens)

Relative humidity (RH)

Ratio of the vapour pressure to the saturated vapour pressure at the same temperature

$$RH = \phi = \frac{p_{(H_2O)}}{p_{(H_2O)}^*} \times 100\% = \frac{MR}{MR^*} \times 100\% = \frac{SH}{SH^*} \times 100\%$$

- Reveals how close the dew point is
- Important at weather forecasts
- Affects to human's comfort
 - Thermal regulation of a body, high dew point less comfortable

Hygrometer (atmospheric humidity meter)

- Most accurate result by measuring the dew point
 - Detecting the phase change of water
- The effect of water vapour to electrical, mechanical, and optical properties of a material

Detecting the phase change of water: Optical dew point sensor

- A mirror is cooled to the dew point
- The deposit of moisture on the mirror surface is kept constant by controlling the Peltier element
- The deposit of moisture is measured optically and the . signal then controls the Peltier element

The uncertainty of the device is 0.1-0.3 °C

Detecting the phase change of water: Optical dew point sensor

Detecting the phase change of water: Optical dew point sensor

- + Accurate
- + Wide range (-80 °C ... +100 °C)
- + Stable
- Expensive
- The mirror needs regular cleaning
- Slow

Detecting the phase change of water: Other dew point sensors

Instead of optical detection:

- Quartz crystal microbalance, QCM (change of frequency)
 - Especially below 0 °C
 - Relatively new method, not widely in use
- Impedance
 - Normal humidity zone
 - Fast

Capasitive polymer sensors

- The most common RH sensor type
- Measurement range even 0-100 %RH
- Uncertainty at best 2 %RH
- Wide temperature range: -40 ... +80 °C

Capasitive polymer sensors

- + Easy to use, small scale
- + Withstands exposure to water (after that requires a calibration)
- + Fast, sensitive, wide temperature range
- Relatively poor stability
- Hysteresis
- Temperature dependency (temperature sensor in the same device)
- Individuality (necessity to calibrate)

Other sensor types

- Resistive sensors
 - Conducting polymers
 - Usually less sensitive and accurate than capasitive
- Mechanical
 - Thermohygrographs, hair tension hygrometers
 - No longer in use

Other sensor types

- Optical
 - Spectroscopic: air absorption
 - Fiber optical: moisture detector
- Mechanical properties
 - Quartz crystal microbalance (QCM)

